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A NONSTANDARD MODIFICATЮN 
OF DEMPSTER COMBINATЮN RULE1 

ІVAN KRAMOSIL 

It is a well-known fact that the Dempster combination rule for combination of uncer­
tainty degrees coming from two or more sources is legitimate only if the combined empirical 
data, charged with uncertainty and taken as random variables, are statistically (stochasti­
cally) independent. We shall prove, however, that for a particular but large enough class of 
probability measures, an analogy of Dempster combination rule, preserving its extensional 
character but using some nonstandard and boolean-like structures over the unit interval of 
real numbers, can be obtained without the assumption of statistical independence of input 
empirical data charged with uncertainty. 

1. BELIEF FUNCTIONS AND DEMPSTER COMBINATION RULE 

Let us limit ourselves to a purely theoretical approach focused just to the mathe­

matical apparatus used in order to formalize the basic notions and results of the 

Dempster-Shafer model of uncertainty quantification and processing. 

Let 5 be a finite nonempty set, let V(S) denote the system of all subsets of S. 
Basic probability assignment (b.p.a.) over S is a probability distribution m over 
'P(S), i.e., a mapping m : V(S) —r [0,1] (the unit interval of real numbers) such 
that ] C A c S m ( ^ ) = 1" Non-normalized belief function defined (or: induced) by the 
b.p.a. m over S is the mapping belm : V(S) -» [0,1] such that, for each A C 5, 

for the empty subset 0 of S we adopt the convention that summing over the empty 

set of items, the result equals zero. Normalized belief function defined (or: induced) 

by the b.p.a. m over S is the mapping belm : V(S) -¥ [0,1] such that, for each 
A C S 

belm(A) = (1 - m(0))"1 E 0 / B C A ™(5)' (L2) 

supposing that m(0) < 1 holds, belm(0) = 0 according to the same convention as 
above. If m(0) = 1, belm is not defined. 

xThis work has been supported by Grant A1030803 of the Grant Agency of the Academy of 
Sciences of the Czech Republic. 
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At the same combinatoric level the Dempster combination rule can be also easily 
defined. Let rai, ra2 be two b.p.a.'s over the same (nonempty finite) set S. Set, for 
each A C S 

™3(A) = EB,ccS,BnC=Am^m^- <L3> 

An easy calculation yields that 

T,Acs
m^A) (--4) 

= Y (Y m1(B)m2(C)) 
•-—MCS \*-'(B,C)eV(S)xV(S),BnC=A v ' v ') 

= T,<B,c)ev(s)«ns)m>(B)ra2(c) - £„«""<*> fXoc.™>OT) 
= EB C S">.<B> = 1. 

as the set of pairs (B,C) such that B nC = A are disjoint for different ,4's and 
each (B, C), B C S, C C S, belongs to just one set of pairs, namely to that with 
A = BnC. Hence, the mapping m$ : V(S) -> [0,1] is also a probability distribution 
over V(S), i.e., a b.p.a. over S, it is called the Dempster product of the b.p.a.'s 
rai, ra2, and denoted by rai 0 ra2. The binary operation ©, taking pairs of b.p.a.'s 
over S into the space of b.p.a.'s over the same S, is called the Dempster combination 
rule for b.p.a.'s. 

Dempster combination rule for belief functions is defined in such a way that 
Dempster product belmi © belm2 (belmi © belm2, resp.) of two belief functions is 
the belief function induced by the Dempster product of the b.p.a.'s defining the 
particular belief functions under combination. In symbols, 

belmiebelm2 = belmiem2, (1.5) 

belmiebelm2 = b e l m i 0 m 2 , (1.6) 

in the case of (1.6), of course, only when beimi®m2 is defined, i.e., when (rai © 
^2) (0) < 1 holds. Equality symbol in (1.5) and (1.6) denotes the identity relation, 
i.e., the equality of the corresponding values for each A C S. As can be easily 
proved, Dempster combination rule is commutative and associative for b.p.a.'s as 
well as for belief functions. 

