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K Y B E R N E T I K A — VOLUME 39 ( 2 0 0 3 ) , NUMBER 1, P A G E S 2 9 - 4 2 

CORE FUNCTIONS AND CORE DIVERGENCES 
OF REGULAR DISTRIBUTIONS 

ZDENEK FABIAN AND IGOR VAJDA 

On bounded or unbounded intervals of the real line, we introduce classes of regular 
statistical families, called Johnson families because they are obtained using generalized 
Johnson transforms. We study in a rigorous manner the formerly introduced concept of core 
function of a distribution from a Johnson family, which is a modification of the well known 
score function and which in a one-to-one manner represents the distribution. Further, we 
study Johnson parametrized families obtained by Johnson transforms of location and scale 
families, where the location is replaced by a new parameter called Johnson location. We 
show that Johnson parametrized families contain many important statistical models. One 
form appropriately normalized L2 distance of core functions of arbitrary distributions from 
Johnson families is used to define a core divergence of distributions. The core divergence 
of distributions from parametrized Johnson families is studied as a special case. 

Keywords: Johnson transforms, generalized Johnson distributions, core function of distri­
butions, core divergences of distributions 
AMS Subject Classification: 62E10, 62B10 

1. I N T R O D U C T I O N 

Let for every open set 0 7-= S C R, Qs be the class of probability measures (distri­
butions) Q on Borel subsets B of the real line R which are regular in the sense that 
they are absolutely continuous with respect to the Lebesgue measure A on i?, and a 
version of the density 

5 = d A ( 1 ) 

is differentiable in S and satisfies the relation 

, . / > 0 for x€S . . 
9 ^ = { = 0 for xeR-S. ( 2 ) 

In other words, Qs is the class of all Lebesgue dominated probability measures Q 
on R supported by SQ = S and with well defined derivatives 

g(y) = ^---S^R (3) 
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of the respective Lebesgue densities. Since g and g are Lebesgue measurable, the 
Lebesgue integrals 

"-L&v-JM* *s&' (4) 

are well defined, with values in the extended real line interval [0, oo]. The expression 
IQ is a Fisher information of Q G Qs-

We are interested in special subfamilies Vs C Qs called Johnson families. They 
are defined for arbitrary intervals S = (a, b) C i? by the "parent family" QR using 
the family $s = {ip = xpXo : x0 G 5} of Johnson functions, where each if>Xo : S -> R 
is an increasing one-to-one mapping defined for all x G S by the formula 

Фxo (x) 

[ sinh (x — Xo) if (o, b) = R 

ln x - а 

x 0 - a if —00 < а < b = 00 

| l n (x - 0) (6 - x 0) 
(6 - x) (x0 - а) 

if —00 < 0 < 6 < 00 

\ b — x if —00 = а < b < 00. 

(5) 

The Johnson functions are nothing but the reversed Johnson transformations ip~1 = 
ip~0 , xo G S\, which are increasing one-to-one mappings R -> S defined for all y G R 
by the formula 

\ xo + sinh y 

(x0 - a)ey 

fe1 (У) 

if (a, ò) = R 

if —00 < a < b = 00 

a(6-xo) + Ь(xo-a)в" . f ft 

0 - Ж0 + (Xfj - ûJЄ 

(б) 

[ (6 — xo)e2/ if — 00 = a < b < 00. 

(see Johnson [3], Johnson and Kotz [4] and a generalization in Fabian [1]). 

Definition 1. A Johnson family Vs is for every 5 = (a, 6) C R defined by 

Vs = {P = Qip:QeQR^eVs} (7) 

where Qip(B) = Q(tp(B)) and ip(B) = {ip(x) : x G B} for every Borel subset B CS. 

The Johnson families 7*s are supported by S and they are regular in the sense 
that the Lebesgue densities / of P G Vs are positive and differentiate on S (see 
Proposition 1 in Section 2). 

If Q = QR (a "parent family") then the ratio 

SQ = -g/g 

is the well known score function of Q supported by S = R. 

