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K Y B E R N E T I K A — V O L U M E SI ( 2 0 0 1 ) , NUMBER 5, P A G E S 5 8 5 - 6 0 3 

A NOTE ON THE RATE OF CONVERGENCE 
OF LOCAL POLYNOMIAL ESTIMATORS 
IN REGRESSION MODELS 

FRIEDRICH L I E S E AND I N G O S T E I N K E 

Local polynomials are used to construct estimators for the value m(xo) of the regression 
function m and the values of the derivatives D1m(xo) in a general class of nonparametric 
regression models. The covariables are allowed to be random or non-random. Only asymp­
totic conditions on the average distribution of the covariables are used as smoothness of 
the experimental design. This smoothness condition is discussed in detail. The optimal 
stochastic rate of convergence of the estimators is established. The results cover the special 
cases of regression models with i.i.d. errors and the case of observations at an equidistant 
lattice. 

1. INTRODUCTION 

In many statistical applications one is interested in the influence of a variable X, 
the independent variable, on the variable Y. The average effect on Y is given by the 
conditional expectation 

m(x)=E[Y\X = x]. (1) 

The aim is to estimate the regression function m using a sample of size n of inde­
pendent vectors (X^, Yi), i = 1 , . . . , n, which have the same regression function, i. e. 
it holds for i = 1 , . . . , n 

m(x)=E[Yi\Xi=x}. (2) 

As the (Xi,Yi) are not necessarily i.i.d. the conditional variance 

Vi(x)=V[Yi\Xi = x} (3) 

of Yi given Xi = x will depend on i. When we set Si = Yi — m(Xi) we get the 
traditional structure of a regression model 

Yi = m(Xi) + ei. (4) 
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It should be noted that in the model (4) the errors e\,... , en are not necessarily 
identically distributed. 

Sometimes the model (4) is specified by the assumption that the regression func­
tion m belongs to a family mg, 6 E O, parametrized by a finite dimensional param­
eter 6. Then model (4) is a nonlinear regression model. Otherwise, if m belongs to 
a class of functions restricted only by some smoothness conditions, the model (4) 
is called nonparametric. Up to this moment there are no special conditions on the 
joint distribution of Xi and Y* in the model (4). But in some situations it is useful 
to specify the conditional distribution of Y given X -= x. To this end let Qe,0 E R, 
be a family of distributions on the real line so that 

/ 
yQ {áy) = . (5) 

If Qm(xi) 1s the conditional distribution of Yj given Xi = xi then (2) is satisfied 
and the conditional variance appearing in (3) is independent of i. Using the family 
Qe,0 E R, for constructing the conditional distribution one obtains the regression 
model (4) with independent X{ and Si if QQ = Q(- — 0). The errors have expectation 
zero if Q does. 

In the literature there exist different approaches for estimating the regression 
function m for the nonparametric regression model. Nadaraya [11] and Watson [21] 
constructed a kernel estimator which assigns different weights to observations with 
the help of a kernel. A different type of kernel estimator was introduced by Gasser 
and Muller [5]. Other types of estimators are based on local polynomials introduced 
by Stone [17, 18] and studied by Fan [2, 3], Ruppert and Wand [14] and Fan et al 
[4]. Schoenberg [15] used smoothing splines for estimating the regression function 
m. This technique was also applied by Wahba [20] and several other authors. 

In regular statistical models finite dimensional parameters are estimable with 
the rate y/n. In contrast to this situation Stone [17] proved that the optimal rate 
of convergence is nr with r < \ for estimating the value m(xo) of the regression 
function at XQ. The exponent r depends on the smoothness of m and the dimension 
of the covariables. Fan [3] and Fan et al [4] established bounds for the maximal 
mean square error of local linear regression estimators. 

In the most papers cited above and the references therein the covariables are 
assumed to be identically distributed. This condition is often not fulfilled in appli­
cations. Especially the case of nonrandom covariables, in which the variables Xi 
have a delta distribution, is studied in relatively few papers, see for example Muller 
[9], Fan [3], Muller [10] and Park [12]. 

It is well known that in parametric regression models with nonrandom covariables 
beside other conditions the weak convergence of experimental design is enough to 
get the consistency and the asymptotic normality of least squares estimators. 

