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KYBERNETIKA — VOLUME 37 (2001), NUMBER 6, PAGES 685-702

ON GOODNESS-OF-FIT FOR THE ABSENCE
OF MEMORY MODEL

VILIJANDAS BAGDONAVICIUS AND RUTA LEVULIENE

Logrank-type and Kolmogorov-type goodness-of-fit tests for the absence of memory
model are proposed when the accelerated experiments are done under step-stresses. The
power of the test against the approaching alternatives is investigated. The theoretical
results are illustrated with simulated data.

1. INTRODUCTION

In survival analysis the most used model describing the influence of the explana-
tory variables on the lifetime distribution is the proportional hazards (PH) or Cox
model, introduced by D. Cox [3]. We are interested in applicability of this model in
accelerated life testing when units are tested under higher than usual stresses and
inference about reliability in usual stress conditions are made

For constant in time stresses the PH is formulated as follows: suppose that under
different constant in time stresses z € E; the hazard rates are proportional to a
baseline hazard rate:

az(t) =r(z) ao(t).

For z € E; the survival functions have the form
Sa(t) = S5 (¢) = exp{—(2) 4o (1)},

where

So(t) = exp {-— /Ot ao(u) du} , Ao(t) = /Ot ap(u) du = —1In Sp(t).

In the statistical literature the following formal generalization of the PH model to
time-varying stresses is used: the proportional hazards (PH) model holds on a set
of stresses F if for all z(-) € E

ag()(t) = r{z(t)} ao(?).

This model is not natural when units are aging under usual constant stress. Indeed,
denote by z; a constant in time stress equal to the value of the time-varying stress
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z(-) at the moment ¢. Then

0z, (t) = r{z(t)} ao(t),

which implies that

ag()(t) = ag,(t). (1)
For any t the hazard rate under the time-varying stress z(-) at the moment ¢ does
not depend on the values of the stress z(-) before the moment ¢t but only on the
value of stress at this moment. It is not natural when the hazard rates are not
constant under constant stresses, i.e. when failure times under constant stresses are
not exponential under constant stresses.

The equality (1) defines a model which means that the hazard rate under any
time-varying stress at any moment ¢ does not depend on the values of stress before
this moment.

Let us call this model the absence of memory (AM) model. This model is wider
than the PH model because it does not specify relations between survival distribu-
tions under different constant stresses. The PH model is a submodel of it.

The AM model (and the PH model)is not natural for aging units and it’s appli-
cation should be carefully studied. A formal goodness-of-fit test would be useful.

The most used time-varying stresses in accelerated life testing are the step-
stresses: units are placed on test at an initial low stress and if they do not fail in a
predetermined time ¢;, the stress is increased. If they do not fail in a predetermined
time ¢5 > t;, the stresses is increased once more, and so on.

Let us consider a set E,, of step-stresses of the form

T, 0< 1<,
wr=q T BHETSE @)
ZTm, tm—l S T< tm-
Set tg = 0.
If the AM model holds on E,, and z(-) € E,, then
ag(y(t) = ag(t), if te[ti-i,t:), (i=1,2,...,m). (3)

The AM model can be written in terms of the cumulative hazards A;(.) and Ag;:
fort e [ti—lati) (Z = 1,2,...,m)

i—1

Ag()(t) = Az, (t) — Az (tim1) + L2y D (A (t5) — Az, (ti-1))- (4)

Jj=1

A very possible alternative to this model is the generalized Sedyakin (GS) model

(Bagdonavitius [2]):
o (o (t) = g (z(t), Se( (1))

which means that the hazard rate under any time-varying stress at any moment ¢
depends not only on the value of the stress at this moment but also on the probability
of survival until ¢.
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If the GS model holds on E,, and z(-) € E,, then
Ap(y(t) = Azt —tica +2iy), if tE€ftion,t) ((=1,2,...,m), (5)
where t; can be found by solving the equations

Ag (1) = Agy(817)y . Ag (b — tica + 2] )) = Az, (8]) (= 1,...,m — 1). (6)

2. LOGRANK-TYPE TEST STATISTIC FOR THE AM MODEL

Suppose that a group of ng units is tested under the step-stress (1) and m groups of
ny,-*+, My, units are tested under constant in time stresses z; - - -, T, respectively.

