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K Y B E R N E T I K A — VOLUME 38 ( 2 0 0 2 ) , NUMBER 3, P A G E S 2 3 5 - 2 4 4 

PROGRAM FOR GENERATING FUZZY LOGICAL 
OPERATIONS AND ITS USE IN MATHEMATICAL 
PROOFS 

TOMÁŠ BARTUŠEK AND MlRKO NAVARA1 

Fuzzy logic is one of the tools for management of uncertainty; it works with more 
than two values, usually with a continuous scale, the real interval [0,1]. Implementation 
restrictions in applications force us to use in fact a finite scale (finite chain) of truth degrees. 
In this paper, we study logical operations on finite chains, in particular conjunctions. We 
describe a computer program generating all finitely-valued fuzzy conjunctions (t-norms). 
It allows also to select these t-norms according to various criteria. Using this program, 
we formulated several conjectures which we verified by theoretical proofs, thus obtaining 
new mathematical theorems. We found out several properties of t-norms that are quite 
surprising. As a consequence, we give arguments why there is no "satisfactory" finitely-
valued conjunction. Such an operation is desirable, e.g., for search in large databases. We 
present an example demonstrating both the motivation and the difficulties encountered in 
using many-valued conjunctions. As a by-product, we found some consequences showing 
that the characterization of diagonals of finitely-valued conjunctions differs substantially 
from that obtained for t-norms on [0,1]. 

1. BASIC FACTS A B O U T MULTI-VALUED C O N J U N C T Ю N S 

We assume t h a t we have a totally ordered set, P, of real numbers ( t ruth values) 

containing a least element, ± , and a greatest element, T . A fuzzy conjunction 

(triangular norm, t-norm) is a binary operation Л:P2 -> P which is commutative, 

associative, nondecreasing, and has T as the neutral element. If P = {0,1}, then 
the only t-norm on P is the Boolean conjunction. For P = [0,1], the following three 
basic (continuous) t-norms are considered in most applications: standard or Gödel 
t-norm (minimum) aЛ b = min(a,6), Lukasiewicz t-norm aЛb = max(o + b — 1,0), 

S L 

and product t-norm a Лb = a-b. As all t-norms are commutative and associative, 

they admit a n a t u r a l extension to more t h a n two arguments. 

*Work supported by the Czech Ministry of Education under Research Programme MSM 
212300013 "Decision Making and Control in Manufacturing", grant 201/02/1540 of the Grant 
Agency of the Czech Republic, and CEEPUS net SK-042. 
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From the theoretical point of view, we may consider a continuum of truth values, 
usually the real interval [0,1]. Nevertheless, practical applications are limited to a 
finite number of truth values. First, the technical implementation allows us to work 
only with a finite (though very large) number of values. Second, when representing 
vagueness it is usually meaningless to distinguish a high number of truth values; only 
a small number suffices. We concentrate on the case when the set of truth values P 
is finite. To simplify the notation, we may restrict - without loss of generality - to 
the chains of truth values in the form Pn = { 0 , 1 , . . . , n} , n G IV, where n represents 
the truth value T and 0 represents J_. 

R e m a r k 1.1. We have to distinguish carefully between t-norms on continuous 
domains, e.g., on [0,1], andv.continuous t-norms, i.e., those which are continuous 
as real functions. Their continuity has to be considered relatively to P (with its 
topology inherited from the linear topology on the real line). In this sense, each 
t-norm on a discrete domain is continuous (with respect to the discrete topology). 

We refer to [4, 7, 12] for discussion of which t-norms on continuous domains 
can be restricted to discrete domains, and conversely, which discrete t-norms may 
be extended to continuous domains. E.g., the restriction of the standard t-norm 
A = min to any subset having a greatest element is a t-norm. The Lukasiewicz 

t-norm can be restricted to a t-norm on P = {0, ^ , . . . , --^--, 1}. In contrast to this, 
the product t-norm cannot be restricted to a discrete domain. 

2. MOTIVATING EXAMPLE - SEARCH IN LARGE DATABASE 

We present an example of use of many-valued conjunction. We search for the most 
relevant items in a large database. A query may be formulated as a logical formula 
composed from various requirements. This formula could be evaluated using the 
rules of many-valued logic. A conjunction must be implemented as one of the basic 
logical connectives because very often the query is understood as a conjunction of 
various criteria. 

