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EXISTENCE OF POLE-ZERO STRUCTURES 
IN A RATIONAL MATRIX EQUATION 
ARISING IN A DECENTRALIZED STABILIZATION 
OF EXPANDING SYSTEMS 

DlBYENDU BAKSI, KANTI B . DATTA AND GOSHAIDAS RAY 

A necessary and sufficient condition for the existence of pole and zero structures in 
a proper rational matrix equation T2X = T\ is developed. This condition provides a 
new interpretation of sufficient conditions which ensure decentralized stabilizability of an 
expanded system. A numerical example illustrate the theoretical results. 

NOTATION 

— C+ denotes the closed right half plane and C+e denotes the extended right 
half plane (i.e., C+e = C+U{oo}). 

— Rp denotes the ring of proper rational functions. 

— Rs denotes the ring of stable rational functions (i.e., those with no poles 
in C+). 

— Rps denotes the ring of proper stable rational functions with real coefficients. 

— M(Rps(s)) denotes the set of matrices whose entries are in Rps(s). 

— A matrix M G M(Rps(s)) is called i?ps(s)-unimodular iff M~l G M(Rps(s)). 

1. INTRODUCTION 

In spite of the active research carried out in decentralized control in last two decades, 
there has been little attention paid to the stable solution of a rational matrix that 
arises in a decentralized controller for interconnected systems. A systematic design 
approach that solves the decentralized problem using a concurrent synthesis ap­
proach or a sequential stable synthesis approach is discussed by Davision and Chang 
[1]. The methods of implementing overall stable interconnected control systems, 
reported so far [3], are mostly those by state feedback-or observer based state feed­
back. A different method for such stabilization using the proper stable factorization 
approach has drawn considerable interest in the literature [7, 9] and the significant 
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result of this approach can be used to parametrically characterize all stabilizing con­
trollers. This approach can easily be employed to implement a local or decentralized 
stabilizing controller with an unspecified parameter which can further be tuned to 
ensure the composite closed-loop system connectively stable. 

The problem considered in this paper is an extension of the solution of stable 
exact model matching problem in order to design local dynamic controller for each 
subsystem of interconnected systems. 

2. PROBLEM FORMULATION 

Let us consider an interconnected system and each subsystem is described by its 
input-output decentralized form [5] 

Sn Xi(t) =AiXi(t) + BiUi(t) + GiVi (1) 

Yi(t) =dXi(t) (2) 

Wi =HiXi(t), i = 1,2,.. . , TV (3) 

where Xi(t) is the state, Ui(t) is the control input, Yi(t) is the measured output, Vi(t) 
is the interconnection input, and Wi(t) is the interconnection output of the subsys­
tem Si. The matrices Ai,Bi,Ci,Gi, Hi are constant and of appropriate dimensions. 
It is assumed that the pair (Ai, Bi) is stabilizable and (C;, Ai) is detectable. Figure 1 
below shows the basic expanding structure of interconnected systems. 

S - i = Controller based augmented closed-loop system. 

v 

Fig. 1. Expanding construction. 

A systematic design procedure to find a set of decentralized stabilizing controllers 
Ld based on proper stable factorization approach [9] is addressed in this paper and 
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each subsystem described by equations ( l )-(3) is now represented by its equivalent 
transfer function matrix as 

si 
WІ(S) 

Уi(s) 
Zщ ZІ12 

ZІ21 ZІ22 

Vѓ(s) 
UІ(S) 

(4) 

where Zijk (j,k = 1,2) are defined as 

Ziu = Hi(sl - Ai^Gi; Zil2 = Hi(sl - A . ) " 1 / ^ 

Zv^C^sI-Aiy'Gi; Zi22 = Ci(sI-Ai)-1Bi (5) 

It can be noted that the transfer function matrix from the control input Ui to the 
measured output Yi is Zi22, which is stricly proper. To find the set of stabilizing 
controllers, Zi22 is factorized as 

Zi22 = NiDT1 = D^Ni 

where (Ni, Di)and(Ni, Di) are the right and left coprime factorization of Zi22 and 
Ni,Di,Ni,Di £ M(Rps).Then there exist matrices, Pi,Qi,Pi, and Qi G M(Rps) 
such that 

QÍ PІ 

-ÑІ ĎІ 

I 0 
0 / (6) 

Di -Pi 
Ni Qi 

and this expression is known as forward Bezout identity. 
The set of all stabilizing controllers for the subsystem Si of equations (1) - (3) is 

given by 
Ui = -(Pi + DiRi)(Qi - NiRi)-lYi = KiYi (7) 

where Ri G M(Rps) is the free parameter [9]. Left and right factorization of Zi22 

and the solution of Bezout identity equation (6) are combined to provide a set of 
stabilizing controllers and subsequently the minimal realization of equation of (7) 
can be obtained by using the techniques described in [4]. With a specified Ri, (1)-
(3) is a system to be controlled. To establish the transfer function matrix Ti(Ri) 
from the interconnection input V{, to the interconnection output Wi for subsystem 
Si, we consider the equation (4) 

