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FIXED POLES OF H2 OPTIMAL CONTROL 
BY MEASUREMENT FEEDBACK 

JEAN-FRANÇOIS CAMART1, B A S I L Ю D E L - M U R O - C U É L L A R 

AND MlCНEL MALABRE 

This paper is concerned with the flexibility in the closed loop pole location when solving 
the H2 optimal control problem (also called the H2 optimal disturbance attenuation prob­
lem) by proper measurement feedback. It is shown that there exists a precise and unique set 
of poles which is present in the closed loop system obtained by any measurement feedback 
solution of the H2 optimal control problem. These "H2 optimal fixed poles" are character­
ized in geometric as well as structural terms. A procedure to design Hi optimal controllers 
which simultaneously freely assign all the remaining poles, is also provided. 

1. I N T R O D U C T I O N 

The H2 optimal control problem, which amounts to minimizing the H2 norm of the 
closed-loop transfer from a disturbance input to the output by a stabilizing con­
troller, has been considered since the works of [10, 11] and [7], without regularity 
assumptions and the question of flexibility in closed-loop pole placement has ap­
peared challenging. By making use of decompositions of the system in a particular 
basis (the so-called Special Coordinate Basis), [4] characterized the H2 optimal fixed 
poles for the s tate feedback case and, in the case of measurement feedbacks, [8] stud­
ied the flexibility in closed loop poles for the following design method: select a s tate 
feedback matr ix and use an observer so tha t the resulting compensator is solution of 
H2 optimal control problem. This method exhibits some "fixed poles" which depend 
on the class of observers as well as on the preliminary selected state feedback matr ix 
but there is no guaranty t h a t they correspond to the H2 optimal fixed poles, the 
latter being present in the closed loop system obtained by any solution of the H2 

optimal control problem, whatever may be the type of measurement feedback proper 
compensator. 

The disturbance rejection problem, which amounts to canceling the closed-loop 
transfer between the disturbance and the output is obviously one particular case of 
the H2 optimal control problem (when the optimum is zero) for which many works 
contributed to explain the geometric structures of the system involved in the problem 

xThis work has been done while the author was working within IRCCyN. 
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solvability ([1, 13]). In this context, [3] characterize, when the disturbance can be 
rejected by measurement feedback, the so-called Disturbance Rejection Fixed Poles, 
namely poles which are present in the closed loop system with any measurement 
feedback solution, whatever be the way used to find the compensator. A transfor­
mation has been proposed by [10], completed by [11], which revealed that solving 
the H2 optimal control problem is equivalent to solving the disturbance rejection 
problem on a modified system. Starting from that transformation and the study of 
[3] on the Disturbance Rejection Fixed Poles, the aim of the present paper is mainly 
to characterize the fixed poles of the H2 optimal control problem by measurement 
feedback. The characterization will be geometric as well as structural (in terms of 
invariant zeros) for strictly proper systems under some mild minimality assumption. 
Additionally, a procedure is provided to construct H2 optimal compensators which 
are also "optimal" in the sense of pole placement, i. e. which freely assign all the 
poles except the H2 optimal fixed poles. 

The detailed formulation of the problem and the notation are stated in Section 2. 
In Section 3, the characterization of the Disturbance Rejection Fixed Poles and the 
system transformation which converts an H2 optimal problem into a disturbance 
rejection problem are recalled. The main results, i.e. the H2 optimal fixed poles 
characterizations and the constructive procedure for H2 optimal compensators are 
presented in Section 4. We conclude in Section 5 with some possible extensions of 
this work. 

2. PROBLEM FORMULATION 

We consider linear time-invariant systems described by: 

x(t) = Ax(t) + Bu(t) + Dh(t) 

z(t) = Ex(t) (1) 

y(t) = Cx(t) 

where x(t) e X & Rn is the state, u(t) e U « Em is the control input, h(t) e 
H « W is the disturbance input, z(t) e Z & W is the output to be controlled and 
y(t) e y ~ W is the measured output. i?,£>,C, and £ respectively denote Im B, 
Im D, Ker C and Ker E, 0 stands for the union with repeated common elements. 

We make the following assumptions: 

A.l: (A, [BD]) is controllable, • ([%П is observable; 

A.2: (A, B) is stabilizable, (C, A) is detectable. 