Let us demonstrate the properties of t-norms on an example of search of a flight. 
From numerous possibilities, none is completely satisfactory. We want to take into 
account many criteria, e.g.: 

- the destination airport, 

- the days of departure and return, 

- time of flight, 

- change between flights, 

- price, 

- comfort of services, e tc 

A sample problem is demonstrated in Table 1. It is a highly simplified example 
inspired by a real-life situation. The criteria are reduced and we exhibit only the most 
attractive alternatives from thousands of possibilities. The degrees of satisfaction 
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Table 1. Sample problem of choosing a flight. 

company A c F L S 
price 0.7 0.9 0.6 0.7 0.7 
airport 1 0.5 1 1 1 
day of departure 1 1 1 1 0.8 
day of гeturn 1 1 1 1 0.9 
take off t ime there 0.7 0.7 1 0.8 0.6 
arrival time there 1 1 0.8 0.7 1 
take ofF t ime back 0.7 0.7 1 0.8 0.7 
arrival time back 1 1 1 0.8 1 
transit airport 0.8 1 0.6 0.9 1 
transit time 0.8 1 0.8 0.8 1 
product t-norm 0.21952 0.2205 0.2304 0.18063 0.21168 
minimum t-norm 0.7 0.5 0.6 0.7 0.6 
Lukasiewicz t-norm 0 0 0 0 0 

of the criteria can be calculated according to the user's preferences and expressed 
relatively well by the numbers in the table. The aim is to formulate an algorithm 
which selects the best solution for the particular user. Moreover, we know that this 
task is in some sense solvable by a human expert - the travel agent, using even 
more rough data, has found a solution which seemed to be optimal (better than 
the others when compared mutually), namely company A. The problem is how to 
replace human reasoning by an algorithm. 

The idea is to aggregate the criteria using a fuzzy conjunction, because they 
were supposed to be satisfied simultaneously. The three basic t-norms did not give 
useful results. The product t-norm resulted in very similar values. They can be 
distinguished, but it is not clear whether this preference really represents our pri­
orities. Besides, it uses very many values, while the initial task was to keep only 
a limited finite number of truth values during the whole procedure. The standard 
t-norm (minimum) makes no distinction between two alternatives. What is more 
disappointing is that much information is ignored, e.g., the change between flights. 
Moreover, we would have got the same result even if we totally ignored the price! 
The Lukasiewicz t-norm is of little use in case of many entries; here it gives zero in 
all alternatives, making no distinction between them. 

3. CRITERIA FOR THE CHOICE OF MULTI-VALUED CONJUNCTIONS 

Numerous examples of discrete t-norms may be obtained, e. g., by the techniques of 
[5, 6, 7, 8]. Some constructions known for t-norms on [0,1], in particular ordinal 
sums, can be used to compose new examples of discrete t-norms from simpler ones 
(see [7] for more details). 

Definition 3.1. A continuous t-norm A on P is called 
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- archimedean iff 

V a G P \ { T } V & G P \ { ± } 3 n G / V : a A a A . . . A a < & , 

n—times 

- strict iff 
Vo, c G P Vb G P \ {±} : (a < c =• a A b < c A b) . 

These classes of t-norms can be recognized from their diagonals: 

Definition 3.2. Let A be a t-norm on P . The diagonal of A is the unary function 

d:P -r P defined by d(a) = a A a. 

Proposition 3.3. Let P be a closed set of reals. A continuous t-norm A on P 

with diagonal d is 

- archimedean iff 
V a G P \ { ± , T } : d ( a ) < a , 

- strict iff 
V a G P \ { l , T } : ± < d(a) <a. 

The diagonals of continuous t-norms on [0,1] were characterized in [10]: 

T h e o r e m 3.4. The conjunction of the following conditions is a necessary and 
sufficient condition for a function d: [0,1] -> [0,1] to be a diagonal of a continuous 
t-norm on [0,1]: 

- d is a continuous and nondecreasing, d(0) = 0, d(l) = 1, 

- Wae [0,1] : d(a) < a, 

- d is strictly increasing on [0,1] \ d"1(I)i where I = {a G [0,1] : d(a) = a}. 