Suppose that z; < -+ < @, We write () < y(-) if Sp()(t) > Sy(,(¢) for all
t>0.

The units are observed time t,, given for the experiment.

The idea of goodness-of-fit is based on comparing two estimators A(zl() and /iftz().)
of the cumulative hazard rate A;(.). One cstimator can be obtained from the ex-
periment under step-stress (1) and another from the experiments under stresses
T1,-++,Tm by using the equalities (2).

Denote by N;(t) and Y;(#) the number of observed failures in the interval [0, t]
and the number of units at risk just prior the moment ¢, respectively, for the group
of units tested under the stress z; and N(t), Y (¢) the analogous numbers for the
group of units tested under the stress z(-).

Set

a; = Oy;, a:am(.), A,‘-‘—AI‘., A=AI(.) (i=1,...,m).

The first estimator A of the cumulative hazard A is the Nelson-Aalen estimator
(see Andersen et al [1]) obtained from the experiment under the step-stress (1):

The second is suggested by the AM model (formula (3)) and is obtained from the
experiments under the constant stresses:

i-1
AP (#) = Ai(t) - Ai(ti1) 1 in2y Z(/‘ij(tj)—z‘ij(tj_l)), t € [ti—r,t:) i=1,...,m),
j=1
’ ™
where A . aNi()
A(t) =/0 ik =1m)

The first test is based on the logrank-type statistic

Tp = Tn(tm), where Ta(t) = / t K(v)d{AD(t) — A@(8)}; (8)
0
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here K is the weight function.
Similarly as in the case of classical logrank tests (see Harrington and Fleming
[4]), we shall consider the weight functions of the following type: for v € [t;—1,;)

1 Y(w)Yi(v) (Y(’U) + Yz(v))

K0 =7 vyt v I\ n

where n = }.7" n; and g is a nonnegative bounded continuous function with
bounded variation on [0, 1].

3. ASYMPTOTIC DISTRIBUTION OF THE LOGRANK TEST STATISTIC

Assumptions A.
a) The hazard rates a; are positive and continuous on (0, 00);
b) Ai(tm) <oo;
c) n—oo, ni/n—=1; l;e€(0,1).

Under Assumptions A (see Andersen et al [1]) for any t € (0, ] the estimators A;
and A1) are uniformly consistent on [0,¢], and ~ *

V(A - 4) B Ui, va(AW -a)Bu 9)

on D|0,t], the space of cadlag functions on [0, t] with Skorokhod metric. Here U and
Ui, --,Upn are independent Gaussian martingales with U;(0) = U(0) = 0, and

11-S5; A
Cov (Ui(s1),Ui(s2)) = "—S(s%l\‘ﬁz = 07 (51 A 82),

11— S(Sl A 82) 2
= —_— = A 8- 1

lO S(Sl /\32) g (31 82)7 ( 0)
with S; = exp{—A4;}, S = exp{-A}.

Let us consider the limit distribution of the stochastic process Ty (t),t € [0, ]
Note that

K@) p _ oliS(v)Si(v)
7n RO = e T 8w

Cov (U(s1),U(s2))

g (loS() + 1:S:(v)), v € [ti—1,ti)-
The convergence is uniform on [0, ¢,,].

Proposition 1. Under Assumptions A
D t i-1 .t t
To(t) 3 Vi(t) = / k@) dU@) - 14 > 2} Y / k(v) dU; (v) — / k(v) dUs (v),
0 ji=1 tj—1 tia

tE[ti_I,ti),iZ].,'--,m, to=0 (11)
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on D0, ty].