Dempster combination rule is usually presented as an appropriate tool how to 
combine numerical degrees of uncertainties concerning the same field of events but 
of different provenience or coming from different sources, e.g., from two subjects 
or experts with their particular pieces of knowledge being charged by a portion 
of subjectivity. However, when taking both the particular degrees of uncertainty 
as a priori probability measures not conditioned by each other, then every rule 
combining these two probability measures into a uniquely determined one necessary 
introduces into the model in question a hidden assumption of a fixed kind and degree 
of statistical (stochastical) (in) dependence between the two sources of uncertainty. 
We will show, in the rest of this chapter and very briefly, referring to [4] or [5] for a 
more detailed case analysis, that this is, in fact, the case. 
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Let S be interpreted as a nonempty finite set of possible internal states of a 
system, just one so G S being the actual one. The subject's aim is either to identify 
the actual internal state so, or at least to decide whether so G T holds or does not 
hold for some (proper, as a rule) subset T of S. The subject is not able to answer 
this question by the direct observation of so, so that she/he has to guess the correct 
answer on the ground of some observation(s) concerning the system in question and 
its environment. Let us denote by x this empirical value and by E the space (perhaps 
a vector one) of all possible empirical values. In order the subject's reasonings were 
based on some rational grounds, she/he must know at least some relations holding 
between the actual internal state of the system and the observed empirical values. 
Namely, the subject has at her/his disposal a relation p C S x E, also taken as a 
mapping p : S x E —> {0,1}, such that, given s e S and x G f i , p(s,x) = 0 iff the 
subject knows (or is able to deduce within the scope of her/his deductive abilities) 
that the actual internal state of the system cannot be s supposing that the value 
x was observed. If this is not the case, i.e., if p(s,x) = 1, then the subject cannot 
avoid the possibility just described, hence, the state s and the empirical value x are 
compatible. Consequently, p is called the compatibility relation and it will play the 
role of the keystone in our further considerations and constructions. 

In order to describe the supposed random nature of the observed empirical values, 
we shall suppose that the observed empirical value x e E is the realization of a 
random variable X. This random variable is defined as a measurable mapping 
which takes an abstract and, in what follows, fixed probability space (fi,^4, P) into 
the measurable space (E, £) generated over E when choosing and fixing a nonempty 
cr-field £ C V(E) of subsets of the space E. 

Given a compatibility relation p : S x E - } { 0 , l } , we denote by Up(x) = {s e 
S : p(s,x) = 1} the set of all states from S which are compatible with the empirical 
value x e E. Combining this notation with the mapping X : (fi, A, P) -> (E, £), we 
obtain the composed mapping UP(X(-)) : D, -> V(S), hence, for each uett, 

Up(X(u)) = {seS: p(s,X(u)) = 1} . (1.7) 

We will suppose that UP(X(-)) is measurable in the sense that 

{{ueil : Up(X(u)) = A}:ACS}CA (1.8) 

holds. Let us denote, for each A C S, by m(A) the value 

m(A) =P({uett: Up(X(u)) = A}). (1.9) 

As can be easily proved, the mapping m : V(S) -> [0,1] is a b.p.a. over 5, and for 
every b.p.a. m° over S there exists a mapping U° : Q -r V(S) defining m° in the 
sense of (1.9). Moreover, it follows easily that 

bel*m(A) =P({uen : 0 ^ Up(X(u)) C A}) (1.10) 

and 

belm(A) =P({u£Q : Up(X(u)) C A}/{ueQ : Up(X(u)) ^ 0}) (1.11) 
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hold for each A C S supposing that the conditional probability in (1.11) is defined. 
Consider the case when two subjects solve the same problem to identify, or at least 

to specify partially, the actual internal state of the system under consideration. Their 
observations can be, however, of different kind and nature, so that there are two 
(possibly different) spaces E\y E2 of empirical values, each of them equipped by its 
own a-field £\, £2 of subsets, and there are two random variables X\, X2 both defined 
on the same probability (f2,.4,P), but taking their values in (E\,£\) for X\ and in 
(E2,£2) for X2. The apriori knowledge of each of them is defined by compatibility 
relations p\ : S x E\ -» {0,1} and p2 : S x E2 -> {0,1} (p\ C S x E\, p2 C S x E2, 
under the set-theoretic notation). 