(8) 
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Recently, Fabian [2] introduced the core functions TP of distributions P G Vs on 
arbitrary supports S = (a, b) C P by the formula 

T P - 8Q(V) (9) 

where ^ £ ^s 1s the Johnson function and Q = P ^ _ 1 G QR. The core functions 
Spi/j-1 (VO differ from the score functions sQ. Fabian [2] demonstrated that the point 
estimation in some parametrized subfamilies of Vs based on the core functions leads 
to robust versions of the estimation based on the score functions with acceptable 
levels of asymptotic inefficiencies. We show that such subfamilies of Vs include many 
important models of mathematical statistics. This motivates our deeper interest in 
the Johnson families and their parametrized subfamilies, and in the related core 
functions. 

In Section 2 we study more rigorously the concept of core function. In particular, 
for P G Vs,S 7-- R we study the pairs ij) G ^s and Q G QR satisfying the relation 
P = Qip considered in (7) and prove that (9) defines Tp unambiguously in the sense 
that it does not depend on the particular choice of the pair ip and Q. We also prove 
rigorously that the core functions Tp are related in a one-to-one manner to the score 
functions sp of Johnson distributions P eVs and, consequently, to the distributions 
themselves. This justifies the terminology "core function of P" . 

In Section 3 we introduce a core divergence D{Pi,P2) of distributions Pi,P2 G 
Vs and study its basic properties. In a number of examples we evaluate the core 
divergence and the well known Kullback divergence of distributions. In some of 
them we compare these two divergences and analyze differences between them from 
the point of view of statistical applications. 

2. CORE FUNCTION 

The first proposition summarizes for references later some properties of the Johnson 
families introduced by Definition 1. 

Proposition 1. For every S = (a,b) C P , the Johnson family Vs 1s a subset of 
the regular family Qs- For every P G Vs there exist Q G QR with a differentiable 
density g on P , and a Johnson function ip = I/JXQ from \I>s, such that the density 
/ = dP/dA satisfies the relation 

f{x)=gW>(x))ij>(x), xeS, (10) 

where 

Hx) = ^(x) = <; 

' 1 if (a, b) = R 
л/l + x2 

if (a, b) = R 

1 
x — а 

if —oo < а < b = oo 

(b-а) 
{x - а){b- x) 

if —oo < а < b < oo 

1 
{ b- x 

if —oo = а < b < oo 

(11) 



32 Z. FABIÁN AND I. VAJDA 

is the derivative of rf> = ipXo on 5 which is independent of xo G S. The density (10) 
is differentiable on 5 too, with the derivative 

f(x) = -Ц--- = g(ф(x)Шx))2 + g(ф(x)Џ(x), x € S, 
dx 

(12) 

where g is the derivative of g on R and 

(ip(x)j xip(x) 

d2ip(x) 

(a, b) = R 

* - > - ^ ч m Sғ^řby »-»<•<»< oo (13) 

1 (i«-0): otherwise. 

P r o o f . By definition, P = Qip for some Q G Q« and </) G 0 5 . Since -0 is strictly 
monotone and continuous on 5, the image ip(B) of a Lebesgue null set B C S is 
a Lebesgue null set. Therefore any P G Vs is absolutely continuous with respect 
to the Lebesgue measure and its density / satisfies (10). The formula (11) is easily 
verified and implies ip > 0 on 5, and even 

mjn-ft(s) = j , ((a + b)/2) = ^ § > 0 
xes (a + by 

(14) 

i f - o o < a < b < o o . Consequently, / is positive on S. Since the differentiability of 
/ and formulas (12) and (13) are obvious, one can conclude that P belongs to Qs-
This completes the proof. • 

In the next proposition, and in the sequel, we denote by B + c translations of 
subsets B C R by constants c £ R/i. e. 

B + c = {y + c:y G B). 

Proposition 2. Let P G Vs where S = (a, 6) C R. For every x0 G 5 there exists 
unique Q = QXo in ^ with the property P = QXoipXo where rj>Xo is the Johnson 
function corresponding to x0. U P = QXOIJJXO then P = QXlipxi for some X\ G 5 if 
and only if every Borel set B C R satisfies the relation 

where 

QXl(B) = QX0(в + c), 

( sinh (x — XQ) 

c = < 

j X j L ^ O 
xo — a 

ln^"ДoUf-"a 

(zo - o ) ( ò - ж i 

І П І = ^ 
6 — Xi 

if (a, ò) = Д 

if ~oo < a < b oo 

if — oo < a < b < oo 

if — oo = a < b < oo. 