Proof. For t € [t;_1,t;), i = 1,---,m, write the statistic (7) in the form

t . t
To(t) = / K(v) d{AD (1) - A(t)} - / K (v) d{A® (¢) — A(t))

/J(U)K () —1{i >2}Z/J( K(v dM ®_ Ji(v)K (v) dMi(t)

Y(v) Yit)  Ji_, Yi(t) ’
where
t t
MO =NO - [ Y aae), M) =N - [ Vi),
J(@t) = 1iyy>oy,  Ji(t) = Livi >0}
Note that

([ o

and for any € > 0:

K K2
([ 1032 145150 40) = [ 105 1001, 040) 50

on D[0,t,,]. The Rebolledo’s theorem (see Andersen et al [1]) implies that

dM@) p [t a(v) /2
vor 2 ke (ispy) 4V

on D[0,t,,]; here W is the standard Wiener process. The limit process has the same
variance-covariance structure as the Gaussian process

)= o9y [0 23

/t k(v)dU(v).
0

So

/J dM(’U)’D/k )dU(v).

Analogously it is obtained that

dM;(v)

/J()K() —)/kv)dU(v)

on D[0, t). o
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Corollary 1. Under the assumptions of the theorem
Cov(Vi(s), Vi(t)) = 0‘2/k (sAt)

where

oy, (t) = / k*(v)do?(v) + 1{i >2}Z/

i1

t)da (v) + / k*(t) do? (v)

_[PEO 1625 [ i
_/0 lOS(U)dA()+1{ 22}]2/ dA()l{ > 2}

t k2(t)
A i— ti7.=1a"') ) =Y,
+/t'1l5()d (v), tE€([ti—1,t), 1 m, to =0

and
T, B N(0,0%, (tm))-

Proposition 2. The variance o}, (t,,) can be consistently estimated by the statis-
tic

tm dN v b dN v
52 () = K2(v Y2(( ) +z Yf(( ))_

tll

Proof. Let us consider the difference

tm dN(v) tm o dA(v)
oY - [ R0y

e Y (v) dA(v) + dM (v) (v)
_/o J(0) K2 (v) ) / k2( U)IOSU

7 g (K@U B 0
= Jo J"((no/n)m) JOS(v)>dA“

+ mJ(v)K2(v)(¥\g—((vU))+ ; (1—J( DSy

0
= B; + B + B;s.

dA(v)
05(v)

We have
K2(v)/n B k%(v)

(no/n)Y (v) 1pS(v)

|By| < sup Atm) 50,

[0,tm]

(B2 = ( Ot'" J<v>K2<v)%,]‘%>

_ [ dA(v) K@/,
= [ oKy -n[ﬁ‘ii’] ¥ (0)/n)?

which imply that B; 50 (i =1,2). Convergence Bj 5 0 is evident. O

and

(t'm) _) 0)
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4. LOGRANK-TYPE TEST
The hypothesis
Ho : ag(y(t) = ag,(t),t € [ti—1,t;) (i =1,---,m)

(or the AM model) is rejected with the approximative significance level a, if
T \*. .2
] > Xi-a(1),
(ka (tm)) Xi-o(l)
where x3_,(1) is the (1 — @)-quantile of the chi-square distribution with one degree

of freedom.

5. CONSISTENCY AND THE POWER OF THE TEST AGAINST
THE APPROACHING ALTERNATIVES

Let us find the power of the test against the following alternatives:
H, : GS model with specified non-exponential time-to-failure
distributions under constant stresses.
Under H;
AOVW) B AV () = Aiw —tics +17_,), vE[tin,t) (i=1,---,m),
where ¢} can be found by solving the equations
Ar(t) = Az(t17), -+, Aalti — tim1 +8]_1) = Aia (&)

(izly"'am_l)v

i—1

AP () B A (v) = Ai(t) - Ailtiz1) + Liisay D (Aj(t5) = Aj(t-1)), v € [tio, )
j=1
(t=1,...,m),
and 1
=KW B k), Y(@)/no D SV (w)

where S,(,l)(v) = exp{—ASl)(v)},
g(1) (v
105" (v) + 1:S:(v)

_ loliSi(v)Si(v — tic1 +t7_;)
loSi(v —tioy +t_;) + 1:Si(v)

Convergence is uniform on [0, t,].