4. WHY NOT? (WE HAVE PLENTY OF MANY-VALUED CONJUNCTIONS) 

There is an abundance of discrete t-norms. We made a computer program which, 
for given v G N, generates all v-valued t-norms (with values in P n , where n = v — 1). 
A similar program was already written by De Baets [2], so we had a chance to verify 
some results. The number of t-norms grows with v faster than exponentially (see 
Table 2). 

Further, we implemented procedures that filter the t-norms according to several 
criteria. They distinguish 
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Table 2. Numbers of v-valued t-norms. 

V no. of t-norms archimedean smooth ordinal sums none of these 

2 1 1 1 0 0 
3 2 1 2 1 0 
4 6 2 4 3 1 
5 22 6 8 11 5 
6 94 22 16 45 27 
7 451 95 32 205 151 
8 2368 471 64 1021 894 
9 ' 13775 2670 128 5512 5593 
10 86417 17387 256 32095 36935 

11 590489 131753 512 201367 257369 

- t-norms obtained as ordinal sums of other t-norms, 

- archimedean t-norms, 

- smooth t-norms (also divisible, [6]), i.e., such that 
Va, c e P : (a < c -^ 3 b G P : a = c A b). 

The numbers of t-norms in these classes are in Table 2. (The second column gives 
the number of all v-valued t-norms, the last column contains the number of all t-
norms which do not belong to any of the three classes.) It seems that we have a 
large choice even if we restrict, e. g., to archimedean t-norms. The user may become 
confused from such ambiguity and may have difficulties to choose one t-norm for his 
particular application. 

To simplify our orientation, we may restrict attention to the diagonals. It is 
natural to ask whether an analogue of Theorem 3.4 holds for the discrete case, too. 
Surprisingly, the conditions of Theorem 3.4 are neither necessary nor sufficient for a 
function on a finite chain to be the diagonal of some discrete t-norm [1]: 

Example 4 .1 . The following table determines a t-norm A on P± which has a 

diagonal violating the last condition of Theorem 3.4. 

Л 0 1 2 3 4 
1 
0 0 0 0 0 0 
1 0 0 0 0 1 
2 0 o • 1 1 2 
3 0 0 1 1 3 
4 0 1 2 3 4 

Further examples will appear in Theorem 5.2. These discrete t-norms do not 
admit an extension to t-norms on continuous domains. 

Example 4.2. The sequence (0,0,1,2,4) is the set of values of a function d on P4 
which satisfies the conditions of Theorem 3.4, but it is not the diagonal of a t-norm 
on P4. Similarly, the following sequences determine functions that do not appear 
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as diagonals of t-norms on P5 : (0,0,0,2,3,5), (0,0,1,2,3,5). An example for P6 

is (0,0,0,0,3,4,6). These examples were obtained by checking the diagonal of all 
t-norms on P m , v = 2 , . . . , 7, but they will also follow from Theorem 5.2. 

5. WHY NOT! (NO MANY-VALUED CONJUNCTION SATISFIES 
COMPLETELY OUR GOAL) 

Although there are numerous archimedean finitely-valued t-norms, none of them has 
satisfactory properties simulating those of the algebraic product. The drawbacks of 
the basic t-norms became apparent in Section 2. Idempotency of the standard t-
norm is sometimes desirable, but it also reduces the information obtained from the 
arguments - only one of them determines the resulting value, the others become 
irrelevant. Further, a conjunction of many facts that are satisfied to the same ex­
tent should be evaluated by a lower value than any of them. Therefore it is often 
important to avoid idempotent elements at all, in other words, to restrict attention 
to archimedean t-norms- This is what we do in the sequel. 

A natural candidate among archimedean t-norms could be the discrete Lukasie­
wicz t-norm. However, it vanishes at one half of its domain. This prevents the user 
from distinguishing low degrees of satisfaction of conjunctions of requirements. This 
feature becomes severe when we work with conjunctions of more arguments: 

Proposition 5.1. For z G N, let us consider the z-ary operation on Pn obtained 
by the natural extension of the discrete Lukasiewicz t-norm to z arguments. This 
operation vanishes except for less than 1/z! of its domain. 

Thus the Lukasiewicz conjunction of many arguments results very often to zero 
and gives us very little information about its arguments, see Section 2. 

