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REDECING-HORIZON CONTROL 
OF CONSTRAINED UNCERTAIN LINEAR SYSTEMS 
WITH DISTURBANCES 

LUIGI CHISCI, PAOLA FALUGI AND GlOVANNI ZAPPA 

The paper addresses receding-horizon (predictive) control for polytopic discrete-time 
systems subject to input/state constraints and unknown but bounded disturbances. The 
objective is to optimize nominal performance while guaranteeing robust stability and con­
straint satisfaction. The latter goal is achieved by exploiting robust invariant sets under 
linear and nonlinear control laws. Tradeoffs between maximizing the initial feasibility region 
and guaranteeing ultimate boundedness in the smallest invariant region are investigated. 

1. INTRODUCTION 

Predictive control represents an effective design methodology for handling hard con­
straints and performance issues in a joint fashion. Stability of constrained predictive 
control schemes has been thoroughly investigated [12] while robustness with respect 
to model uncertainty deserves further attention [3] though there have been recently 
several interesting contributions in this direction, like e.g. [1, 6, 14, 15, 16]. Typ­
ical robust constrained predictive control algorithms adopt a polytopic description 
of model uncertainty [6, 14, 15] and pursue minimization of a worst-case perfor­
mance index [16] or of an upper bound of it [6, 14]. The present paper adheres to 
the polytopic description of uncertainty which seems the most natural for handling 
constraints, but, like [1, 15], turns aside from the objective of worst-case perfor­
mance optimization for a twofold reason. First, min-max optimization may be too 
computationally demanding. Secondly, the paradigm of optimizing performance for 
the worst-case system may be unrealistic in the common situation where a nominal 
(most likely) model is available. For the above reasons, a more sensible approach 
seems to minimize the nominal performance index (i. e. the performance index for 
the nominal model) while robustly guaranteeing stability and constraint satisfaction. 

Within this framework, we propose two novel predictive control algorithms for 
polytopic discrete-time systems with state/control constraints and subject to un­
known but bounded disturbances. Both algorithms postulate a control sequence, 
along an infinite prediction horizon, consisting of a fixed robustly stabilizing linear 
state feedback u = Fx plus N free control moves [18]. The receding-horizon con­
troller selects the control at sample time t as the first element of the control sequence 
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which minimizes the energy of control moves subject to appropriate state-dependent 
linear constraints. 

In particular, the first algorithm imposes the constraint that after N steps the 
state enters a maximal poly topic set, which is feasible and robustly invariant under 
the feedback u = Fx. This approach is similar to the one adopted in [15] but uses 
maximal poly topic sets instead of more conservative ellipsoids. 

Conversely, the second algorithm imposes the less stringent constraint that the 
state at the next sample time remains in a controlled robust invariant set; a similar 
approach is followed in [7] to cope with disturbances. 

It is shown that the first algorithm guarantees asymptotic stability provided that 
the initial state is feasible, while the second algorithm provides a larger feasibility 
region but not guaranteed stability. In any case their feasibility regions turn out to be 
larger than the ones provided by ellipsoidal invariance constraints [15]. Moreover, 
the two algorithms are compared from both a computational and a performance 
point of view. 

The rest of the paper is organized as follows: Section 2 formulates the problem 
of interest; Section 3 recalls background material on invariant set theory; Section 4 
presents the two algorithms; Section 5 illustrates simulation results; finally Section 6 
ends the paper. 

2. NOTATION AND PROBLEM FORMULATION 

Notation 

For any subsets A, B of Mn, for any matrix M mapping Mn onto Ml and for any 
subset C of Ml, the following sets are defined: A + B = {a + b\a G A, b G B}\ —A = 
{-a\a G A}] A - B = A + ( - # ) ; M(A) = {Ma\a G A}; M~l(C) = {a\Ma G 
C}; A ~ B = {a\a + B C A}. Further B\ denotes the unit ball (in the Euclidean 
norm) of Mn and Co{- • •} denotes the convex hull. 