9 (18 @) +Siw))

g (loS,'(’U —ti—1 + t:_l) + liSi(’U)) , U /[ti—l)ti)-
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Proposition 3. Suppose that Assumptions A hold and
A* = A*(ty) #0,
where

A*(t) = 14503 Z/ v) {o(v —tj—1 +t; 1) —aj(v)}dv

tj—1
t
+ ke (v) {ai(v — tic1 +t]_;) — ai(v)} dv.

ti1

Then the test is consistent against H;.

Proof. Write the test statistic in the form

tm

To= [ K@)d{AD @) -AD @)} - f ” K(v) d{A® (v) — AP (v)}

tm

+ K(v) d{A" (v) = A® ()} = Tip + Ton + Ton. (12)
0

Analogously as in the case when seeking the limit distribution of the statistic 15,
under the hypothesis Hy, we obtain that under H;

Tin + Ton 3 N(0,0%, %(tm)),

where o7, (t) has the same form (11) with only difference that k(v) is replaced by
k.(v) and o?(v) is replaced by

CPw= ( S(j( ; 1) ,

2y _ [ k() t’ k2 ,
00 = [ s . (v)+1{z>2}2/t 45(v)

+/t B0 gaiw), t€ltinsts) i=1,,m, to = 0. (13)
ti1 LiSi(v)
Under H; we have
6%, (1) = o3, (2) (14)
uniformly on D|0,t,,], and
Tin + Ton 2}

) B N(0,1). SNGE
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The third member in (12) can be written in the form

T3"_Z/ K@) {ai(v —ti—y +t;_;) — ai(v)} dv. (16)

The assumptions of the proposition and the equalities (13) —(16) imply that under
H,
Tn P

2) A%, - — 00.
OV; (tm)

Thus under H;

OV (tm)

_f_
{ In 2 > xf_,,(l)} -1

]

Proposition 4. If o; are increasing (decreasing) then the test is consistent against
H,.

Proof. We shall show now by recurrence that ¢; > t} for all i. Really, the
inequalities z; < --- < z,,, imply that

Sl(tl*) > Sz(tl*) = Sl(t),
which give t; > t;1*. If we assume that t;_; > t;_; then
Siv1(8]) = Si(ti — tic1 +t7_1) > Si(ti — ti—1 +ti1) = Si(t:) > Siya(2s),

which imply ¢; > t}. If a; are increasing (decreasing) then A* > 0 (A* < 0) under
H;. The proposition implies the consistency of the test. O

Let us consider the sequence of the approaching alternatives

H,: GS with o;(t) = <i> - (17

with fixed e; >0 (i = 1,---,m). Then

= b t t;
T3n—P>”=Zei/ ki (v) ln(l+%)dv<0,
i=1 ti—1

and )
Tn T
BN, (57) 3w,
UVk (tm) OVi (tm)
where a = —p /0%, and x%(1,a) denotes the chi-square distribution with one degree

of freedom and the non-centrality parameter a (or the random variable having such
distribution).
The power function of the test is approximated by

2
p= lim P { o) > x‘f’_a(l)lHn} =P {(La)> X0} (9
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6. KOLMOGOROV-TYPE TEST

Let us reject now the condition z; < --- < z,,,. Logrank-type tests may be not pow-
erful in such situations with non-monotone step-stresses. In such cases Kolmogorov-
type tests could be useful. Such tests are constructed using the following consider-
ations.

The limit process Vi (t) obtained in Proposition 1 is a zero mean Gaussian mar-
tingale with the covariance function

Cov(Vi(s), Vk(t)) = a¥, (s A t).