Let the two subjects (or some third "meta-subject") decide to combine their 
a priori knowledge and empirical data in the following way. Let E\2 — E\ x E2 be 
the Cartesian product of both the empirical spaces, let £\2 be the cr-field of subsets 
of E\ x E2 generated by £\ and £2. Let X12 — (X\,X2) : Q -» E12 be the mapping 
defined by X\2(u>) = (X\(u),X2(u)) for each cjEfi; an elementary result of measure 
theory (cf. [3], e.g.) then reads thatvXi2 is a measurable mapping. Finally, let the 
compatibility relation p\2 : S x E\2 -» {0,1} be defined by 

Pi2(s,(x\,x2)) =min{p\(s,x\), p2(s,x2)} (1.12) 

for each s E S , X\ G E\, and x2 E E2. An easy calculation yields that, for each 
x = (x\,x2) e E\2, 

UPl2(^) = UPl(xi)nUP2(x2), (1.13) 

hence, for each u;Ef}, 

upi2(x12(u)) = t!pl(XiH) n uP2(x2(u)). (1.14) 
As in the case of p\ and p2, we can define b.p.a. m\2 and belief functions bel^^ 

and belmi2 generated by p\2 and X\2. We obtain, for each A C 5 , that 

m12(A) = P({uen:UPl2(X12(uj))=A}), (1.15) 
belmJA) = P({uen:<b?UPl2(X12(u))cA}), 
belmi2(A) = P ({u€Cl:UPl2(X12(u))C A} / {u€il :UPl2(X12(u)) ^ 0}), 

supposing that the last conditional probability is defined, i. e., supposing that mi2(0) 
= P({uen : UPl2(X12(u)) = 0}) < 1 holds. 

The space S is assumed to be finite, so that V(S) is finite as well and for each 
AUA2 CS, Ai ^A2, 

{(B, C):B,CcS,BnC = A1}f) {(B, C) : B, C C S, B n C = A2} = 0. (1.16) 

Consequently, (1.15) can be rewritten as 

bei* (A) = y rt P({uen:UPl(X1(u)) = B,UP2(X2(u)) = C}), 
m l2V / £^'(B,C),B,CCS,<DjtBnCcA V l P1V V " P2y V " " 

Y,{B,c),B,ccs,**BnccAP({"^-UPMi{")) = B,UP2(X2(u>)) = C}) 

belmi2(A)- Z{B,c)tB,ccs,^BncP({"Zn:UPl(X1(u)) = B,UP2(X2(u,)) = C}) ' 
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Let us state explicitly, now, that we assume that for all A C S and each p(pi, p 2 , pi 2 , 
resp.) 

{uen : Up(X(u)) = A} = (Up(X))'l(A) G A (1.18) 

holds, so that the values m(A), mi (.A), m2(A) and mi 2(A) are defined. This as­
sumption will be accepted also below, moreover, we shall suppose that the random 
variables X\ and X2 are stochastically (statistically) independent 

P({uen : XX(LJ) e Fu x2(u) e F2}) (1.19) 

= p({uen:Xl(u)eF1})P({Ljeii:X2(u))eF2}) 

holds. Given A\, A2 C 5 we obtain that also the set-valued random variables 
UPl(X\(-)) and UP2(X2(-)) are statistically independent, so that the equality 

P({uen : UPI(X!(LJ)) = Au UP2(X2(u)) = A2}) (1.20) 
= P({uen: upl(XM) = A ^ p ^ e n : uP2(x2(u)) = A2}) 

holds as well. Consequently, (1.17) can be rewritten as 

•P({ueSl:UP2(X2(u)) = C}) 