The aim of this paper is to introduce and to study conditions on the sequence 
of experimental designs for the nonparametric model so that large classes of models 
with non-identically distributed covariables and nonrandom covariables are covered 
by these assumptions in the sense that the optimal rates of convergence established 
for i.i.d. covariables continue to hold. This means that smoothness properties of the 
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sequence of experimental designs do not have influence on the rate of convergence. 
The crucial point is that in contrast to the parametric situation for nonparametric 
models in general the smoothness of experimental designs does have an influence on 
the rate of convergence. 

The paper is organized as follows. In the first part we introduce and calculate 
the local polynomial estimator. The next step is to establish a condition on the 
experimental designs and to discuss this condition from different points of view. We 
show that this smoothness condition can be understood as a weak convergence at 
a special rate. Especially we discuss the case of non-identically distributed random 
covariables which have Lebesgue densities and the other extreme case in which the 
covariables are nonrandom so that their distributions are delta distributions. 

In the next section we use the standard techniques for i.i.d. covariables to evaluate 
the expectation and the variance of the local polynomial estimator. This leads to 
a lower bound for the rate of convergence. Using a technique due to Hall [6] and a 
special class of regression models we construct an upper bound for the rate which 
is identical with the rate of the local polynomial estimator and therefore optimal. 
In Section 4 there are given several possible extensions of the results presented. 
Section 5 contains the proofs of the main results. 

2. LOCAL POLYNOMIAL ESTIMATOR 

For m from the model (1) we want to estimate the value of m or a higher order partial 
derivative of m at x = xo. To construct the estimator and to formulate the results 
we need some notations. Let A<s = {a = (a\,..., ad) GNd , |a | = a\ H 1- ad < 
s} be the set of all d-dimensional multi-indices up to order s. Furthermore, for 
a e Nd,x e Rd weset a\ = ai\...ad\ and xa =xai ...xad. By a kernel K we shall 
mean a measurable, nonnegative function K : Rd —> R with compact support. Using 
the kernel K we introduce the family Kh, h > 0, by 

*»<->-,?*(*)• <6) 

Denote for s > 0 by Cs(UXo) the set of all real-valued functions m which are 
defined in some open neighborhood UXo of xo and have continuous derivatives Dam 
up to the order s, i. e. the multi-indices a appearing in the derivative satisfy \a\ < s. 
C°(UXo) is the space of continuous functions. For m G Cs(UXo) we use the Taylor 
expansion 

m(x) = Y^ Dam(x0) ^ 1" °(\\x " xo\\S)-
. . &\ 
\a\<s 

As m(xo) is the conditional expectation of Y given X = xo it is plausible to 
estimate ra(xn) by an average of Y{ whose covariables belong to a neighborhood of 
XQ. We characterize this average by a quadratic criterion function. More precisely, 
set for the sequence of bandwidths hn I 0 

S(x0,b) = J2(yi - £ W a | ( * o - Xi)a)2Khn(xo - Xi) (7) 
i= l |a|<» 
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where b = (6 a) | a |< s and hn —•> 0. Define b n = (6n,a)|a|<s by the requirement 

b n G argmin S(x0,h). (8) 

Then 

mn„(x0) = ( - l )Mfc-M 7 ! &n,7 (9) 

is called the local polynomial estimator for D^m(xo). Note that representation (7) 
of the criterion function is a modification of that used in the literature. Our version 
simplifies the examination of the asymptotic behavior of the estimator. 

Ruppert and Wand [14] and Fan et al [4] considered a bandwidth matrix Hn 

instead of a universal bandwidth hn for all coordinates. But the corresponding 
different weighting of the directions may be included in the d-dimensional kernel K 
which is not assumed to be symmetric in our case. To give an explicit representation 
of b n we need some notation. Set Y n := (Yi , . . . , y n ) and introduce the (n x n) 
diagonal matrix Wn := dmg(Khn(xo — Xi) , . . . , Khn(xo - Xn)). Furthermore, let 
Cn := (hn

|a|(x0 - -Yi)a)i<i<n,|a|<s and denote by Bn the (\A<3\ x |.>4<s|) matrix 

Bn = CT
nWnCn = (ft-M-lfl JT(x0 - Xi)°+PKhn (xo - x A 

V »=i ' \<*\<I,\P\<* ( 1 0 ) 