We want to find archimedean many-valued conjunctions which are "nonvanishing" 
in the sense that nonzero inputs result in a zero Output only "rarely". Although there 
is an abundance of discrete t-norms, none of them achieves values that resemble the 
product or another strict t-norm. Looking for the reason, we derived and proved the 
following quite surprising result: 

Theorem 5.2. Let n > 3. Let c € Pn\{_L,T}. Suppose that A is an archimedean 

t-norm on Pn such that 
(c + 1) A (c + 1) = c . 

Then 
a A b = c and a A e < c 

for all a, b G {c + 1 , . . . , n — 1}, e G {0 , . . . , c}. 

P r o o f . We proceed by induction over fc = c - f - l , . . . , n — 1, proving that the 
statement holds for all a, b G {c + 1 , . . . , &}. Notice that the condition a A e < c is 

trivially satisfied for e < c, so it is enough to check the condition a Ac < c instead. 
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For k = c+ 1, we only have to check the condition k Ac < c, where the inequality 

k A c < c follows from monotonicity. It remains to exclude the case k Ac = c which 

leads to a contradiction with associativity: 

c = kAc=kA(kAc) = (kAk)Ac = cAc<c. 

So the statement of the theorem holds for a = b = c + 1. 
In the inductive step, we assume that the statement holds for all a, b G {c + 

1,.. . , k — 1}, where c + 1 < k < T, and we prove it for all a, b G {c + 1, . . . , k}. 
Without loss of generality, we assume a = k. 

Similarly as above, k A c = c leads to a contradiction with associativity: 

c = kAc = kA(kAc) = (kAk)Ac<c, 

<k 

where the latter inequality follows from the preceding paragraph and kAk<k from 

the archimedean property. 
Let b < k. Due to monotonicity, kAb>bAb = c. If fc A & > c, then 

c = (k Ab) Ab = k A (b Ab) = k A c < c } 

a contradiction, hence k A b = c. 

In the remaining case, b = fc, we suppose that kAk > c and we get a contradiction: 

c=(c+l)A(kAk) = ((c+l)Ak)Ak = cAk<c, 

hence k A k = c. This completes the inductive step and the whole proof. • 

The latter theorem leads to examples extending Example 4.1 and proves the 
nonexistence of t-norms with diagonals presented in Example 4.2. It has the follow­
ing consequence for c = 1: 

Corollary 5.3. Let n > 3. There is exactly one archimedean t-norm A on Pn such 

that 2 A 2 = 1, namely the t-norm A defined by 
d 

aЛb= < 

(For n = 4, this is the t-norm A from Example 4.1.) 

a if b = n , 

b if a = n , 

1 if a , 6 є { 2 , . . . , n - l } , 

0 if a = 0 or 6 = 0. 
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The latter corollary represents a very strict restriction. The values appearing in 
the assumption are not so unusual. In fact, the value 1 A 1 = 0 is necessary for 

all archimedean t-norms on Pn. Trying to have the next diagonal entry nonzero, 
2 A 2 = 1 is the only possibility for archimedean t-norms. As we see, this single 

value leaves us only one archimedean t-norm, A. Moreover, the remaining values of 
d 

A (constant on a substantial part of its domain) are quite far from our intentions 
d 
and do not exhibit a nice fuzzy conjunction. It is "nonvanishing", but still it does 
not give much information about the arguments. Moreover, if a, b, c are smaller than 
T = n, then aAbAc = ± = 0. Thus when we apply this t-norm to the example from 

d d 
Section 2, we get zeros everywhere, just as for the Lukasiewicz t-norm. Looking 
for discrete analogues of strict t-norms, we are forced to admit also 2 A 2 = 0, 
thus coming closer to "vanishing" t-norms and the disadvantages of the Lukasiewicz 
t-norm formulated in Proposition 5.1. 

Let us note that for c > 1 the t-norm in Theorem 5.2 is not unique. 

R e m a r k . The main results in this section were obtained using our software for 
investigation of finitely-valued t-norms (see the Appendix for its brief description). 
Computer programs were used for generation of examples, formulating and testing 
hypotheses. Then we looked for the proofs of the facts observed. This part is a 
purely mathematical job which cannot be algorithmized now. 