= ^ , v mi( JB)m2(O), 

belt,, (A) = Y^ m1(B)m2(C), 

E<B,C),0#BnCCA m l (B) m 2 ( O ) 

m i 2 v 

beJm i 2(A) 
Ľ^.o.ø^пc^iW^ÍC) 

Hence, m12 = mi 0 m 2 , bei^ l 2 = b e i ^ 0 beJ^2, and belmi2 = belmi 0 belm2. In 
other words said, application of Dempster combination rule when combining two 
(or more) degrees of uncertainty defined by particular belief functions is sound and 
justifiable only supposing that the particular random empirical data are statistically 
independent and that the pieces of knowledge described by particular compatibility 
relations are combined in the "optimistic" sense. Perhaps strange and interesting 
enough, we will see, in the rest of this paper, that these assumptions are not necessary 
when processing the degrees of belief in a nonstandard and, in a sense, boolean-like 
way. In the next chapter we shall introduce some necessary and very elementary 
technical preliminaries. 

2. ARITHMETICAL AND PROBABILISTIC STRUCTURES 
OVER BOOLEAN-LIKE PROCESSED REAL NUMBERS 

The reader is supposed to be familiar with the notion of Boolean algebra and with 
the most elementary properties of these structures, cf., e.g. [2] or [8]. Following 
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[8], we shall define Boolean algebra S a s a quadruple (J3,V,A,-«), where B is a 
nonempty set (called the support of B), V and A are total binary operations taking 
the Cartesian product B x B into B, and -• is a total unary operation taking B into 
Bf such that for all x, y, z G B the following identities hold 

(Al) xV y = yV x, x Ay = y Ax, (2.1) 

(A2) x V (y V z) = (x V y) V z, x A (y A z) = (x A y) A z, 

(A3) x V (y A z) = (x V y) A (x V z), x A (y V z) = (x A y) V (x A z), 

(A4) x A (x V y) = x, x V (x A y) = x, 

(A5) (x A (-.re)) \J y = y, (xV (-»x)) A y = y. 

The zero element 0# of the Boolean algebra B is defined by O5 = x A (~^x), the unit 
element 1B of B by 1B = x V (-»x). The binary relation -<B defined on B by x -<B y 
iff x Ay = x defines obvioilsly a partial ordering in B, moreover, V and A are the 
supremum and the infimum operation with respect to -<B- Obviously, 0# -<B X -<B 
1B holds for each x G B. For every finite subset C C B the supremum \/xeCx 
(V C, abbreviately) and the infimum f\xeCx (f\C, abbreviately) with respect to 
-<B are uniquely defined by recursion. If V C and /\ C are defined for all C C B, 
the Boolean algebra B is called complete. 

In what follows, we shall focus our attention to the three following mutually 
isomorphic Boolean algebras. 

Let M+ = {1,2, . . .} be the set of all (standard) positive integers, let V(N+) be 
the power-set of all subsets of JV+, let U, H and — be the set-theoretic operations of 
union, intersection and complement. Then the quadruple BQ = (V(J\f+),U,D,—) is 
obviously a complete Boolean algebra. 

Let B\ = {0,1}°° be the space of all infinite binary sequences, let x = (x\,X2,...), 
or x = (xi)^, Xi G {0,1} for all i G J\f+, denote an element of B\ (and similarly for 
y, z,...). Let O00 = (0,0,0,. . .) G B\ and 1°° = (1,1,1,. . .) denote the two constant 
sequences, let Vi and Ai be binary operations taking B\ x B\ into B\ in such a way 
that x\/\y = (sup{xi, yi})^\ and xA\y = (inf{zi, 2/i})£i for each x, y G B\\ here 
sup and inf are the usual supremum and infimum operations in {0,1}. Let 1°° — • 
be the unary operation taking B\ into B\ in such a way that 1°° — x = (1 — Xi)(^zl 

for all x G B\. Then the quadruple B\ = ({0, l})f^i, Vi, Ai, 1°° — •) is a complete 
Boolean algebra with the zero element Oj^ = 0°° and the unit element 1BX = 1°°. 
The Boolean algebras B$ and B\ are evidently isomorphic, their isomorphism being 
established by the 1 — 1 mapping x : V(M+) —> {0,1}°° which ascribes to each A C 
M+ its characteristic function (sequence, in this particular case) xA — (x(-4)i)°^i £ 
{0,1}0 0 , defined for each i G Af+ by x(-4)i = 1, if i G A, x(-4)i = 0 otherwise. 