As we will see later, under weak assumptions the random matrix ^Bn converges in 
probability to a regular matrix. Therefore, with a probability tending to one the 
random matrix Bn is regular. Therefore, 

hn = Bn
lClWnYn if Bn is regular (11) 

and any solution of (8) otherwise. Let e7 = ( 0 , . . . , 1,0,.. . , 0) G R'-4--*' where e7 is 
1 for the index 7 and 0 elsewhere and en>7 = (—l)'7 '7!/in '7 'e7. According to (9) we 
introduce the estimator for D1m(xo) by 

fhn,y(xo) = en > 7bn = e^7 JBn"1CjWnYn if Bn is regular. (12) 

To evaluate the conditional mean as well as the conditional variance of the estimator 
m n j 7 we have to study the asymptotic behavior of the random matrices ^Bn. To 
illustrate the technical difficulties with the sequence of experimental designs let us 
consider the expectation of ^Bn. To this end we denote by Px{ the distribution of 
Xi and set 

1 n 

»i = PXi, P n = - $ Z W - (13) 

1 = 1 

If /Jn has a Lebesgue density, say / n , then with Khn from (6) 

" \J h£wm '\a\<.,\e\<* 

= Mta+0K(t)fn(xo-hnt)dt\ 
\<*\<;\/3\<s 
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If in addition fn(xo) —> f(xo), as n —> oo, and the sequence / „ is equicontinuous at 
xo in the sense that 

lim lim sup | /n(x) - fn(
xo)\ = 0, (14) 

£+° n->°° \\x-x0\\<e 

then 

lim E-Bn = /(xo) ( f t<*+pK(t)dt] 
n^°° n \J '\a\<.,\0\<. 

This result explains that for getting the stochastic convergence of ^Bn we need 
conditions which guarantee that the sequence of distributions /Jn behaves locally 
around xo as a sequence of distributions which have equicontinuous Lebesgue densi­
ties. To formulate such conditions we need some notations. Let Ad be the Lebesgue 
measure on Rd and Q be a Borel set with \d(Q) > 0. Set for any compact set K 

\~2n(x0 + x + Q) 
An(Q,K,a) = sup 

xeк Ad(x0 + x + Q) — a 

and Qa = (—§, §] d . Now we require that there exists a real number, denoted by 
/(xo), so that for every fixed compact set K and every s > 0 

lim An(Qshn,hnK,f(xo))=0. (15) 
n—>oo 

Condition (15) means that uniformly with respect to small shifts from hnK the 
values of the two measure ~p,n and A<j are proportional on a sequence of shrinking 
sets XQ + hnQs and the limit of the ratio is scale invariant. 

Before giving consequences of property (15) we illustrate this condition by exam­
ples. 

E x a m p l e 1. Suppose that xo is fixed and there exists some open neighborhood of 
x 0, say UXo, so that distributions ~Jn have a Lebesgue-density in UXo. This means that 
there are nonnegative measurable functions fn so that for every Borel set B C UXo 

ßn(в)= I fn(x)dx. 
Jв 

Suppose limn_> 0 0 fn(xo) = f(xo) exists. If the sequence fn satisfies (14) then condi­
tion (15) is satisfied. 

To verify (15) let n be sufficiently large. Then 

&n(Qshn,hnK,f(x0)) = SUp -—— r- / (fn(x0 + X + t)-f(x0))dt 
x€hnK Ad(Qshn) jQ,hn 

< sup 
xЄx0+hnK 

* tn x / (U(x + t)- /„(*„)) dť 
Ad(QshJ jQ,hn 

+ \fn(x0) - f(Xo)\ 
< SUp \fn(x)~ fn(Xo)\ + \fn(xo)~ f(xo)\ 

\\x-x0\\<hn(sVď+D) 
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where D is the diameter of the compact set K. By assumption, the right-hand terms 
of the last inequality tend to zero. 

The next example concerns the case of nonrandom covariables. The distribution 
~pn is then discrete and concentrated on at most n points. 