(15) 

(16) 
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P r o o f . By Definition 1, for P under consideration there exist x0 G S and QXo G 
VR with the property P = QXOI/JXO. Theequality QXlipXl = QXotpXo for any given 
x\ G S is equivalent to 

QXl =Qx0{i>x0iPxi)' 

As is easy to verify from (5) and (6), the composed mapping ipXoipx* is a translation 
on the real line by the constant c given by (16), 

*Px0^Xi(x) =x + c, xeR. 

Therefore P = Qx\^)Xx if and only if (15) holds for c given by (16). This proves 
the second assertion. The second assertion implies that for every x\ G S (including 
xi = xo) there exists unique QXl (namely, the c-translated version of QXo, defined 
by (15)) such that P = QXlipXl, which proves the first assertion. • 

Proposition 3. Consider P G Vs with a Lebesgue density / . Then the score 
function sp(x) = — d(lnf(x))/dx on the support S of P is given by the formula 

sp = ~*W) ~ ?• (17) 

where I/J is any Johnson function from \£s, g is the Lebesgue density of Q = Pip"1 G 
VR, and g, ip, i\) are the derivatives introduced above. The ratio 

does not depend on the particular choice of \j) G *£ , i.e. if P = QXoipXo — QXlipx! 
for different xo,£i G S then, for every x G S, 

9xoWx0{x)) = gxA^xAx)) .1Qv 

Further, if — oo < a < b < oo then the ratio i/j/ip in decomposition (17) is a score 
function of a probability distribution supported by S = (a, &), namely 

where Paj& is absolutely continuous on the support (a, 6) with the Lebesgue density 

r . . 6(x-a)(b-x) , . , . 
W " ) = ( M ^ ' *G(a,&). (21) 

The equality (20) remains valid also fo r -oo = a < & < o o o r - o o < a < & = ooif 
the function sPah(x) i s extended by continuity t o a = - o o o r & = oo, respectively. 
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P r o o f . The decomposition (17) follows directly from formulas (10) and (12) for 
/ and / by taking the ratio sp = - / / / . The second assertion (19) follows from the 
fact that if c is defined by (16) then 

ipXl(x) =xJjX0(x) - c , x G 5, 

and that, by (15), 
9xi(x) = 9x0(

x + c), x e S. 

Indeed, then for every x € S also gXl(x) = gXQ(x + c) so that 

gsi(V-i(s)) = 9xMx0(
x) ~c) = gX0(ipx0(

x)) 
9(^xAX)) 9xMx0(

x)-c) 9xo(^xo(x)Y 

The third assertion (20) follows from formulas (11) and (13) for ip(x) and t^(x), and 
from the easily verifiable fact that the function fa^ defined by (21) is a probability 
density on the bounded interval S = (a, b). If this interval is unbounded below or 
above then the validity of (20) for 

lim sp . or lim sp . 
_ - a . o . - a , 6 

a—• —oo b—YOO 

follows again from formulas (11) and (13). • 

Note that the distributions P_oo,& or Pa,oo figuring in the continuous extensions 
of sp b to a = — oo or 6 = oo cannot be defined by a similar extension of the density 
(21). 

If P G VR then the score function on R is 

SP = -J, (22) 

where / is the Lebesgue density of P. If P e Vs where S = (a, b) C R then 
Proposition 3 guarantees a canonical decomposition 

sP = ipTp + sPab (23) 

of the score function on the support S where ip,Tp and spah are given by (11), (18) 
and (20) (with the corresponding limits if a = —oo or b = oo). We see from (11) 
and (20) that ip and spab depend only on the support 5 and not on the density / 
of P defined on this support. Thus a complete information about the score function 
sp is contained in the function Tp. This leads to the following definition. 