It implies that Vi (t) = W (o}, (t)), where W is the standard Wiener process. We

have
at, (t)
v (azvk (tm>>

The variance ar%,‘c (t) is consistently estimated by the statistic

= sup [W(u)|.  (19)

0<u<l1

sup |Vi(t)| = sup
oV (tm) 0<t<tm 0<t<tm

. K2 t .
40 = [ Faeg N >+2 " g A2 2)
t K2(t) .
Y2()dA() te[ti_.l,ti),’l,—l,'--,m
So the test statistlc is
1

Zg = 7 Sup
v (tm) t€[0,tm]

/ " K@) AV @) — 49wy, (20)

If n — oo then (10) and (18) imply

Zx 3 sup |W(u)|.
0<u<1

Denote by W;_, the (1 — a)-quantile of the supremum of the Wiener process on the
interval [0, 1]. The hypothesis Hy is rejected with approximative significance level «
if Zg > Wi_a.

Consistence of the first test against H; implies consistence of this test against H;
because the convergence T}, A implies the convergence Zi B .

Let us consider the sequence of the approaching alternatives (18). Similarly as in
the case of the hypothesis Hy we have

t
To(t) = / K(v) d{A® ) — 4D (v) / K(v) d{A® @) — A® (v)}

+ / KO) d{AD (v) = AD (W)} = Tin(t) + Ton(t) + Ton() 3 Vi* (8) + A*(2)
0
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on D|[0,t,], where

Vk*(t):/k(v)dU* Z/ v) dU; (v)1{i > 2} — /., v) dU; (v)

t € [tic1,t:), i=1,---,m, to =0, (21)
U* is a Gaussian martingale with U*(0) = 0, and

Cov (U*(s1),U(s2)) = l %—;ﬁ

with S, = exp{—A.},

et S o —t_
A*(t) = 1{i22} E Ej/ k*(’U) 1[1(1 + —]“1’“—“)(11)
j=1 tj—l

i—1
Analogously as in the case of the hypothesis Hy,

V" (8) = W (o, (1),

o, (t) A*(t)
v (ozvk (tm)> )

W (u) + %A*(h(cu)) ,

t tr o, —ti_
+€i/ k*(’(}) In (1 + -i-—l—v‘—1> dv<O0,te [ti_l,t,’).
t

and

1 D
Zg = = sup |Tn(t)| = sup
v, (tm) tE[O,tm]l (®) £€[0,Em)

= sup
0<u<1

where h(s) is the function inverse to oy, (t), and ¢ = oy, (tm).

7. SIMULATION RESULTS

Suppose that a group of ny units is tested the time t,, under the step-stress (1)
and To1,---,Tin, are observed failure times, where 7o is the number of elements,
failed until time t,,. Let m groups of ny,---,n., units be tested the time ¢,, under
constant in time stresses z,,---,z,,, respectively, and T};,---,Ti7;, ¢ = 1...m be
the observed failure times of the ith group until the time t,,; here Tj; is the jth
failure in the jth group, i; is the number of elements failed until ¢r,.

We simulate the failure moments when

v-1 v
au®=7 () + sa0=ew(-(5) ) i=1m 6=00),

(22)
i.e. the Weibull distribution of the failure times under the constant stresses is
supposed.
Set

Q; = Og;y Q= Qg(.), S,':Sz‘-, S=Sz()7 i=1,...,m.
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7.1. Tables of the simulation results

Denote N — the number of runs, m — the number of groups, tested under constant

in time stresses, 8 = (01, - -,0,,) — the stresses, t = (¢1,- - -, tm) — the partition of the
interval [0, t,,], @ — the significance level of test, 3 — the power of test, n = Y .- n;,
~ — the parameter of the Weibull distribution. "

Suppose N = 5000, m = 3. Let § = (5000, 100, 10), when v < 1 and 6§ =
(15, 10, 8), when v > 1.