6. CONCLUSION 

We proved that there exists a single value in one point of the domain which is 
achieved by just one archimedean ^-valued t-norm. Moreover, it is a value which 
can be naturally required. What is even worse, the only t-norm satisfying this 
condition is constant on most of the domain, giving rather poor information about 
the arguments. Therefore, despite the large number of all v-valued t-norms, our 
choice is very limited and unsatisfactory. This is a quite surprising conclusion. 

Let us consider the choice of a many-valued conjunction for a database query. If 
we choose a t-norm which is not archimedean, we ignore arguments that are satisfied 
to a higher degree. Choosing an archimedean t-norm, we have to allow t-norms that 
vanish for many combinations of arguments, thus resulting in zero too often. Again, 
a substantial loss of information appears, especially if the query is formulated as a 
conjunction of many criteria. 

To overcome these difficulties, one may relax some of the defining conditions of t-
norms. Monotonicity seems to be an inevitable condition. Sometimes commutativity 
or associativity is not required. However, they are quite natural and express the 
fact that the order in which requirements are written is unimportant. Further, 
associativity plays a crucial role in the principles of fuzzy controllers [9, 11]. The 
existence of a neutral element, T, need not be required, but again, it is a natural 
aspect of our reasoning. If some criteria have not yet been considered (e. g., because 
of having been completely satisfied in all previous items) and we decide to include 
them, the missing values can be replaced by T without any change of the evaluations 
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already computed. Still the use of more general aggregation operators (without 
neutral elements) could be an alternative, although violating the above arguments. 
What remains a problem is the finite number of truth values which is rarely preserved 
by aggregation operators. 

Prom the above discussion, it seems that the simplest solution would be to allow 
infinitely many truth values. Really, this seems to be the best way how to get useful 
and relatively satisfactory results and avoid a serious loss of information. We have 
already presented arguments (although maybe not very persuading) why we tried 
to avoid the use of a continuum of values. Looking for finitely-valued conjunctions, 
we encountered unexpected obstacles. 

To choose an optimal many-valued conjunction from the point of view of infor­
mation obtained, one has to develop other (quantitative) criteria. Our software tool 
possesses a basis for such investigation. This seems to be a perspective field for 
further research. 

In this paper, we wanted to point out the problems and initiate a discussion about 
their possible solutions; this relates to the very basic definitions and we hope that 
it could serve as an inspiration for further nonstandard approaches to uncertainty 
management. 

APPENDIX: SPECIALIZED SOFTWARE FOR MANY-VALUED 
CONJUNCTIONS AND ITS CONTRIBUTION TO MATHEMATICAL 
THEORY 

The contribution of this paper was strongly dependent on a collection of programs for 
investigation of finitely-valued t-norms. Here we give an overview of its components 
and possibilities. More can be found in [1] and at URL 

h t tp : \ \ cmp. fe lk .cvu t . cz \~navara \d_ tnorms \ 

The cornerstone of our software is program tnorms which, for given p £ N, 
generates all v-valued t-norms (on Pv-\) for v = 2 , . . . ,p, and stores them in files. 
Output file tni/.dat contains all t-norms in ^-valued logic. These files serve as an 
input for further procedures. Program tnorms also assigns to each t-norm a unique 
number which can be used for further reference (e.g., in examples). Each record of 
a t-norm contains the number of that t-norm. 

Program c l a s s i f y filters t-norms from a given file according to the following 
three t-norm properties: 

- archimedean property, 

- smoothness, 

- possibility of decomposition to a nontrivial ordinal sum. 

Arbitrary conjunctions of these properties or their negations are allowed. Further 
criteria for classification can be easily added to the source code. 

As the data files appear to be quite large for a higher number of values, we devel­
oped an internal format in which they are recorded. This format is not appropriate 
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for humans; it should be converted to a readable, but longer format (text) by means 
of program v i z o . 

If the reader wants to restrict at tent ion to the diagonals of t -norms only (which 
represents a significant reduction of da ta ) , a specialized program d i a g o n a l extracts 
the diagonals of t -norms from a file in the internal format and displays them. 

All programs are writ ten in C + + in order to allow their easy transfer to other 
systems. Our experiments were made on PC ' s with 32-bit Windows environment. 

(Received January 30, 2002.) 
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