Problem formulation 

Consider the discrete-time uncertain LTV system 

x(t + l) = A(t)x(t)+B(t)u(t) + Dw(t) (1) 

where 
A(t) = A0 + Ã(t) B(t) = B0 + B(t) 

g 

[Ã(t),B(t)] = £ A^HÃ,-Д], Ví > 0 
І=l (2) 

Y/\J(t) = l, A j v*)>0, j = l,2,...,<7. 
3=1 

Here x(t) G Mn is the state, u(t) G Mm is the control input and w(t) G Mp is 
the disturbance input at sample time t = 0,1, The pair (.An,-Bo) represents the 
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nominal system while (-A(t), B(t)) represents the model uncertainty which belongs to 
the polytopic set V = Co{[Aj,Bj], j = 1 , . . . , q}. Notice that the coefficients Xj are 
unknown and possibly time-varying. The system ( l ) - (2 ) , referred to as polytopic 
system, provides a classical description of model uncertainty. 

It is fundamental for the subsequent developments to make the following assump­
tion. 

Assumption 1. There exists a constant state feedback gain F G Mmxn which 
robustly stabilizes the polytopic system ( l ) - (2 ) , i.e. makes the closed-loop system 

x(t + 1) = $(t) x(t) , $(«) = A(t) + B(t)F (3) 

absolutely asymptotically stable (AAS) [10]. 

Let us introduce: 

Aj =A0 + Aj, Bj=Bo + Bj, QJ^AJ + BJF j = 1,2, • • -,g. 

Then we recall that (3) is AAS if 

lim $ ( t ) $ ( t - l ) - - - * ( 0 ) = 0 
£—>oo 

for any sequence of matrices $(&) G Co{<l>i, <J>2, * * •, $q}- AAS is guaranteed if there 
exists a norm || • || in Mn such that 

| | * i l l . < 7 < l J = l . " - , « (4) 

where || • ||i is the norm, induced by || • ||, on the a lgeb rao inxn matrices. Particular 
cases of AAS are quadratic stability [2, 8] and polytopic stability [4, 5] where || • || 
is represented by an ellipsoidal or polytopic norm, respectively. Recent results [10] 
show that the polytopic system ( l ) - (2) is absolutely asymptotically stable if and 
only if it is exponentially stable. It is further assumed that the system (1) is subject 
to the pointwise-in-time control and state constraints 

u(t) eU, x(t) G X Vt>0 (5) 

and the disturbance is pointwise-in-time bounded according to 

w(t)eW Vt>0 (6) 

for some appropriate sets U C JRm, X C Mn, W C Mp satisfying the following 
assumption. 

Assumption 2. ZY, X, >V contain the origin in the interior; further U and W are 
compact. 

The objective is to design a state-feedback regulator 

u(t) = 9(x(t)) (7) 
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which possibly robustly stabilizes the system (1) subject to constraints (5) and 
disturbance (6). Clearly, by Assumption 1, the LTI state feedback 

u(t) = Fx(t) (8) 

robustly stabilizes (1) but, because of constraints (5), stabilization is local in a 
possibly small neighborhood of the origin. The stability domain could hopefully be 
enlarged in a significant way by use of a nonlinear state feedback (7). The approach 
followed in this paper combines the theory of invariant sets with predictive control 
(receding-horizon) ideas. 

3. INVARIANT SETS FOR POLYTOPIC SYSTEMS 

This section recalls some background on invariant sets [5], revisited in the context 
of poly topic systems. Given a robustly stabilizing LTI feedback (8), consider the 
corresponding uncertain closed-loop system 

x(t + l) = $(t)x(t) + Dw(t) 

u(t) = Fx(t) (9) 

$(t) e Co{$i, $ 2 , - • - , * * } -

It is important from an analysis point of view to characterize the effect of the dis­
turbance w on the above system. To this end, let us introduce for the system (9) 
the sets 7^* of the states reachable in k steps from x(0) = 0. These sets can be 
computed recursively as follows 

n0 = {o} 
(10) 

Kk+i = V(l,1lk) + DW 

where, given S C Mn and the integer k > 0, <p(k,S) denotes the set of states x(k) 
originated from x(0) £ S assuming that w(-) = 0 in (9). The following result proves 
that the sequence of sets {7£fc, k > 0} admits a limit 7£oo-

Theorem 1. Under assumption 1 and compactness of W (Assumption 2), there 
exists a compact set n^ such that 

i) nkcnoo^t>o 

ii) Me > 0, 3t > 0 : n^o C nt + eBx 

hi) 7̂ oo is invariant under (9), i.e. n^o = <p(l,7£oo) + DW. 