The third Boolean algebra will be obtained by a particular 1 — 1 encoding of sets 
of positive integers and infinite binary sequences by real numbers from (a certain 
subset of) the unit interval [0,1] of (standard) real numbers. Let C be the well-
known Cantor subset of [0,1]. Formally, C is the set of all real numbers from the 
unit interval for which there exists its ternary decomposition (decomposition to the 
base 3) which does not contain any occurrence of the numeral 1. Hence, the mapping 
<Po : {0,1}°° —> C ascribing to each x = (xi,X2,...) G {0,1}°° the real number 
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S S i 2-Ci 3~~l is a 1 — 1 mapping as well as the composed mapping tp : V(M+) -> C 
defined by 

tp(A) = Mx(A)) = £ " 2*W<3_i (-•-) 

for each A C JV+. 
Set, for each a, ft € C, 

aV2(3 = iP{ip-1(a)U(f-l(0)), (2.3) 

1 -a = <p(AT+ -^(a)), 

in the last row " - " denotes the set theoretic operation of complement. An easy 
calculation yields that 1—a = 1 — a holds for each a G C. The quadruple B2 = 
(C,V2,A2,1 — •) is a complete Boolean algebra, 0#2 = 0 and 1B2 = 1, and B2 is 
obviously isomorphic with the Boolean algebras Bo and B\ due to the mappings (p0 

and </? defined above. 
The following partial operation ]T)* : C°° —> C ascribing to (some) infinite se­

quences of real numbers from the Cantor set C a number from C will be defined 
as follows. Let (a\,a2,...) be a sequence of numbers from C such that the sub­
sets (p~1(ai) of JV+, i = 1,2,..., are mutually disjoint. Then ] T ^ i ai ^ defined 
by <p (US i <f°~1(ai))j Z )S i ai being undefined otherwise. As can be easily proved, 
for each sequence (a\,a2,...) G C°° the following implication holds: if Yl^i a - *s 

defined, then X ^ i ai = zCSi a*> w - i e r e the last expression denotes the usual oper­
ation of summation in [0,1]. The operation X)Si i s commutative in the sense that 
if C S i ai 1S defined, then X)i=i a7r(i) is also defined and, consequently, equal to 

-CSi a-> zCSi a*> a n d _C2.i a7r(i)5 for each 1 - 1 mapping TT : JV+ -r JV+. 
The basic structure enabling to formalize, at the most abstract level, the notion 

of probability and random event is that of probability space. Let us recall, for the 
sake of reader's convenience, its usual (standard) definition, immediately followed 
by its nonstandard modification. 

Definition 2.1. 

(i) Let ft be a nonempty set, let A be a cr-field of subsets of ft, i. e., A is nonempty 
and, for each A, A\, A2,... G A, also Q - A e A and ( J ° ^ Ai G A hold. The 
pair (ft, A) is called measurable space (generated in ft or over ft by the a-field 
A) and elements of A are called measurable sets. 