Definition 2. The core function of P G Vs, S C R, is defined on the support 
interval S by formula 

where g is the Lebesgue density of Q = PX/J l on R and ip is an arbitrary Johnson 
function defined by (5). 
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R e m a r k 1. Obviously, the definition (24) agrees with the more concise form used 
in (9). If P G Vs then, as said above, Tp specifies in a simple one-to-one manner 
the score function sp for all Johnson distributions P G Vs, S C R. Since the score 
function sp(x) = —d(lnf(x))/dx, x G 5, uniquely specifies the Lebesgue density 
/ of any Johnson distribution P G Vs, S C R, the interpretation of TP as a core 
function of Johnson distribution P G Vs in Definition 2 is fully justified for all 
SCR. 

In the following proposition we study the second moments Ep(Tp)2 of the core 
functions of Johnson distributions. This proposition refers to the Fisher information 
defined by (4). 

Proposition 4. For all Johnson distributions P G Vs, SCR 

Ep(TP) = IQ 

where IQ is the Fisher information of the parent distribution Q = Pijj~l for arbitrary 
Johnson function ip G ^s-

P r o o f . If P eVs then P = Qip,Q G QR and 

E^--L&AP=IM^--IM^ 
where the last equality follows from the substitution rule in Lebesgue integrals. • 

In Table 1 are listed some Johnson distributions P defined by their densities 
f(x) for S = (0,oo) and S = (0,1), densities of their parent distributions and 
corresponding core functions. 

Table 1. Johnson distributions P = QipXQ G Vs, S ^ H, with densities / (x ) , 
parent densities g = dQ/dX and corresponding core functions TQ,TP. 

Name f(x),x G(0,oo) g(y),yeR Name TQ(y) TP{x) 

Lognormal 1 e - è l n 2 x 
V27ræ 

i e - Ь 2 

V27Г 
Normal У lnæ 

Exponential e~x eУe-*У Gumbel eУ -1 x-1 

Extr. v. II ^e~l'x 

X2 

e-ye-e~У Extr. v. 11-Є-У 1 - 1 / æ 

Wald-type J_ -\(x+llx) 
KxC 

_ l _ p - c o s h y no name sinh^/ \(x-l/x) 

Log-logistic 1 ey 

Logistic ey-l 
ЄУ + 1 

x-1 Log-logistic (æ+1) 2 (ЄУ+1)2 Logistic ey-l 
ЄУ + 1 x+1 

Beta-prime 1 æ " - 1 

B (x+l)а+P 
1 eаy 

B (eУ+l)<*+P 
no name аey-ß 

ЄУ+1 

аx—ß 
x+1 

Gamma(a,7) 7 ° ryа-lp-^íx 
Г(а)X Є 

l а

 rаvr-^el 

Г ( a ) Є Є no name аЄУ _ zy аx — 7 

Johnson 1oдW c - ł l n 2 - ^ г 
y/2ҡx(l—x) y/2n 

Normal У 1 — X 

Beta(a,/3) ł°.A?lx<*-Ңi _ x)ß-г 1 eаy 

B (eУ+l)а+P 
no name аey-ß 

ЄУ+1 
(а -f- ß)x — а 
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Here K = 2KQ(1) and B = P(a,/3), where Kv(u) is the Bessel function of the 
third kind and B(u,v) is the beta function. 

3. JOHNSON LOCATION 

In this section we describe a method leading to parametrized families V C Vs 
of Johnson distributions. We show that these families include many important 
parametric statistical models such as lognormal, Weibull and gamma distributions 
and therefore they play an important role in statistical applications. Distributions 
from these families will be used in the next section. 

If Q G VR then it is well known that the automorphisms [/i,cr]: R -» R defined 
for (Ix, a) G R x (0,oo) by 

[^a](y)=fi + ayy yeR (25) 

specify a location and scale family Q = {Qn,a = Q[/i ,a]~ : (/x,cr) G R x (0,oo)}. 
The distribution Q is a parent of Q and it holds Q C VR and 

g»Ay) = ^ T ( y ) = I9 ( ^ r ) - y€jR> (26) 

for the Lebesgue parent density g = dQ/dX. 