These assumptions are not restrictive: (A.l) corresponds to a minimal description 
of the system with respect to all the external variables. (A.2) is necessary to control 
the system with stability. Nevertheless the system description (1) is not as general 
as in [8] where feedthrough matrices (from input or disturbance to controlled output 
or measurement) are present. The main reason for restricting our study to strictly 
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proper systems like (1) is that the available geometric characterizations of the DRP 
fixed poles (see Section 3) have been proposed up to now just for this particular 
class of systems. On the other hand, for the study of such "exact" control problems, 
classical tricks exist (addition of some integrators) for replacing the proper system 
by an extended strictly proper one (see for instance, [5, 6]). However, it is not yet 
guaranteed that such a simple trick is applicable for the Hi optimal control case. 

The proper compensator T is generically described by: 

( w(t) = Nw(t) + My(t) 

\ u(t) = Lw(t) + Ky(t) 

where w(t) £ W « W is the state of the compensator. 
The compensator internally stabilizes the system if the eigenvalues of 

(2) 

Ae:= 
A + BKC BL 

MC N (3) 

are all stable (i.e. are in the open left half-plane, denoted by C~). The resulting 
compensated system is denoted by (E x T), its associated transfer function matrix 
is denoted by 

D 
0 

Tr(s):=[E 0](sI(n+l/)-Ae)-
1 

and the Hi norm of Tr(s) is: 

\\Tr(s)h := (J^J^JrprÜ^T^-ju^du, 

(4) 

(5) 

where the transposition and the trace of a matrix are respectively denoted by -T 

and tr(-). The optimum of the Hi norm over all internal stabilizing compensators 
is defined as follows: 

7 o p t : = i n f { | | T г ( S ) | | 2 И Л ) c C - } (6) 

where a(-) stands for the spectrum. 
We are now able to formulate the Hi optimal control problem (referred sometimes 

also as H2 optimal disturbance attenuation problem) by measurement feedback. 

Definition 1. Let a system E be given, the Hi Optimal Control Problem by 
measurement feedback (H2OCP) amounts to finding, if possible, a stabilizing com­
pensator T such that 

| |Tr ( S ) | | 2 =7opt . (7) 

When this problem is solvable, one also says that the optimum is attained. A 
compensator solution to this problem is said to be an H2 optimal compensator. 
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When this problem is not solvable, one is faced to consider sub-optimal problems, 
which may amount to apprcaching the optimum as close as possible, or selecting 
compensators for which the norm is less than a prespecified number (see [11]). 

The H2OCP for the particular case when the optimum is zero corresponds to the 
Disturbance Rejection Problem with Stability, designed here by DRPS. Contrary to 
the iiz^OCP for which the stability requirement affects the value of the infimum, it 
is pertinent to define the Disturbance Rejection Problem without requiring stability, 
denoted here as DRP, since the two requirements are independent. 

The DRP thus corresponds to: 

Definition 2. Let a system £ be given, the Disturbance Rejection Problem by 
measurement feedback (DRP) amounts to finding, if possible, a compensator T such 
that Tr(s) =0. 

The DRPS (DRP with internal Stability) has the same definition plus the re­
quirement a(Ae) C C~. 

Let us remark that the fact that 7opt = 0 does not assure the DRPS or the DRP 
to be solvable. It only indicates that the so-called H2 Almost Disturbance Rejection 
Problem with Stability is solvable. This problem introduced by [12] amounts to 
finding a sequence of controllers whose limit (possibly not attained) gives the optimal 
solution 7opt -= 0. 

The notion of fixed poles of a Problem (which may stand for either the DRP or 
the H2OCP) is precisely formulated in the following definition: 

Definition 3. Let a system £ as well as a Problem be given and let us denote 
0 (Problem) the set of measurement feedback compensators T which are solutions of 
the Problem. Then, the Problem fixed poles are defined by: 

Problem fixed poles := Q o~(Ae). (8) 
re0(Problem) 

3. BACKGROUND 

3.1. Geometric tools 

In this section are briefly recalled some elements of the geometric approach. The 
interested reader which would like to have more details might refer to [14] and [1] 
for the basic notions and to [3] for the DRP fixed poles characterizations. 

Given two subspaces T C X and C C A*, we will denote: 

— y* £. : the supremal (A, T)-invariant subspace contained in C. 