Example 2. Let [0, l]d be the d-dimensional unit cube and kn <n natural numbers 
with kn —> oo as n -> oo. We decompose the unit cube into kd cubes with edge 
length l/kn. Let Xn = {xi> n , . . . , :rn,n} be a double array of points from [0, l]d and 
set 

i n 

i = i -

We call Xn l/kn—uniformly distributed iff n admits a representation 

n = lnkn + r n , 

with natural numbers Zn, 0 < rn < kd and rn = o(n) so that every cube from the 
decomposition contains at least ln and at most Zn(l + o(l)) points. 

Then for any xo G (0, l)d and a sequence hn > 0 with 

lim hnkn = oo, 
n—>oo 

condition (15) is satisfied with f(x0) = 1. 

Note that for limn_>0o-,n = oo we have ^ < -£• < p -> 0. For d = 1 and 

Xi,n G (^TT- £] we may take fcn = n. 
To verify (15) let xo G (0, l) r f, s > 0, K compact and fixed, and n> no such 

that x0 + Qshn + hnt C (0, l)d V t G if. Decompose [0, l ] d into cubes of edge length 
l/kn. Then any cube of edge length shn contains at least (shnkn — 2)d and at most 
(shnkn + 2)d of these cubes. Therefore, 

\dln / . . / . , ^ . , , .x ^ / . , , O\dln + o(l) (shnkn - 2)d- < fin(xo + Qshn + hnt) < (shnkn + 2)c 

n 
/ k — 

Consequently, with ^ -> 0 and - ^ = -̂ ---p-- -> 1, respectively, as n -> oo 

\ shnKnJ 
lnk

d ^ ЏП(XQ + Qshn + hnt) 

П "" Лd(_Гo + Qs/i,. + /inO 

< ťi+*y_______)*__,, 
\ shnknJ n 

and we have the assertion for n -> oo. 

For any w : Rd -> R let T-J/.n(x) = ^(f^) for /in > 0. Let Coo(-Rd) the family 
of all continuous functions on Rd with compact support. Now we show that the 
assumption (15) can be applied to integrals in the following sense. 
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Proposition 3. If the condition (15) is satisfied then 

lim [whn(x-xo)7in(dx) = f(xo)[w(t)dt V w G Coo(Kd). (16) 
n->oo J J 

Moreover, let Xi be independent r.v. with C(Xi) = jii and (16) hold. If w G Coo(^d), 
g is continuous at xo, and nhn —> oo then 

1 n f 
- J ] g(Xi)whn (xo - Xi) - t ^ g(x0)f(x0) / w(t) dt. (17) 

i = l 

For the proof see Section 5. 

To evaluate the rate of stochastic convergence of the local polynomial estimator 
mn>7 we study the conditional expectation and the conditional variances of m n / y 

given Xi,... , Xn. We need additional properties of the regression function m and 
the sequence of variance functions V{. Let xo 6 Kd be fixed and UXQ an open 
neighborhood of xo. We set for any function / : UXQ -> M 

\\f\\uXQ = sup \f(x)\. 0 xeuXQ 

For a sequence of distributions /i = (/ii, //2,. •.) and positive constants L, V > 0 let 
^ ( / i , L, V, 5,77), ry G (0,1], be the set of all distributions Pn of sequences ((X\, Yi), 
. . . , (-Kn,Fn)) consisting of independent vectors (Xi, Yi), . . . ,(Xn, Yn) so that the 
following conditions are satisfied: 

Pxi = V>u i = 1 , . . . ,n, (18) 

the regression function m in (2) is independent of i and for some open neighborhood 
UXQ of Xo it holds 

m € C£"([4 0 ) (19) 

that is m G C5(£/Xo) and all derivatives of order s fulfill a Holder condition of order 
n: 

\Dam(x) - Dam(y)\ 
sup — < L, a G .4<s, a = s. 