P r o o f . First we recall that with the Hausdorff metric p the family of com­
pact sets of Mn is a complete metric space. Since W is compact, 7?,* is compact. 
Splitting the disturbance sequence {w(0), w(l), • • •, w(k)} into {w(0), 0, • • •, 0} and 
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{0, w(l),- - ,w(k)} and using superposition, it can be noticed that the following 
inclusion holds 

Kk CKk+i C TZk+ ip(k,DW) 

In fact, any state x G 7£fc+i can be written as the sum of a state in 7?,*. produced by 
the disturbance realization {0, w(l), • • • ,w(k)} plus a state in ip(k,DW) produced 
by {w(0), 0, • • • ,0} . The compactness of W and Assumption 1 imply the existence 
of fi > 0 and A G (0,1) such that, for all k > 0, (p(k,DW) C ti\kBi. Hence, 
p(TZk+i,7Zk) < fi\k from which {1Zk, k > 0} is Cauchy and the existence of TZQO 1s 
established. Letting k —> oo in (10) proves 7?,oo = ¥>(1,TZoo) + DW which, in turn, 
shows that TZQQ is invariant under (9). • 

Prom the above theorem, it turns out that 7£oo 1s the smallest set which, for 
x(0) = 0, contains all possible trajectories of (9) generated from disturbances w(-) 
in W. To ensure compatibility between the disturbance (6) and the constraints (5), 
the following assumption has to be made 

Assumption 3 . TZQO C X and FTZoo C U. 

Hereafter, we would like to characterize the set S 0 of all states x(0) for the system 
(9) such that the constraints (5) are satisfied. Due to the stability Assumption 1 on 
(9), (p(t, So) —> 0 as t —> oo for any x(0) G So. Let us first introduce the concept of 
robust invariant set. 

Definition 1. S is a robust invariant set for the system (9) if for any x(0) G S, 
x(t) remains in S for all i > 0. 

Let Xc = {x G X : Fx G U} denote the set of states for which the constraints 
(5) are satisfied. Hence the desired set So is the largest robust invariant subset 
of Xc, also called maximal admissible set [9]. Maximal admissible sets have been 
considered in [9] and then in [13] for systems with bounded disturbance inputs. Here 
the case of uncertain polytopic systems with bounded disturbances is addressed. Let 
us introduce the set Oi, i = 0 , 1 , . . . , of initial states x(0) from which, under the 
uncertain dynamics (9), the constraints (5) are satisfied for t = 0,1,... ,i. Clearly 
the sets Oi can be computed recursively as follows: 

Oo = Xc 

fori = 1,2,... (11) 

Oi =* Xcn{x:$jxeOi-1~DWJ = l,2,...9q}. 

Since Oi C Oi-i , Oi converges to OQO = f|S.o Oi, which, by Assumption 3, is non 
empty; therefore So -̂  Ooo- It is important to ascertain whether the set Ooo is 
finitely determined, i.e> t h e r e e x i s t s a finite {* s u c h t h a t 0.m = 0oQm T h e following 
result holds. 
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Theorem 2. Under the Assumptions 1-3, if for some integer i, Oi is bounded, 
then OQO is finitely determined. 

P r o o f . The sets Oi can also be defined recursively as follows 

Oi+i = Oi n {x\F<p(i + i,x) e Ui+i, (p(i + i,x) e Xi+X} 

where Ui—U ~ FTZi, X{ = X ~ TZi. Further, by Assumptions 2 and 3, Z4o = U ~ 
FTZQQ and A ô = X ~ IZQQ are non empty and contain the origin in the interior. If 
Oi is bounded there exists a ball B centered at the origin such that Oi C B. By 
Assumption 1, <p(t,B) —r {0} as t -> oo. Hence there exists an index I > i for 
which <p(£ + 1, B) C A'oo and F(p(£ + l,B)cUoo> Then Oe C 0{ C B and, therefore, 
<p(t + l,Oe) C Xoo and F<p(£ + 1,0*) C U^. This, by definition of the sets Oi, 
implies that Oe = Oe+i and hence Ooo = Oe is finitely determined. • 

R e m a r k 1. Obviously O0 is bounded if X is bounded. Also, notice that the set 
On is bounded if U is bounded and ($j,F) is observable for some j . 

Remark 2. In the same way, one can define the largest set, denoted by S 0 , con­
tained in Xc which is invariant under the nominal closed loop dynamics $ 0 = 
AQ + BQF and in absence of disturbances. S 0 can be computed by the recursion 
(11) replacing $ j by $ 0 and setting W = {0}; clearly, S 0 C S 0 . 