— <S/*£ T\ : the infimal (£, A)-invariant subspace containing T. 
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— ^ ( T c) = HV c) ^ ^tc T) : ^ e s u P r e m a - (-4, T)-controllability subspace con­
tained in £. 

— J\f* r . = V/*r £) + S?c ^ : the infimal (£, .^-complementary observability 
subspace containing / . 

Let V be an (A, iB)-invariant subspace, then !F(V) denotes the set of matrices F 
that satisfy (A+BF)V C V. Let S be a (C, A)-invariant subspace, then G(S) denotes 
the set of matrices G that satisfy (A + GC)S C S. A (C, A, #)-pair is defined [9] to 
be a pair of subspaces of X, say (5,V), where S is a (C, .^-invariant subspace, V is 
an (A, #)-invariant subspace and S C V. 

Let us now recall the geometric definition of the set of invariant zeros for the 
triple (A,B,E), but the definition is also valid for each subsystem of E represented 
by state-input-output matrices. 

Definition 4. The invariant zeros of the system (A, B, E), denoted as Z(A, B, E), 
are equal to the eigenvalues of the map induced by (A + BF) in the quotient space 
V(*/3,5)/^(23,£:) i , e * : 

Z(A, B, E) :=G[A + BF\ ^ £ L ] , (9) 
7?* 

where F G ^(V(*B>£)). 

Note that a dual equivalent definition is expressed in terms of (C, A)-invariant 
subspaces. 

Of particular importance in the present design procedure of H2 optimal compen­
sators, is the so-called notion of (S, V)-based compensator introduced by [1]. Such 
a compensator is of full order (v = n) and based on a selected (C,_4,/3)-pair, say 
(S,V). The matrices (K,L,M,N) of T (2) are obtained by: 

f N = A + GC + BFL2 

M = -G + BFLX 

r vr ( 1 0 ) 

L = FL2 

K = FLX 

with matrices L\ and L2 such that: 
— L1C + L2 = In 

— ker L2 0 (S n C) = S. 

It has been shown by [1] that cr(Ae) = a(A + BF)0a(A + GC), which enhances 
the fact that this type of compensator may be seen as designed in two parts: a full 
order observer and an estimated state feedback. 
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Let us insist on the fact that, even if a special type of compensator is used here for 
simultaneously solving either the H2OC or the DR Problem and achieving maximal 
pole assignment, the results concerning fixed poles characterizations are valid for 
any type of compensator T (generically expressed in (2)), provided only that it is 
proper and that the compensator input is the system measurement output. 

Let us recall the basic geometric solvability condition of the DRP by dynamic 
measurement feedback (see [9] and [13]): 

Theorem 5. Let a system £ be given, the DRP is solvable if and only if: 

S(C,V) C V(B,€)' ( Ц ) 

Let us denote TV := TV<B £y к: 'Ңв+v,є) N* := N (C,V) 
\f* — kf* 

J\lc . _ JV(Cn£vy 
[1] obtained geometric solvability conditions of the DRPS by dynamic measurement 
feedback involving the subspaces TVC and M*. DRPS solvability is equivalent to the 
fact that the set of the DRP fixed poles is stable. The knowledge of the location 
of the fixed poles obviously gives more dynamic information (distance to instability, 
minimal possible damping, . . . ). 

Theorem 6. Let the system _ be given and let us assume that the DRP is solvable. 
Then, the DRP Fixed Poles are given by: 

DRP fixed poles = a ( A + BF 

N* 

_ 
K* 

U a\A + GC N* П K* (12) 

where F G T(TVC), G G Q(M* C\K*) and all the remaining poles of the compensated 
system can be placed at any (symmetric) desired location by a suitable choice of the 
parameters K,L,M,N in (2). Moreover, a structural characterization is given by: 

DRP fixed poles = [z(A,B,E)-z(A,[ B D 1,E)} 

U j_(A,_,C)-_ | A,D, ° J 1 

where Ec is defined by kerE c ~1VC. 