«.vec/«0 I k - y l l " 
«?-y 

For the conditional variances we suppose that 

Vi e C°(UX0), \\vi\\Uuo <V, i = l,...,n. (20) 
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Theorem 4. Assume condition (16) is satisfied for f(x0) > 0. If (2) and (18) to 

(20) are fulfilled and hn = cun~~2<*+T>)+d for any en > 0 then for every multi-index 7 

with |7J < s the estimator m U j 7 defined in (12) fulfills 

lim sup ( lim sup 
C-*oo V n->oo 

( , + T , - M ) 

sup P(n 2(-+i)+d \fhnn(x0) - D1m(x0)\ > C) 
PeVn(»9L9V9s9n) 

= 0. 

For the proof see Section 5. The statement of Theorem 4 means that the sequence 

n 2(-+i)+^ (m n , 7 (x 0 ) - -D7m(x0)) 

is stochastically bounded. Consequently, mnn(x0) tends at least with the stochastic 

order Op f n~ 2(*+^>+d J to D1m(x0) and this statement holds uniformly within the 

classes Vn(\i, L, V, s, 77). 

3. OPTIMAL CONVERGENCE RATE 

Now we ask whether the order in Theorem-4 is already the optimal order in the 
following sense. Let u : CSyV(UXo) -> E be a functional and introduce a functional 
K:Vn(n,L,V,s,r))->Rby 

к(P) = ш(m), (21) 

where m is from (2). 

Defin ition 5. A sequence of estimators Kn is called optimal for the problem of 
estimating the functional K, within the classes of distributions Vn(ii,L,V,s,TJ) if 
there is a sequence c n -» 0, n —> 00, so that 

limsup I limsup 
C-*oo V n->oo 

sup P ( c n | / c n - к ( P ) ) | > O ) 
PЄVn(џ,L,V,s,V) 

= 0, (22) 

and for any sequence dn > 0 with lim inf n_Kxi "̂- = 00 and any further estimator ren 

limsup [ limsup 
C->oo V n->oo 

sup P(dn\Kn - K(P))\ > C) 
Pevn(n,L,v,s,r,) 

> 0 . (23) 

The sequence c n is called the optimal order. If for the sequence c n there are two 
positive constants ct\, 012 such that for every n 

OL\ < cnn~r < CL<1 

then r is called the optimal rate. 
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In the sense of Definition 5 we can say that the optimal rate of the local poly­
nomial estimator is at most 2U+n\+d * ^° 6e* a general upper bound for estimating 
m^(xo) we start with ideas from Stone [17], Hall [6] and Donoho [1] and derive for 
special distributions P G Vn(/jL, L, V, s, 77) an explicit lower bound for the probability 
appearing in (23). As in the papers cited above the key role is played by suitably 
constructed tests and the relation of the corresponding error probabilities to the 
Hellinger integral of the distributions. 

Let (X, 21) be a measurable space, P, Q distributions on (X, 21) and A be a cr-finite 
dominating measure. Let / and g be the densities of P and Q, respectively, with 
respect to A. Then 

H(P,Q):= J vTJ/dA, (24) 

is called the affinity or the Hellinger integral of P and Q. H(P, Q) is independent of 
the choice of the dominating measure A. The functional H has been used in several 
papers, see Le Cam [7], Renyi [13], Liese and Vajda [8]. For many distributions 
the Hellinger integral can be explicitly evaluated. Denote by N(a,.) the normal 
distribution on the real line with expectation a and variance 1. A simple calculation 
shows 

g ( N ( Q l , - ) , N ( a 2 , - ) ) = e x p { - ( a i " 8

a 2 ) 2 } . (25) 

We get the Hellinger integral for product measures Pi x • • • x P m and Q\ x • • • x Qm 

from the definition of H: 
m 

H(P, x •. • x Pm,Q1 x . • • x Qm) = Y[H(PuQi). (26) 
z = l 

Furthermore, we get for any A G 21 and B == {/ > 0, g > 0} from Schwarz' inequality 

H(P,Q) = [ y/JHd\= [ y/ftedQ+[_ y/fifdP 
JB JAHB JAnB 

< y/P(A)Q(A) + y/P(A)Q(A) 

< 2(mzx{P(A),Q(A)})1/2. (27) 

Now we study a family Q of distributions Q defined on some measurable space, 
say (7^,9^). Assume K, : Q -> E is a real-valued functional which is to be estimated. 
For any estimator K : 11 -> R we introduce a test (p for H0 : Q\ versus hU : Q2 by 
setting 

ч> = 
i f | K - K ( Q i ) | < | / è - / c ( Q 2 ) | 

else. 