Defin it ion 3. Define for (T,a) G S x (0,oo) one-to-one mappings {r, 0"} : S -> R 
by 

{r, a} = t/)(r) + aip(x), x G S. (27) 

Then for any P eVs the mapping (27) defines a Johnson location and scale family 

V = {PT,a = P{T,a}~1 : ( r ,a) G 5 x (0,oo)} (28) 

The distribution P is a parent of V and the parameter r G 5 is a Johnson location. 

Proposit ion 5. All distributions Pr^ from the above defined Johnson location 
and scale family V satisfy the relation 

PT,O = Q*(T),*II>, (29) 

where ip G ^s is a Johnson function and Q^(T)%a
 ls the element of the location and 

scale family Q with the parent Q = Pip~ . It holds V C Vs and the Lebesgue 
densities fT>(T = dPTya/dX of distributions Pr><7 G P are given by formulas 

frAx)=L9(m^m.y(x), I65, po) 

for the density g = dQ/dX. 
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P r o o f . Let P = Qip for some ^ G # 5 . It is easy to verify from (25) and (27) 
that ^ ( r ) , a ] _ 1 = </> ( { r ^ } " 1 ) . ThereforePT|<r = Q (</>{>),c/}"1) = Q[%b{r),&]'- = 
Q<IP(T),-, which proves (29). The inclusion V CVS follows from the relation PT)0. = 
Qi/;(r),(T^5 where Qv(T),<- £ /~R by the definition of the Johnson class P s in Defi­
nition 1. Relation (30) follows from equality PTjC, = Q^(T)i(Tip and from the fact 
that 

* r V W = I , ( £ - i f e 2 V S € f l 

(see (26) for g = dQ/dA). D 

Remark 2. The last proposition implies that /T>(7 is the density of P if (and only 
if) (r, cr) = (V;~1(0), 1). This is a neutral element of the group S x (0,00) under the 
associative multiplication 

(r,cr)(f,5-) = (T/T1 [I/J(T) + aip(f)],aa) 

with the inverse element (r ,cr) - 1 = (?/)-1(—i/J(T)/rj), 1/cr). This group structure of 
S does not define the equivariance structure on the family P in the common sense 
considered e.g. in Chapter 7 of Zaks [5]. 

Proposition 6. The core functions TpT^ of distributions PT><- with density /T)(T 

from the above defined Johnson location and scale family P are given by formula 

Tp-*(X)-~;7S^-M—^—J' x65' (31) 

where Q and g are the same as in the previous proposition. Moreover, a relation 
between the efficient score ^-\nfTi(T(x) and the core function (31) is 

^\nfTi(T(x) = -^(T)TPrJx). 
OT a 

P r o o f . The first part is clear from (29) and from Definition 2. Put u = ^x)~\^r). 
Since , „ , x n 

and /T><r(.-) = \g(u)^(x) by (30), and g» = £V>(r), it holds by (31) that 

4-hLfrA*) ~ -TP(T)TQ(U) = \*<?)Tprt.{*)- ~ 
OT a a 

In Table 2 are listed densities and core functions of some Johnson location and 
scale families and their parents. 
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Table 2. Johnson families PT,a with densities fT,v{x), parent densities f{x) and 
corresponding core functions Tp and TpT „. The scale a is reparametrized by (3 = 1/cr. 

Name L.t<r(x), J € (0,oo) / (x ) ,x e (0,oo) TP TPT,„ 

Lognormal - ^ e - - , 0 « a W _J_-<H'n 2 * \nx \n(z.)P 

Weibull | ( £ ) 0 e - ( * ) * \xe~x x - 1 (fV* - 1 

Extr. v. II f ( 7 ) - / 3 e - ( r ) " ' 3 ^ e - 1 ! * 1 - 1/x 1 - ( f ) _ / J 

Wald-type ^ - i K ^ ' W l ^ - c - i ( - + i / * ) I(_ - _/_) I[(£)0 _ (£)-/»] 

Log-logistic f ( i+fj)/»a T^+TF J+T ifFTT 

Gamma(a) ^ ( £ ) ^ e - « ( ? ) " j j g - ~ - - i c - « ~ tt(x - 1) a [(f)* - l] 

_2_ 

Formulas for the Gamma(a) distribution follows from the relation Garnmafa, 7) = 

r 7 ^ z a _ 1 e ~ Q : c = ff£jZ {r)a e~a^ = Gamma(a) where r = j/a. 
Proposition 6 shows the significance of the core function for statistical inference. 