Wi(s) = ZinVi(s) + Zil2Ui(s) 

= [Zni + Zil2Ki(Ri)Yi(s)] 

= [Zin + Zil2Ki(Ri)(I - Zi22Ki(Ri))-lZi21]Vi(s) 

= [Zm - Zil2(Pi + DiRi)DiZi21]Vi(s) (8) 

where, Ki(Ri)(I - Zi22Ki(Ri))-1 = ~(P{ + D^Di,. Equation (8) can be written 
as 

Wi(s) = [Zin - ZinPiDiZm - ZiuDiRiDiZ^Vi^ 

= [Tii-TnRiTidViis) 

= Ti(Ri)Vi(s) (9) 

Tn = Zm — Zn2PiDiZi2i 

Ti2 = Zil2Di (10) 

r<3 = DiZi21. 

where 
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The main motivation for considering this problem comes from sufficient conditions 
for decentralized stabilizability of expanding system due to Tan and Ikeda [6]. These 
conditions are stated below. 

Cond it ion 1. There exits a local controller for which both the closed-loop sub­
system and the expanded system are stable if the equations 

Ti2Li = Tn 

NiTi3 =T* (11) 

have solutions Li and Ni G M(Rps) where Tn,Ti2, andT^ G M(Rps). 

Cond it ion 2. Closed-loop and expanded systems can be made stable by a local 
controller provided the following equations 

Zц2 

ZІ22 

LІ 
Zщ 
Zm 

Ni [ Zi2\ Zi22 ] = [ Ziii Zn2 ] 

have solutions L^andA^ G M(RS). 

(12) 

The contribution of the present paper is the development of a tractable necessary 

and sufficient condition for a stable solution of the above matrix equations. The 

approach here is an extension of the solution of the stable exact model matching 

problem T2X = T, (13) 

where T2 G Rp(s)pxm andTi G Rp(s)pxq are two proper rational matrices and the 
solution X is required to be both proper and stable. It was shown by Vardulakis 
and Karcanias [8] that there exists a proper, stable solution X G Rps(s)mxq for the 
matrix equation (13) if and only if the matrices T2 and [T2 T\] have the same pole 
structure in C+ and the same zero structure in C+ e . The main result of this paper 
is that a stable but not necessarily proper solution X G Rs(s)mxq exists if and only 
if the pole and zero structures of these matrices are the same in C+, implying that 
[T2 T\] need not have the same zero structure as T2 at infinity. Note that two 
matrices are called equivalent at C+ if there exist in Rs unimodular matrices TL, 
and TR such that TLT{TR = T2. 

3. MAIN RESULT 

Suppose that T2 G Rp(s)pxm has rank r; then there exit i?ps(s)-unimodular matrices 
U G Rps(s)pxp,V G Rps(s)mxm such that 

UПV = 

<-T Ai/t/li 

0 

Єf л.т I Xpт 

(p-г)xr 

0. rx(m-r) 

0(p — r) x (ra — r) J 
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= :S2 
(14) 

where, for i = 1, • • • ,r, eiy ipi G Rps(s) are not strictly proper and A; G Rps(s) is 
possibly strictly proper with no zeros in C+. The matrix 5 2 is the Smith-McMillan 
form of T2 with respect to Rps(s) [4]. Let A G -R p ; 3 (s) m x m be defined as 

л = (15) 

i. e., A reflects the zero structure of T2 at infinity. Then 5 2 A
 x G Rps(s)pxm is not 

strictly proper and it reflects the pole and zero structure of T2 in C+. 

Theorem 3.1. Let T2 G Rp(s)pXm and Tx G Rp(s)pxq; there exists a solution 
X G Rs(s)mxq for the matrix equation T2X = T\ if and only if the matrices 
T2 and [T2 Ti] have the same pole and zero structure in C+. 

P r o o f . Sufficiency: Consider the Smith-McMillan form (14) of T2. By assump­
tion, the Smith-McMillan form of [T2 Ti] is [5 2 A _ 1 Opxq]- Therefore, there ex­
ists an jRp5(s)-unimodular matrix M such that 

U[T2 Ti] 
V 0 
0 I 

= [S2 UTг] 

= [ sзЛ" 1 0pxg]M. 

Let M i 2 = M[0 I ] T ; then (15) implies that 

Tx = ( L 7 - 1 5 2 y - 1 ) ( F A - 1 M i 2 ) 

= T 2 X 

where X = V A - 1 M i 2 is stable but not necessarily proper. 