Table 1. The values of t = (¢1,t2,%3) and t = (¢1*,12%,t3*), calculated from con-
ditions

Sp(y(t1) =S8(t1) = 0.9, Sg()(t2) = S(t2) = 0.5, Sy()(ts) = S(t3) = 0.1

under the alternative (i.e. the level of censoring is the same for various 7 values;
we need that for the correct comparison of the test power under various «y values).
Thus

t, =0, (~In0.9)7, t*=-2t, ta=t —t," +6: (—In0.5)7,

0
ta" = 53— (t2—ti+t"), ta=ta—t2"+0; (—1n0.1)$.
2

The seventh column: the values of o2, calculated by numerical methods using the
formula:

- k2 (t)ou(t) (S() + Si(t))
i) = =3 / lo S Sos

i=1 ti1

where S(t) defined by (4), S;, a; — the survival function and the hazard rate of
Weibull distribution and

lo L; 5(8)Si(t)

k = TTorn o o t i— i)y ':1a2’ ) i:l:_:_:_-
() l() S(t)'{"ll Sl(t)’ e[tl 1 t) ? 3 l 0 4

The eight column: the values of 02 = a{,kz(tm), calculated by numerical methods

using the formula:
L v __(""'—1.*"?_1)"
8, e *

S

o,

-
Crf
|
-
/-\
.'°|=-
Q
®
|
/\
T
o=
1’
L
N—"
-2
N———
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The ninth column: the values of A*:

t—t;_q+t7_ 7
S )
e i e

YA ((a—)(——))

[

t—ti +tz_1. 71 t 71
(et (1))

Table 2. o} - the estimator of significance level for the Logrank-type test (o =
0.1, x3_,(1) = 2.706), o)k — the estimator of significance level for Kolmogorov-

type test (a =0.1, x%_,(1)=1.96).

Remark. The approximate confidence interval of estimator of significance level

(for Logrank-type test) with confidence level @ = 0.95 is a + 1.96 9—%,_—0‘2 =
[0.0917, 0.1083].
a= 3% — the non-centrality parameter for Logrank-type test.
PBr — the theoretical power of test for Logrank-type test:
* Tn 2 2
r=p(8") = P{(2) >R0)H
T, A
= P{F_ \/_ -vx2(1) - |H1}
T. A* A*
wo{l Y0 v - :/’_’IHI}
o o o
A* A*
" (—\/x?,(l) - —oﬁ) +1—<1>( 200 - 0:/’7)

BL — the estimator of the power of test for Logrank-type test.

,3}( — the estimator of the power of test for Kolmogorov-type test.

The first number in the cell is calculated when n = 400, the second number —
when n = 800. (The significance level a = 0.1.)

Table 3. The values of estimators of power of test (,H}, — for Logrank-type test,
Bk — for Kolmogorov-type test) for non-monotone stresses. Also are given values
of these estimators for the same stresses but in monotonous order. (a = 0.1, N =

5000, n = 400.)
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Table 1
v t ts ts [ 81" | to° o’ oz A*
040 | 18.0 | 576 | 134.0 | 0.4 | 4.0 || 0.05124 | 0.06078 | 0.03814
0.55 | 83.6 | 133.0 | 173.6 | 1.7 | 5.1 || 0.03057 | 0.03629 | 0.02241
0.60 | 117.0 | 169.0 | 204.0 | 2.4 | 5.4 || 0.02738 | 0.03162 | 0.01754
0.70 T 200.8 | 256.0 | 283.0 [ 4.0 | 5.9 || 0.02300 | 0.02466 | 0.00999
0.75 1 248.0 [ 305.0 | 329.0 | 4.9 | 6.0 || 0.02086 | 0.02167 | 0.00671
T.00 16 75 | 20.3 | 1.1 | 5.6 || 0.10520 | 0.10520 | 0.00000
1.80 4.0 9.5 157 1 2.8 1 6.5 || 0.10I00 | 0.09883 | -0.01803
2.30 5.0 10.4 15.0 [ 3.8 1 6.8 [| 0.09677 [ 0.09316 [ -0.02932
2.60 6.0 10.8 14.8 1 4.0 | 6.9 || 0.09366 [ 0.08905 [ -0.03452
3.00 70 | 11.0 | 147 [ 4.7 | 7.0 || 0.08948 [ 0.08361 | -0.03973
3.50 7.9 11.6 14.5 1 5.0 [ 7.0 ]| 0.08686 | 0.08037 | -0.04297
Table 2