S 0 is the set of the initial states which are asymptotically steered to the origin 
under the constant linear state feedback (8) without violating the constraints. It is 
clearly possible to enlarge such a domain of attraction making use of a nonlinear 
feedback u = g(x) e U. This motivates the following definition of robust controlled 
invariant set. 

Definition 2. S is a robust controlled invariant set for the polytopic system (1) if 
for any x e S, there exists a state dependent input u e U such that AJX+BJU+DW e 
S for j = 1,2,. . . , q and all w G W. 

Special robust controlled invariant sets are the sets SLv, N > 0, of all initial states 
x(0) which can be robustly steered into S 0 by an TV-steps feedback control sequence 
{u(0), u(l),..., u(N — 1)} C U, where each u(i) is allowed to depend on the current 
state x(i). The sets S/v can be computed recursively as follows 

So = OQO 

for/V = 1,2,.. . (12) 

S/v = XH{x\3u eU lAjX + Bjue S/v-i ~ DW,j = l,2,...,q}. 

Notice that the sets S/v,iV = 0 , 1 , . . . , give an increasing sequence. It must be 
pointed out that, given x(0) e Syv, it is not possible, in general, to pre-compute at 
time t = 0 the control sequence {u(0),u(l),..., u(N — 1)} (open-loop control) which 
robustly steers the state vector x(0) into S 0 in 1V steps. 
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Therefore for receding-horizon operation it is convenient to introduce the smaller 
class of robust controlled invariant sets S ^ for which a sequence of N control moves 
around the linear feedback (8), driving the initial state x(0) into So, can be pre-
computed. Let us consider the feedback transformation u(t) = Fx(t) + c(t) where 
c(t) denotes the new control variable and, accordingly, re-express the system (1) - (2) 
as 

x(t + 1) = 9{t)x(t) + B(t)c(t) + Dw(t) 

u(t) = Fx(t) + c(t) 

Mt),B(t)] 6 C o U ^ . i ? ! ] , ^ , ^ ] . . 

(13) 

i*я,Bд)}. 

With reference to the above system, let us denote by S ^ the set of all the initial 
states which can be robustly steered to So, while satisfying the constraints, by choice 
of an iV-steps sequence {c(0), c ( l ) , . . . , c(N — 1)} depending on x(0) only. Notice that 
the actual control sequence {w(0),u(l),... ,u(N — 1)} turns out to be the sum of 
the linear feedback Fx(t) plus the pre-computed sequence {c(0), c ( l ) , . . . , c(N — 1)}. 
The set S ^ can be computed by the following recursion 

So = So == SQ = OQO 

for IV = 1,2,... 

SIv = 
x 
C 

Z 

ФjX + BjC + Dw 

z 
G5/v-i for j = l , 2 , . . . , g a n d V w e W ; 

Fx + cЄU;xЄ X) 

-ŞIV = <X 
X 

c 
z 

e SN for some 

< 1 4 ) T 

where, at stage TV, c=c(0) denotes the first move and z= [c T (l), cT(2),.. ., c T ( iV-l) ] 
the subsequent N — 1 moves. Notice that the above recursion employs sets SN be­
longing to spaces whose dimension increases with TV; each vector of SN represents a 
state x (first n components) and a control sequence [c T (0), . . . ,cT(N — 1)]T which 
robustly steers x in So- Hence S N is just the projection of SN onto the state space 
Mn. In particular, from the construction (14), it turns out that 

x(0) 
c(0) 

c(N -1) 

Є B лr 

x(l) 
c(l) 

c(N - 1) 

Є Sjv-i 
x(N - 1) 
c(N - 1) ЄSt=ï x(N) Є S 0 . 

(15) 
for any realization of the system dynamics (A(t),B(t)) and of the disturbance 
w(t), t = 0,...,N-l. 
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Remark 3. Clearly, since So is invariant for c(t) 
form an increasing sequence; moreover S ^ C Ejv-

0, the sets EN, IV = 0,1,. 