(ii) A mapping P : A -> [0,1] ascribing to each A G A a real number P(A) 
from the unit interval of reals is called (standard) probability measure (p.m., 
abbreviately) on (II, A), if (a) P(ft) = 1 (ft G A and 0 G A obviously hold for 
each cr-field A of subsets of ft) and (b) P ( (J£i -4*) = E .~ i P(Ai) holds for 
each sequence (Ax, A 2 , . . . , ) of mutually disjoint sets from A. 
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(iii) A mapping /i : A -> C (Cantor subset of (0,1)) is called nonstandard (Cantor-
valued) probability measure (ns.p.m., abbreviately) on (ft, A), if (a) /x(fi) = 1 
and (b) for each sequence(Ai, A2,...) of mutually disjoint sets from A the 

series ZZ\ »(Ai) is defined a n d A* (U*~i Ai) = T£i ^Ai)-

(iv) A triple (Q,A,P) ((Q,A,fj), resp.) where (il,A) is a measurable space and P 
is a probability measure (// is a nonstandard probability measure, resp.) on 
(Q,A) is called (standard) probability space (nonstandard or ns-probability 
space, resp.). In both the cases, measurable sets, i.e., elements of A, are 
called random events. For each A e A, the value P(A) (n(A), resp.) is called 
the probability (nonstandard or ns-probability, resp.) of the random event A. 

It follows immediately from what we told above, that if X)S.i vi-A-i) is defined, 

then YliLi Mv^i) — zCSi M-^i)* hence, every ns-probability measure on (fi, A) is a 
(special case of) standard probability measure on the same measurable space. As 
a matter of fact, the demands imposed on the nonstandard probability measures 
are rather restrictive, e.g., the possibility that a set possesses the same value of 
probability measure as its complement is excluded. Nevertheless, some properties 
of these nonstandard probability measures, namely their extensionality, seem to be 
interesting enough to justify a more detailed investigation of such measures. 

3. BASIC NONSTANDARD PROBABILITY ASSIGNMENTS 
AND THEIR PROCESSING 

In our context, the most important property of nonstandard probability measures 
consists in the fact that they are extensional in the sense that nonstandard proba­
bilities of random events combined from some "elementary" random events by the 
set-theoretic operations of union, intersection and complement can be defined and 
computed as real-valued (vector) functions of the nonstandard probabilities of these 
"elementary" random events. The corresponding formalized statement reads as fol­
lows. 

T h e o r e m 3 .1 . Let (CI, A, /i) be a nonstandard probability space. Then, for all 

A,BeA, 

ti(il-A) = l-»(A), n(AUB) = fi(A)y2fji(B), n(AnB) = fi(A)A2fji(B), (3.1) 

where V2 and A2 are the binary operations taking C x C into C defined by (2.3). 

It is perhaps worth being mentioned explicitly, that the set A in (3.3) is defined 
uniquely. It is caused by the fact that the sets (p~1(m*(A)) are disjoint for different 
A's, this property holding true as the value ]T}* m*(A) is defined. 

P r o o f . The following relation between the operations V2 and X^Si *s eyident. 
If ( a i ) ^ ! is a sequence of real numbers from C such that OLI = 0 for all i > n and 



A Nonstandard Modification of Dempster Combination Rule 9 

Z)Si ai i s defined, then 
* 

V ai = a i V 2 a 2 V 2 - - - V 2 a n (3.2) 
——'t=i 

holds and we will use the notation X)ILi a » t o abbreviate the right-hand side expres­
sion in (3.2). 

Let A, B e A. Setting Ex = A - B, E2 = AnB, E3 = B - A, and E{ = 0 C ft 
for each i > 3, we obtain a sequence of mutually disjoint measurable sets from A so 
that £ ° f i fi(Ei) is denned and | J ~ i E{ = AUB. Hence, 

/.(A UB) = YZi ^Ei) = ^El) V* ̂ E2) V2 ̂ ^ (3,3) 

= n(A - B) V2 n(A n B) V2 /.(B - A) 
= pfor1 (/i(A - B)) U v"1 (MA 0 B))) V2 //(B - A) 
= v [ y r ^ ^ M A - B)) U ^ ( M A n B)))) U ^ ( / - ( B - -4))] 
= v, [for1 (MA - 5)) U <p~l(»(A n B))) U (v?" V A n B)) U ^ ( / . ( B - A)))] 
= <p [<p~l(n(A)) U tp-HKB))] = MA) V2 /x(B). 
As each nonstandard probability measure is also a classical probability measure, 

fi(fl — A) = 1 — n(A) holds for each A € A. De Morgan rules then yield that 

H(A tlB) = /.(ft - ((ft - A) U (ft - B))) (3.4) 