Necessity: If Ti = T2X, then 

ЩT2 Ti] 
V 
0 = [SгЛ-^Л sзЛ-^ЛF 

= s2Л-ҶЛ Л Г 1 ! ] 

- ì X] 

(16) 

(17) 

Since U, V are i?ps(s)-unimodular, the pole and zero structure of [T2 T\ ] does 
not change in C+e when multiplied by U and V. Furthermore, since A is full rank 
in C+, the stable matrix [A A V~l X] has no zeros in C+ and hence by (16), the 
pole and zero structure of [T2 Ti] in C+ is the same as 5 2 A

- 1 , which is- the same 
as that of T2 in C+. • 
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3.1. Comments 

(a) If T2 and T\ are proper stable matrices, then it is clear that a stable solu­
tion X exists for the matrix equation T2X = T\ if and only if the matrices 
T2 and [T2 Ti] have the same zero structure in C+ since they have no poles 
inC+ . 

(b) With Tn , Tj2 and T^ G M (Rps(s)), we can apply the results of the Theorem 
3.1 in equation (11) to obtain the new decentralized stabilizability condition 
of the expanded system. There exists a local controller for which both the 
closed-loop subsystem and the expanded system are stable if 

i. T;2 and [T;2 Tn ] have the same zero structure at C+ and 

ii. T£ and [T£ T£] have the same zero structure at C+. 
(c) The equivalent decentralized stalizability condition given in equation (12) can 

also be stated in terms of the pole and zero structures of the appropriate 
matrices in C+. There exists a local controller for which both the closed loop 
subsystem and the expanded system are stable if 

Zц2 

Zi22 

and 
^il2 Zm 

Zi22 Zi2\ 

Zi2\ 

Zi22 J 

and 
Z™ Zm Ji21 

Zi22 Zil2 

have the same pole and zero structures in C+. 

Note that in this case, the matrices ZNII , ZW12 . ZIV21 and ZN22 [6] are not stable 
and hence, the pole structures at C+ need to be checked as well as the zero structures. 
Existence of decentralized stabilizing controller is discussed in (b) and (c) and it can 
be checked by finding the pole-zero structures at C+.These poles and zeros can be 
computed using elementary row and column operation on the matrices in (b) and 
(c) to obtain Smith-McMillan form of transfer function matrices. A numerically 
reliable stable computations of zeros using unitary transformation method can be 
found in [2]. 

4. AN EXAMPLE 

The first open loop subsystem is described by 

si: -*i(í) = 
0 1 
0 0 xx + 

Yi = [ 1 2 ] X! 

Wг = [ 1 l ] X x . 

ГЛ + Vл 

(18) 
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As this is the only system to be stabilized, it is not required to satisfy any of the 
established conditions discussed in Section 3.2. 

Applying static output feedback U\ = -Yi, we obtain the closed-loop stable 
system: 

s? = s° 
0 1 

- 1 - 2 XI + Vл Xi W = 

Wi = [ i i ] X i . 

Now, we connect the second subsystem given by the following equation: 

V2 

(19) 

(*) = 
0 

- 1 
1 " 

- 2 
X 2 + 

' 0 " 
1 

u2 + ' 1 ' 
0 

Yi = [-1 1 ]X2 

w2 = [-1 1 ]x2 

' vx 
' 0 1 1 ' Wl ' 

v2 
1 0 wt 

! 

with interconnection 

Using the expressions given in (5), we obtain 

-2̂ 2,11 = -^2,12 = -^2,21 = -^2,22 

We factorize Z2^22

 a s follows: 

N2=N2 = Z2y22 = 

(20) 

(21) 

s - 1 
S2 + S + 1 

- 1 
S2 + S + 1 

D2 = o2 = 1.0 

P2 = p2 = 0.0 

Q2 = Q2 = 1.0. 

This implies that the class of all stabilizing controllers is characterized as (see equa­
tion (7)) 

-R2{s2 + s + l) 
U2 = 

where, R2 £ Rps. So, we have 

s2 + я(l - R2) + (1 + R2) 
Y2 

Toл = Too = T2.3 — 
s - 1 

-2,1 - 2 , 2 2,3 
S2 + S + 1 

It is straight forward to check that the conditions given in Section 3.1 (see (a) and 
(b)) are satisfied. So, the expanded system S2 is decentrally stabilizable. This 
fact is clearly supported by the observation that the two systems, connected only 
via inputs and outputs, are individually stabilizable implying the absence of any 
(unstable) fixed modes. 
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5. CONCLUSIONS 

The subtle point of the main result of this paper is that it provides a condition which 
avoids the computation of the finite transmission zeros of some transfer function 
matrices. A proof of the main theorem using Smith-McMillan form of transfer 
function matrix is given. Explicit expression for computing the solutions are also 
given which can then be used in equation (7) to design a decentralized controller for 
the expanded system. 
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