4. PREDICTIVE CONTROL ALGORITHMS 

Predictive control algorithms are based on the optimization, along the control hori­
zon, of a given cost-functional, subject to suitable constraints. These constraints 
must ensure the feasibility, at each step, of the corresponding system behavior and, 
possibly, asymptotic convergence to the origin, or, in case of persistent disturbances, 
to an ultimate boundedness set. When the dynamics is uncertain, the cost opti­
mization can be carried out either in a min-max or in a nominal sense. Hereafter we 
shall consider only optimization with respect to the nominal model. This choice is 
due both to the need of limiting the on-line computational complexity of predictive 
control algorithms and to the belief that, in practice, attention to the worst case 
performance does not pay too much. Therefore we assume that the feedback gain 
matrix F , which robustly stabilizes the system, is the optimal LQ feedback gain 
for the nominal model (this can always be ensured by a suitable choice of the LQ 
cost functional), so that the optimal control policy is to reduce the gap between 
the actual input u(t) and the feedback control signal Fx(t). Feasibility and stabil­
ity constraints, conversely, are provided by the robust invariant sets E ^ and EJV, 
previously introduced. 

Given x(0), the control sequence c = [c T (0), . . . , cT(IV — 1)]T steers x(0) to E 0 

iff [ x ( 0 ) T , c T ] T G Sjsf- This suggests the following on-line receding-horizon scheme, 
provided that SN is determined off-line. 

Robust Predictive Control. (RPC(IV)) At each sample time t, find 

č(t\t) 

ê(ŕ + l|t) 

_ č(t + N-l\t) 

yv-i 
= aгg min V | | c ( í + fc|í)||2, 

c(t+k\t),0<k<N-l - --<" v ' / м 
(16) 

k=0 

subject to 
x(t) 

c(t\t) 
c(t + l\t) €SN. (17) 

c(t + N- l\t) J 

Then apply to the system the control signal 

u(t) = Fx(t) + c(t\t) (18) 

The above algorithm selects, at time t, among all sequences (c(£|£),..., c(t + IV — 
l\t)} which robustly enforce x(t + IV) G So, the one with minimum fa norm. Notice 
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that if U and X are polyhedral sets, SN turns out to be a convex polytope and hence 
(16)-(17) amounts to a Quadratic Programming (QP) problem. As far as stability 
is concerned, the following result holds. 

T h e o r e m 3. Provided that x(0) £ S^, the receding-horizon control (16)-(18) 
guarantees that: (i) the constraints (5) are satisfied; (ii) x(t) -> TZQQ as t -> co. 

P r o o f . The hypothesis that x(0) G EN along with (15) imply that x(l) G 
£/v-i C HN- Hence, by induction, x(t) G S ^ for all t > 0 and satisfaction of the 
constraints (5) is guaranteed. Next, consider the Bellman function 

-V-l 

Vt = V(x(t)) = £ \\c(t + k\t)\\2 

k=0 

Since, by (15), {c(t + l | t ) , ...,c(t + N- l\t), 0} is feasible at time t + 1, 

Vt-Vt+1>\\c(t)\\2>0 (19) 

where c(t) = c(t\t). Hence {Vt}^>o is a nonnegative monotonic non-increasing scalar 
sequence and, as t —> co, must converge to Voo < °°. Summing the Vt — Vt+i of 
(19), for t from 0 to co, we have 

CO 

oo > V0 - Voo > y ; | |c(*)| |2 > 0 =» lim | | c(0 | | 2 = 0 <-—--/ £->oo 
t=0 

which proves that lim c(t) = 0. Since 
*->oo v ' 

t-i t-i 

x(t) = $(t, 0)z(0) + ^2^(t, k + l)B(k)c(k) + ] £ $ ( « , A; + l)Dw(k) 
k=0 k=0 

* ( * , *) = 9(t - 1) • • • 9(k + l)$(k) 

and, by Assumption 1, $(£, k) exponentially converges to 0 as t -> co, it follows that 
x(t) —> TZQQ as t -> co. • 

Algorithm RPC(iV) ensures, therefore, asymptotic stability with domain of at­
traction Sjy- C S/v. Notice that E N is actually a conservative region; any state in 
EN could in fact be steered into So by an TV-steps feedback sequence. Therefore an 
alternative algorithm called IC-PC(iV) is introduced hereafter. 