(13) 

3.2. The system transformation 

Here is recalled the transformation from the original system _ to a modified system 
S P Q on which the DRPS is studied. This transformation has been introduced by 
[10] for strictly proper compensators and generalized in [11] to proper compensators. 
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Let us define P and Q, respectively, as the largest symmetric solutions1 of the 
following linear matrix inequalities: 

*(X):=(ATX + X A / E T E ™ ) > 0 (14) 

nY):=(AY + Y£+DDT Y°T)>0 (.5) 
The existence and uniqueness of P and Q are guaranteed by assumptions (A.2). 
The most common way to compute these matrices is to use LMI techniques (see for 
instance [2]). A constructive procedure to compute these matrices is also presented 
in [11] using decomposition in the so-called Special Coordinate Basis (SCB). Ep and 
DQ are derived from: 

and 

El 
0 

DQ 
0 

[ EP 0 ] = Ф(P). (16) 

[Dl 0 ] = Ф ( Q ) . (17) 

The modified system T,PQ is then defined as follows: 

1
x(t) = Ax(t) + Bu(t) + DQh(t) 

z(t) = EPx(t) (18) 

y(t) = Cx(t) 

The formulation of [11] involves direct feedthrough matrices but one can see that 
original strictly proper systems induce modified systems which are also strictly 
proper. 

The link between the H2 optimal control and the disturbance rejection problem 
is stated in the following important theorem, established by [11]: 

Theorem 7. Let the system S be given. We have the following equivalent asser­
tions: 

(i) the compensator T solves the H2OCP for system S, 

(ii) the compensator T solves the DRPS for system Y,PQ. 

Moreover, the optimum of the H2 norm can be computed by: 

Topt = jti(DTPD) + tv(EpQET

P) (19) 

= y/tr(DTPDQ)+tr(EQET). (20) 

Margest in the sense that any X (resp. Y) such that $(K) > 0 (resp. V(Y) > 0) satisfies 
(P - X) > 0 (resp. (Q-Y)> 0) 
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4. MAIN RESULTS 

One advantage of the following formulation is to consider at the same time the 
solvability test for the H2OCP as well as the characterization of the H2 optimal 
fixed poles. 

From the above mentioned results, it is simple to derive the following theorem: 

T h e o r e m 8. Let the system S be given, then the i72OCP is solvable if and only 
if the two following conditions are satisfied: 

(i) The DRP is solvable for system S P Q 

(ii) The DRP fixed poles for system S P Q are stable, i. e. they lie in the open left 
half-plane. 

Moreover, if the iiI2OCP is solvable, the H2 optimal fixed poles for system S are the 
DRP fixed poles for system S P Q and all the remaining poles of the compensated 
system can be placed at any (symmetric) desired location by a suitable choice of the 
parameters K, L, M, N in (2). 

P r o o f . Thanks to Theorem 7, the iiI2OCP is solvable for system S if and only 
if the DRPS is solvable for system S P Q . AS the DRPS is equivalent to the DRP 
plus the requirement that the DRP fixed poles are all stable, the first part of the 
theorem is easily proved. 

Now let us assume that the problem is solvable, i. e. the optimum 7o p t is attained 
and let us denote crfix the DRP fixed poles of S P Q . Let us remark that E, Ep, 29, DQ 
are not involved in the expression (3), which means that the closed loop poles of 
( S P Q x T) and (S x T) are the same: 

a ( S P Q x T) = a (S x T) = a(Ae). (21) 

Thanks to this statement and Theorem 7, any H2 optimal compensator, say ro p t , 
is solution to the DRPS for S P Q and r/fix C a ( S P Q X r o p t ) = a (S x r o p t ) . 

Reversing the argument, let us choose (by the procedure in [3] for instance) one 
particular compensator, say TDRP, solving the Disturbance Rejection Problem with 
Stability for the system S P Q with all the poles of a ( S P Q X r ^ ^ p ) freely located 
except the DRP fixed poles a^x. We thus have found one H2 optimal compensator 
for which the closed loop poles are all freely placed except <jfix. We have consequently 
proved that a&x represents the H2 optimal fixed poles. D 

Let us note the following properties (for which the proof is quite direct): 

- ^(B,S) = ^B,SP) = n* a n d *tc,V) = *{c,VQ) = **-

— (A, [BD]) is controllable implies that (A, [BDQ ) is controllable and dually 

( j-, , A J is observable implies that ( „ , A J is observable. 
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These remarks enable us to precise some characterizations of the set of H2 optimal 
fixed poles, denoting for that purpose 7CC := ^\s+vQ%ev)

 a n <^ ~^c :~ ^l (cnčv,vQ) 
v'here £p = Ker Ep, VQ = Im DQ and EPQ is defined by ker EPQ — Hc 