= (^(N+ - <p~l (/x(ft - .A) V2 /i(fl - B))) 

= V (N + - V - 1 ^ - 1 ^ - - " A)) U <p-lbi(Sl - B))]]) 

= y»(N+-[N+-(v»-10-(^))nv-1(/i(B)))]) 
= <p(<p-1(A)n<p-1(B)) = fi(A)A2fi(B). D 

Definition 3.1. Let 5 be a finite nonempty set. Basic nonstandard probability 
assignment (b.ns-p.a.) on S (or: over S) is a mapping m* : V(S) —• C such that 
-CAcs*m*(-4) is defined and ]CAcs*m*(^) = *• 

Remark. The value S.AC5*ra*(-4) is defined by Yl^i a-> where (.4i, .42,..., A8), 
s = card(P(5)) = 2card(s), is an ordering (without repetitions) of all subsets of 
S, ai = m*(^4i) for i < s, and ai = 0 for all i £ JV+, i > s. If this is the case, i. e., 

if £ A c 5 * m * ( A ) i s defined, then obviously X)i=i a* = £ i=i*m*04-) = ra*(-4i)*V2 

m*(.A2) V2 • • • V2 m*(.4s). As the operation V2 is commutative and associative, the 
value ]CAcS*m*(^) l s defined unambiguously, i. e., it does not depend on the chosen 
ordering (.Ai, A2,..., As) of all subsets of S. 

Theorem 3.2. There exists a nonstandard probability space (tQ,.4,/x) such that, 
for each finite nonempty set S and each ns.b.p.a. m* on 5, there exists a mea­
surable mapping (set-valued random variable, in other terms) Um* : (Q,A,fi) -* 
(V(S), V(V(S))) such that, for each A C 5, 

m*(A) =ti({u€tl: Um*(u) = A}). (3.5) 
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P r o o f . Let fi = N+ = {1,2, . . .} be the set of all positive integers, let A = 
V(M+) be the system of all sets of positive integers, let p({i}) = 2 • 3n _ 1 for all 
i e M+. Consequently, (Vt,A,p) = (N+,V(J\f+),p) is a ns.probability space. 
Indeed, let A\, A2,... C M+ be an infinite sequence of mutually disjoint subsets of 
M+. Then 

" ( I C *) - E J f U 1 , A,2 • *-< - E~ , E ) S , , 2 • » " ' <3-«> 
E

CO v -r » * OO 

i=1MAi) = E i = 1M^)-
Let us recall the one-to-one mapping ip : V(N+) —>• C (the Cantor set) defined by 

(2.2) above. For each x € C, x <* (x1,x2,...) € {0,2}°°, 

V - 1 ( x ) = { i € N + ; a ; i = 2}, (3.7) 

so that JC = ICiev'-M.c) - ' 3 - 1 - ^e*' *° r e a c ^ w ^ O = N+, 

C/m.(w) = ACN+ iff w e ^ ' K i i ) ) , (3.8) 

Consequently, for each A C N+, 

/* ({u>GSl : ttm.(w) = A}) = /x ({i G N+ : i € ¥."1(ro*(.4))}) (3.9) 

= n(<p-1(rn*(A)))=J2.. _., 2 - 3 - * = m*(A) 
v ' --—--/2G<̂  1 ( m * ( A ) ) 

and the assertion is proved. • 

The following theorem deduces and presents a boolean-like modification of Demp­
ster combination rule which can be obtained within the framework of our nonstan­
dard model. Interesting and perhaps important enough, the obtained combination 
rule conserves the extensional nature of the classical Dempster combination rule, 
but no assumption concerning the statistical independence (or a special kind and/or 
degree of dependence) of the random variables in question is needed. 