Invariance Constraint Predictive Control. (IC-PC(iV)) Let E be a robust 
controlled invariant set. At each sample time t, find 

č(t\t) 

c( í+l | ř ) 

č(t + N-l\t) 

Л f - 1 

- И 8

t , .«ÆV i v- .£ l | c ( e + * | í ) l | г ' (20) 
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subject to the robust invariance constraint 

QjxW+BjC^eXN-DW j = l,2,...,g (21) 

and to the nominal constraints 

u(t + k\t) G U and x(t + k\t) G A\ k>0 

c(t + k\t) = 0, k>N 

where u(t + k\t) and x(t + k\t) denote the disturbance free predictions with respect 
to the pre-specified nominal LTI system [A0,i?o]- Then apply u(t) = Fx(t) + c(t\t) 
to the system. 

Remark 4. In this algorithm, constraints on the future input and state values are 
imposed for the nominal model only. They should ensure a satisfactory performance 
for the real plant. Notice that the constraints u(t + k\t) eU and x(t + k\t) G X for 
k > N are equivalent to impose that x(t+N\t) belongs to So, the maximal admissible 
set under the linear closed-loop dynamics of the nominal model. Conversely stability 
and feasibility are ensured by the robust constraint (21), which guarantees that the 
state x(t) will never leave E and, hence, that the optimization problem will remain 
feasible at future time instants. 

Theorem 4. Let E = EL, where L > N is the integer such that 

EL - i C S/v-i , EL, {£ S/v-i. (22) 

Then, if x(0) G S, the IC-PC(iV) algorithm guarantees that x(t) G E for a lU > 0 
and that the constraints (5) are satisfied. 

P r o o f . For any x G EL, there exists u G U such that Ax + Bu G E L - I ~ 
DW C ETV-I H (EL ~ DW), for all [A,B] G [A0,B0] + V. Hence if x(0) G E L , 
IC-PC(N) can find u(0) G U such that x(l) G E L and, by induction, guarantees 
that x(k) G E L C X and u(k) G U for all k > 0. • 

Compared to RPC(iV), IC-PC(iV) has a larger feasibility domain E L D E ^ . 
However, robust asymptotic stability cannot be guaranteed. A counterexample ex­
hibiting a limit cycle will be shown in the next section. From a computational point 
of view the IC-PC algorithm is cheaper than the RPC algorithm. In fact, the latter 
requires the off-line computation of the invariant set SN in the higher dimensional 
space 7£n+m-v which is harder than the computation of E v̂ in TZn. Details on the 
computation of these sets are reported in the Appendix. Nevertheless, the most 
crucial issue is on-line computation which, for both algorithms, amounts to solving 
at each sampling interval, a QP problem in mN variables. Compared to traditional 
predictive control, the algorithms RPC and IC-PC may involve a considerably larger 
number of linear inequalities in the QP problem. However this implies a negligible 
extra computational load if interior point algorithms [17] are used for the solution 
of QP. 
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5. A NUMERICAL EXAMPLE 

Consider the system (1) with q = 2, 

4, = 
1 
0 

0.1 
1 

Л 2 = 
1 0 . 1 R _ R _ R _ 0 [ 0.01 
0 1.8 J ' B ~ Bl ~ B2 ~ [ 0.0787 J ' D ~ [ 0 

(23) 
subject to input saturation constraints \u(t)\ < 2 and disturbance \w(t)\ < 0.3. We 
assumed Ao = (-4_ + -42)/2 and BQ = B as the nominal model. Also consider the 
feedback gain F = [—11.80 — 18.70] which quadratically stabilizes the system (23). 
With reference to the above feedback gain, Figure 1 compares the robust domain of 
attraction So with So, the domain of attraction that we should have for the nominal 
system [An,-Bo] with no uncertainty and without disturbances. For this example it 
turns out that, in Theorem 4, L = 21 much larger than TV = 3. Figure 2 compares, 
for a control horizon N = 3, the regions S 3 and S 2 i where the two algorithms 
RPC(iV) and IC-PC(iV) guarantee feasibility (and for RPC(1Y) also asymptotic 
stability). Figure 2 also displays the ellipsoidal domain of attraction S3 obtained 
with the approach in [15] for N = 3; notice that S 3 is significantly smaller than S 3 

and S21. This clearly demonstrates the conservatism of using ellipsoids instead of 
polytopes as robust invariant sets. Figure 3 reports the sets SAT for 0 < N < 10 and 
shows how the feasibility region increases for a larger control horizon. Table 1 reports 
the number of inequalities describing S/y and, respectively, SN for 0 < AT < 10. It 
can be seen that the complexity of SN is increasing with N more rapidly than for 
S/v and, hence, the RPC algorithm turns out to be more expensive in terms of 
computation and memory requirements than IC-PC. 
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Fig. 3. Sлr, 0 < N < 10. 