\n:\ 
B.2 optimal fixed poles = 

U a ( A + GC 

a \A + BF 

M* \ 

K* 

-T7* "--Г* 

лLn7г„ 
(22) 

where F G F(fc*c), G G GQJ*C H Tl*c). The following characterization is in terms of 
invariant zeros: 

H2 optimal fixed poles = {Z (A, B, EP) -Z(A,[B DQ ] , EP)} 

Ù{Z(A,DQ,C)-Z(A,DQ,\^C
EPQ]^ (23) 

Example. Let us sum up the different steps of the Hi optimal compensators design 
procedure illustrated on the system described by: 

- 1 1 0 0 
0 - 1 0 0 
0 0 - 1 1 
0 0 0 - 1 

0 0 ' ' 2 0 " 

, в = 1 0 
0 0 

,D = 0 
0 

0 
1 

0 1 0 - 2 

E = 
1 1 0 0 
0 1 2 1 

C 
0 0 0 1 
0 1 2 0 

1. The computation of matrices P = 0 and Q = 

2 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

respecting (14) 

rp 

leads to the modified system E P Q with Ep = E and DQ = [ 0 0 1 — 2 ] . 

2. The solvability conditions of the disturbance rejection problem on E P Q can be 
checked thanks to 

S(C,VQ) 

( 0 \ 
0 
1 

V - 2 j 

c v; (B,ЄP) 

( 0 1 \ 
0 - 1 
1 0 

V - 2 1 j 

as well as the stability condition of the DRP fixed poles = {—1,-1,-3}, 
computed for instance by (23), i.e.: 

Z(A, B, EP) = {-2, -3} , Z(A, [BDQ], EP) = {-2}, 

Z(A,DQ,C) = {-1,-1} and Z(A,DQ, C

p Q ) = 0. 
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Then there does exist H2 optimal compensators. 

3. For a desired symmetric set (crfreeiUrjfree2), let us choose F e ^F(TZC) and 

GeG(IT*cnn*c)with 

a(A + BF) = Cтfreeiú a\A + BF\ к* 

and 

a (A + GC) = a(ree2Ù a (A + GC | =ř^=ï ) 

\ ЯcnкcJ 
The choice crfreei = {-3, - 1 , -1} and afree2 = {-3, -2} induces 

F = 
0 - 2 0 0 
0 0 0 - 2 

, G = 

0 0 
-0.3 -0.3 
-1.6 -1.1 
-0.5 0.5 

4. Applying (<S, V)-based compensator formulas, we obtain the matrices 

к = 
0 0 

z± ì 
L з з 

0 0 " 
0.3 
1.6 

0.3 
1.1 

, N = 

- 7 
6 

- 1 
6 J 

L = 0 
0 

- 2 0 
- 1 - 2 
3 3 

0 
- ì 
3 

- 1 1 0 0 
0 -3.3 -0 .6 -0 .3 
0 -1.1 -3.2 -0 .6 
0 1 

6 
ì 
3 

- 1 1 
6 

M = 

The closed loop transfer function matrix (inducing ||Tr(s)||2 = 7opt = A/2) is then 

Tr(s) 

2 
s+1 

5. CONCLUSION 

We have presented some characterizations of the Fixed Poles of the H^ Optimal 
Control Problem by measurement feedback as well as a constructive procedure to 
obtain Hi optimal compensators while simultaneously assigning all the remaining 
poles to arbitrary symmetric location. 

These two results are obtained by taking advantage of two previous contribu­
tions: a system transformation introduced by [10] which transforms the H<i Optimal 
Control Problem into a Disturbance Rejection Problem on a modified system and 
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the characterizations of the Fixed Poles of the Disturbance Rejection Problem by 

Measurement Feedback given in [3]. 

We have considered here strictly proper systems, then a further step would be to 

generalize the results to simply proper systems. The generalization does not appear 

trivial since the situation when direct feedthrough matrices are present (from input 

or disturbance to controlled output or measurement) is much more intricate, at 

least for the geometric approach. One possible way is to use the classical trick as 

introduced in [6], but it must be checked that it fully works in the present H2 optimal 

control case. 

Another possible extension would be to express the solvability conditions and 

the fixed poles characterizations directly from the data of the original system before 

computing the modified system. 

(Received April 9, 2002.) 
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