T h e o r e m 3.3. Let (ft, A, p) be a nonstandard probability space, let S be a nonempty 
finite set, let Ei, i = 1,2, be nonempty empirical spaces, let £*, i = 1,2, £i cV(Ei), 
be nonempty cr-fields of subsets of these empirical spaces. Let Xi : (ft, A, p) —> 
(Ei,£i), i = 1,2, be measurable mappings (generalized random variables), let pi : 
S x Ei -» {0,1}, i = 1,2, be compatibility relations over the corresponding spaces. 
Let the mappings Ui : fi -» V(S) defined, for each uefl and for both i = 1,2, by 

Ui(u) = {seS: Pi(s, Xi(u)) = 1} (3.10) 

be measurable mappings taking the ns. probability space (tt,A,p) into the measur­
able space (V(S), V(V(S))). 

Let 
p12(s, (xi,x2)) =mm{p1(s,x1), p2(s,x2)} (3.11) 
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for every s G S, xx e E1, x2 e E2. Set 

U12(u) = {seS: p12(s, (Xx(u), X2(u))) = 1} (3.12) 

and denote by m*(A), i = 1, 2, 12, Ac S, the value 

m*(A) =n({uen: U{(u) = A}). (3.13) 

Then m* is a ns. b.p.a. on S for each i = 1, 2, 12, and 

" - - W = E l . c c s . B n c ^ ™ ^ ) A2 m^C) <3-14) 

holds for each A C 5, where A2 is the nonstandard infimum operation in C defined 
by (2.3). 

Proof. For i = 1,2, {u e ft : cĴ o;) = A} e A holds for each A C S and both 
i = 1,2. Consequently, //({c^Gil : E/i(cj) = A}) is defined. If Aly A2 C S, A1 ^ A2, 
then 

{a;Gft : Ui(u) = Ai} H {cjGfi : U{(u) = A2} = 0 (3.15) 

holds for both z = 1,2, so that {{CJ G fi : cJi(cj) = A} : A C S} is a system of 
mutually disjoint subsets of ft (a decomposition of ft to subsets from A, in fact), 
and for such systems YIACS viW ^ ^ : ^t(^) = -4}) is defined and equals to 1 for 
i = 1,2, as (ft,,A,/i) is a nonstandard probability space. Hence, both ml and m% 
defined by (3.13) are ns.b.p.a.'s over S. 

As in the usual case, (3.11) and (3.12) yield that 

U12(u) = {seS: m i n ^ ^ X i M ) , p2(s,X2(u))} = 1} (3.16) 
= L J ^ n L J ^ u ; ) . 

For each A C S 

{ueil : Ui2(a;) = A} = {cjGft : Ux(u) H U2(u) = A} (3.17) 

= UB,ccs,Bnc=A{{uen : Ul^ = B > n { ^ f t : ^ M = C}). 

The relation 

^ c s / x ( { W e n : Ui2(«,) = A}) = J2Acsm*12(A) = 1 (3.18) 

can be proved in the same way as in the case of mj and m2. 
Let (B\, Oi), (B2,02) be two different pairs of subsets of S, so that either Bx ^ 

B2 or Oi ^ O2. Then, obviously, 

mJ2(A) = (i({ueSl: C!i2(a;) = A}) (3.19) 

= M (U B , C c S l BnC = A ( { w € n : Ul(u) = B} n {U£Q : U2(UJ) = C})) 

= -Wcs.Bnc^^6" : Ul{u) = B} n { w G f i : ^-(fa,) = C } ) 

= K ^ c c s . B n c ^ ' ^ ' 1 ' 6 " : Ul{u) = B}) A* ^ ^ : U2{U) = C}) 

= K,ccs,Bnc=Am^B)A2m^C) 
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due to Theorem 3.1 and due to the definition of m\(B), ra^C) by (3.13). The 
assertion is proved. D 

In the list of references below, [1] and [7] are already classical sources offering 
an introduction into the field of the Dempster-Shafer theory. The monograph [6] 
describes and analyses Dempster-Shafer theory from the probabilistic point of view 
in more detail than the already published papers [4] and [5]. 

(Received July 10, 2001.) 
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