The core function is the inner part of the efficient score for the Johnson location pa­
rameter and appears to be the most important characteristic of distributions P G Vs-
As is shown below, it also provides an interesting characterization of divergence in 
parametric families which is analogous but often simpler than the Kullback diver­
gence. 

4. CORE DIVERGENCE 

By Remark 1 in the previous section, the core functions Tp characterize in a one-
to-one manner all distributions P € Vs,S = (a,b) C R. Therefore any measure 
of divergence (dissimilarity, or distance if the metric axioms hold) in the space 
Ts = {Tp : P £Vs} will serve as a measure of divergence in the space Vs itself. 

The most natural of the distances between measurable functions Tp,Tp defined 
on S is the common I_2-norm \Tp - Tp\ = (fs(Tp - Tp)2dfi)1/2 where the integral 
is taken with respect to a measure \i defined on Borel subsets of S. To achieve a 
better comparability with the asymmetric Kullback divergence 

Iv"(P, P)= f ln(dP/dP) dP, P,PeV, 

we propose to take /i = P and to normalize the resulting norm by ||Tp|| = (fs Tp dP) 1 / 2 

= (Ip) I / / 2 , where Ip is the Fisher information of P , see Proposition 3 above. This 
motivates the following definition, as well as the fact that, in order to avoid undefined 
expressions, we restrict ourselves to the subspaces 

V°s = {PeVs:0<IP<oo} and Ts = {TP : P e P§} . " (32) 
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Definition 4. For every S = (a,b) C R, the core divergence D(P,P) of ordered 
pairs P, P of distributions from V% is defined as a divergence of the corresponding 
core functions TP,Tp G 7s, namely 

D(P,P) = ̂ -J (TP L Tp)2dP (33) 

Remark 3. Since f(TP-Tp)2 dP may be infinite when P -£ P, the core divergence 
takes on in general the values from the extended real line interval [0, oo]. 

The following proposition simplifies evaluation of the core divergence. It also 
implies (cf. Proposition 8) that the core divergence is a squared distance in the 
important Johnson location families with fixed scales. 

Proposition 7. If S = (a, b) ~t R then for every P,P eV$ and ip G * s it holds 

D(P,P) = D(Q,Q), (34) 

where Q, Q are elements of VR defined by Q = P^1 and Q = P^1. 

P r o o f . By Proposition 4, IP = IQ for Q = Pip-1. If Q = Pip'1 then (24) 
implies that TP = TQ(^)) and Tp = TQ(IIJ). Therefore, by the substitution rule for 
integrals, 

J (TP - Tp)
2dP = [(TQ(iP) - T Q m 2 dQV = JR(TQ - TQ)2 dQ 

which completes the proof. ---

In the following assertion we consider the location and scale families Q and V 
with respective parents Q and P defined in Section 3. 

Proposition 8. If Q G V°R and Q is the location and scale family with parent Q, 
then QcV°R and for every Q^)<7 and Q~^~a from Q 

D{Q„,QM) = ±~JR {rQ(y)-TQ (£y + ^ ) ) 2 « . (35) 

If S / R, and P = Qxj)-1 for some P eV%,Q CV°R and t/> G ¥5 , and if T is the 
Johnson location and scale family with parent P, then V C V% and for every PTt<T 

and Pf 5. from V 

щp„,n,) = £ l (*,<,> - (§,+«^û)) W (36) 
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P r o o f . We shall prove (36). Proof of (35) is simpler. Fix arbitrary (r,a) and 
(f,a) from S x (0,oo). By (29) and Proposition 7, 

L>(Pr,-,Pf,*) - DiQ^r^Q^j) 

- 2jF~ / (rQ*(T),<r -TQ+{f),*)2 AQ^(T),<J-

The assumption Q G P # together with Proposition 3 implies that Ip = IQ is finite 
and nonzero. Further, (31) and (26) imply the relation 