Simulations have been run to compare the two proposed algorithms RPC(iV) and 
IC-PC(iV), taking into account the uncertainty, and a traditional constrained pre­
dictive control algorithm referred to as NPC (Nominal Predictive Control) designed 
for the nominal model ignoring uncertainty and disturbances. A control horizon 
N = 3 has been selected. Figure 4 shows the state trajectories of NPC, RPC(3), 
IC-PC(3) for an initial state x(0) G S3, A(t) = A2 and w(t) = -0.3, Vt > 0; 
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Table 1. Number of linear inequalities 

describing SN and Xljv vs. IV. 

N Sлr(RPC) EлKIC-PC) 
0 10 10 
1 20 14 
2 42 18 
3 86 22 
4 174 28 
5 350 32 
6 702 36 
7 1342 40 
8 2686 44 
9 5246 48 
10 10238 52 

Figure 5 shows the corresponding input responses u(t). Notice that both RPC and 
IC-PC ensure feasibility and asymptotic stability, while NPC exhibits an infeasible 
and unstable behavior. Figure 6 shows the state trajectories of RPC and IC-PC for 
the same A(t) as above, an initial state x(0) G E2i\.£3 and w(t) = 0.3cos(10007r£). 
Notice that in this case RPC becomes infeasible and unstable. Although IC-PC(IV) 
ensures feasibility and boundedness of the state in E/v, in general it does not guaran­
tee ultimate boundedness in TZQQ. TO this end, Figure 7 shows a limit cycle behaviour 
of IC-PC(3) for the system under consideration with 

1 0.1 
0 1.9 

F = [-49, -16.5], 

a particular choice of the initial state, A(t) = A2 and w(t) = 0, V* > 0. This 
example, however, is quite "pathological" since the selected gain F is highly detuned 
for the true system (A2,B), i.e. the eigenvalues of A2 + BF are very close to the 
unit circle. 

6. CONCLUSION 

The paper has faced the control of polytopic uncertain systems subject to con­
trol/state constraints and unknown but bounded disturbances. Two predictive con­
trol algorithms have been proposed. Both combine nominal performance optimiza­
tion with robust feasibility and stability. The two algorithms differ on the constraints 
imposed on future inputs and states. When robust constraints are imposed over the 
whole prediction horizon, we get a smaller feasibility region but asymptotic stability 
can be proved. When robust constraints are imposed only on the one-step-ahead 
prediction while the nominal constraints are considered for the subsequent steps, we 
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-0.3 -0.2 -0.1 

Fig. 4. NPC (dash-dotted), RPC (dashed) and IC-PC (solid). 

Fig. 5. Input responses of NPC (dash-dotted), RPC (dashed) and IC-PC (solid). 

get a larger feasibility region but asymptotic stability cannot be guaranteed. Com­
putational and robust stability requirements have been discussed and performance 
illustrated by simulation examples. 
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Fig. 7. Limit cycle behavior of IC-PC. 

APPENDIX - COMPUTATION OF INVARIANT SETS 

Let X, U, W be polyhedra described by 

X = {x : Mxx < vx), U = {u:Muu<vu}, W = Co{wy,j = 1,2,. ..£}. 
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Computation of sets S^ 

Let Si = {x : Mx < v}. Then: 

1. Compute S = max MDWJ and 
i<j<t J 

MA1 

MAq 

0 

z= < x 
u 

MBл 

MBq 

мu 

v — S ч 

X 

u 
< 

v — S 
vu J 

> . 

2. Compute, by the Fourier-Motzkin elimination algorithm [11] together with 
an LP subroutine in-order to eliminate redundant inequalities, the projection 
~Z = {x : Mx < v} of Z onto Mn. 

3. Compute 

м x < 
V 

_ м * . . V* 

Computation of sets S{ 

Let Si = {s : Ms < v} C JRn+mi and partition M as M = [MUM2] where M x 

and M 2 denote the first n and, respectively, last mi columns. Then, setting S = 
max: MIDWJ, we get Si+1 = {s : Ms < v} C j R ^ ™ ^ 1 ) where 

1__.j-_-̂  

M 

MiФi Mif?i м 2 

MiФ, 
M U E 

м л 

MyBq 

Mu 

0 

м 2 

0 
0 

v = 

i> — S 

v — S 
vu 

vx 
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