vy (73 ok a Br AL Bk
0.40 0.0938 0.0848 3.0943 0.9264 ~0.9276 0.9150
0.1038 0.1006 4.3761 0.9968 0.9948 0.9948
0.95 0.0988 0.0858 2.3523 0.7604 0.7454 0.7076
0.1022 0.0902 3.3267 0.9537 0.9446 0.9270
0.60 0.1058 0.0908 1.9729 0.6286 0.6118 0.5698
0.1044 0.0934 2.7900 0.8739 0.8658 0.8318
0.70 0.0990 0.0830 1.2731 0.3568 0.3700 0.3272
0.0982 0.0836 1.8005 0.5621 0.5656 0.5098
0.75 0.1024 0.0854 0.9117 0.2369 0.2570 0.2204
0.0968 0.0900 1.2893 0.3627 0.3812 0.3384
1.00 0.0972 0.0910 0.0000 0.0999 0.0962 0.0910
0.0990 0.0862 0.0000 0.0999 0.1002 0.0952
~1.80 0.0964 0.0876 -1.1468 0.3118 0.2942 0.2558
0.1020 0.0928 -1.6218 0.4913 0.4846 0.4326
2.30 0.1068 0.0972 -1.9212 0.6089 0.6210 0.5460
0.0966 0.0908 -2.7169 0.8581 0.8652 0.8174
2.60 0.1040 0.0878 -2.3138 0.7482 0.7614 0.6840
0.1036 0.0940 -3.2721 0.9481 0.9594 0.9342
3.00 0.1038 0.0968 -2.7479 0.8649 0.8914 | 0.8326
0.0988 0.0928 -3.8861 0.9875 0.9930 0.9858
3.50 0.0956 0.0886 -3.0318 0.9173 0.9624 0.9386
0.0932 0.0944 -4.2877 0.9959 0.9996 0.9986

Table 3.

84 0 BL Bk
0.40 (5000, 100, 10) 0.9276 0.9150
0.40 (5000, 10, 100) 0.3496 0.5434
1.00 (15, 8, 20) 0.0958 0.0868
2.00 (15, 8, 20) 0.0790 0.2100
2.20 (15, 8, 20) 0.0724 0.3222
2.50 - (20, 15, 8) 0.3612 0.2984
2.50 (15, 20, 8) 0.2310 0.2292
2.50 (15, 8, 20) 0.0530 0.56328
3.00 (20, 15, 8) 0.5440 0.4884
3.00 (20, 8, 15) 0.5226 0.7190
3.00 (15, 8, 20) 0.0502 0.8110
3.00 (15, 20, 8) 0.3998 0.3652
3.20 (15, 8, 20) 0.0422 0.8734
3.50 (15, 8, 20) 0.0352 0.9222
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7.2. Conclusions

The results from Table 2 imply that under monotone step-stresses the power of both
tests increases when n increases or the parameter v goes away from 1.

If n = 400 then the tests separate the hypothesis Hy from the alternative H,
sufficiently well for v < 0.6 or v > 2.3. If n = 800 then the tests separate the
hypothesis Hy from the alternative H; sufficiently well for v < 0.7 or v > 1.8 (see
Figure 1).

The simulated values of the power of the Logrank-type test are close to the values
of the theoretical power calculated by numerical methods (see Figure 2).
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Fig. 1. The dependence of BL and Bk on 7. .
o — P, n=400; o — Pk, n=400
e — [, n=800; + - Bk, n=2800
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The logrank-type test was constructed for the monotone step-stresses. The results
from Table 3 show that it is possible to find such plan of experiment with non-
monotone stresses that Logrank-type test does not distinguish the hypothesis Hy
from the alternative and is even biased. The Kolmogorov-type test can be used
and for such stresses. It distinguishes well the hypothesis and the alternative. The
estimator of the power of the test increases when the parameter v goes away from 1
(see Figure 3).
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Fig. 2. The dependence of AL and fr on a.
o o — PBr,n=400; o — [, n=400
e — PBr,n=800; + — [, n=2800
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