9( 
-q*,->» = - Ju-Ł^ = ГQ 1 — ^ ) . «ЄД, (37) 

so that it suffices to apply in the last integral the substitution y = (u — ip(r))/fa to 
get the desired equality (35). • 

In Tables 3 - 5, we compare formulas of Kullback divergences and core divergences 
in some Johnson families. In these tables, C is the Euler constant, ^(u) = rf(u)/r(u) 
is the psi function, and for the Bessel function of the third kind Ku(u) it holds 
a = K2(l)/K0(l) - 1 = 2.68, Cx = ±_ri(l)//_"0(l) = 0.72, C2 = K2(l)/(4K0(l)a) = 
0.34, C 3 = l/2a = 0.174. 

Table 3. Kullback divergences and core divergences in some Johnson families 
from Table 2, reparametrized by UJ = a/a = (3/f3 and 7 = (r/f)1^. 

Name K(PT)(7, Pf,d) D(PT^Pf^) 

Lognormal | [ - l n u ; 2 + ( l n 7 ) 2 + u/2 - 1] M ( l n 7 ) 2 + (w - l) 2] 

Weibull 7 r ( u j + 1) - ln(oj7) + (u - 1)C - 1 7

2 r(2oj) - 7T(cO + 2) + 1 

Extr. v. II I _ > + 1) - In * + (u - 1)C - 1 ^r(2uj) - ±T(u + 2) + 1 

Table 4. Similar as in Table 4 for the special case a = a = 1 
and also different Johnson families. 

Name K(PT<uPf,i) D(PT,i,PT<l) 

Lognormal | ( l n 7 ) 2 | ( l n 7 ) 2 

Weibull 7 - 1 . 1 7 - 1 (7 - l ) 2 

Wald-type 4 ^ ( 7 + 1/7-2) O2[(7 - l ) 2 + (1 - I/7)2] 

+O3(7 + l / 7 - 2 ) / 

Log-logistic (7 + 1) In7/(7 - 1) - 2 2[(/y - l)(-y2 + IO7 + 1) 
3 

- 6 7 ( 7 + l ) l n 7 ] / ( 7 - l ) 
Gamma(a) —á lna — (a — a)[ip(a) — ln a] 

+alna + lnr$j 

-áln7 + á 7 - a l [ g ( 7 _ i ) - a + (á7_i)2] 
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Table 5. Kullback divergences and core divergences in some special cases 
of gamma and beta distributions. 

Narne K(Pа,Pа) D(Pа,Pа) 

Gamma(a) —álná + alna 

(T = 1) — (a — a)[tp(a) - lna - 1] 

Beta (a,l) § - ln f - 1 

Beta (a, a) - l n f g § } + 21n £ g 

+ 2 | á - a | ( ^ ( 2 a ) - ^ ( a ) ) 

K f - i ) 2 , 
a ( ã i V 
+1 Va L) a+1 

г ( â - a ) 2 

By Proposition 7, if Qp,o- = PT^ where fi = -0_ 1(r), it holds 
D(Qfly(7,Qii,a) = D(PTy(T,Pf7a)- In the case of the normal distribution, for example, 
one can use the formulas for the lognormal distribution with In 7 = (ji — jj)/d. 

Comparison of Kullback (K) and core (D) divergences for logistic distributions 
with different location parameters is given in Figure 1. Similar comparison for 
Weibull (exponential) distributions with different Johnson locations is given in Fig­
ure 2. This figures are typical in the sense that for small deviation of parameters 
both divergences almost coincide, but they differ in the sensitivity to large deviations 
of the parameters. Figure 1 illustrates that for distributions with heavy tails, the 
core divergence is much less sensitive to large deviations of the parameters than the 
Kullback divergence. 

Fig. 1. K(Qfl><7iQp,,<r) (dotted line) and D(Q^CT,QP.,<T) (full line) of logistic distributions 
as functions of 7 = exp((/i - (i)/cr). 
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Fig. 2. K(Qfli<T,Qflt<T) (dotted line) and D(QfXi<T)Q^f<T) (full line) of extreme value II 
distributions as functions of 7 = ( 1 / f ) 1 ^ . 
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