If (p = 1 then 

\к-<Qi)\ > 5 ( | Ä - K ( Q I ) | + | Ä - / C ( Q 2 ) | ) 

> \\<Qi) - к(Q2)\, 
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and for v? = 0 

l « - к ( Q 2 ) | > i | к ( Q i ) - / c ( Q 2 ) | . 

Applying the inequality (27) we get the following Lemma: 

L e m m a 6. For any real-valued functional K : Q -> E, any estimator K : 11 -> R 
and any Q i , Q 2 G Q it holds for A = §|*(Qi) - * ( Q 2 ) | 

max{Q2(|£ - K(Q2)\ > A),Qi(|ic - K ( Q I ) | > A)} > \H2(QUQ2). 

In the following we need a representation of Hellinger integrals of distributions on 
product spaces. Let K : 05 x X —> [0,1] be a stochastic kernel which operates from 
the measurable space (^,21) into the measurable space (y, 05). For a distribution P 
on (X, 21) we denote by K ® P the distribution on (X x y, 21 (8) 05) 

(K®P)(C)= ( ((Ic(x,y)K(dy,x)\ P(dx), CG 21® 05. 

Assume now we have two kernels K\,K2. Then we introduce the kernel if = 
K-f-r + If2) and note that Ki ® P <£ K ® P, i = 1,2. Furthermore, for every fixed 
xe X 

Ki(-,x) « X ( - , x ) 

and for a countably generated measurable space (y, 05) there are functions f\, f2 : 
X x y -> R measurable with respect to 21 (8) 05 so that for every x G X 

Ki(A,x)= I fi(x,y)K(dy,x). 
JA 

The last relation yields 

d(Ki ® P) 

d(K ® P) 

and 

= /< 

H(KX®P,K2®P) = f ^/Khd(K®P) 

= / ( / y/Mx,y)f2(x,y)K(dy,x)) P(dx) 

= J H(K1(;x),K2(-,x))P(dx). (28) 

Now we fix a function m : E* ->• E, m e C£"(E/Xo), and denote by N(a,-) 
the normal distribution. We set X = Rd, y = E and denote by 21 and 23 the 
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corresponding Borel cr-algebras. Now we fix functions mi,m2 E CSj^(UXo). Then 
-Kmi(*> -c) *•= N(mf(x), •) are stochastic kernels. We set for any /i = (/xi, //2, • • •) 

Pn,mi —JliKm^Hj), 

and obtain from (25), (26), (28), and Jensen's inequality 

H(Pn,mi,pn^) = n[/exp{- ( m i ( x ) ~ 8
m 2 ( a : ) ) 2 }^ (dx )] 

1=1 

> exp {"i / ( m i ( x ) - m 2 ( X ) ) 2 ' i n ( d x ) ř 

Thus we obtain from Lemma 6 with mi = mn and m,2 = 0 the following statement 
with notation (21) 

sup P n , m l\Qn - u(m)\ > -|-(m„) - CJ(0)| J > - exp j - ^ / mn(x)7Jn(dx) > • 

Proposition 7. Let (16) hold. There is a constant a > 0 such that for any sequence 
of estimators of the functional u : m i-> D7m(xo) 

( -H--1-M \ 1 f 2(H-77) + d ^ 

n 2(-+i)+d | S n - c j(m) | > C ) > - exp \ -aC -+i-hri V. 

Proof. Let K G C^,77(Rd) with compact support and set for some Co > 0 

hn = min \^l,con~~~+~~~ J , 

mn(x) = fcH-^^-Z^^, x G R d . 

Then, for sufficiently large n, mn e C ^ ( R d ) . Note that u(mn) = ^ " ' ^ ^ ( O ) 
and 

n J ml(x)jln(dx) = n h l ^ ^ J ^ ^ ^ j M d x ) 

= c 2 ( s + " ) + < , /(x 0 ) |K 2 (x )dx(H-o( l ) ) 
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n—>oo 

> lim inf 
n->oo 

596 F. LIESE AND I. STEINKE 

because of (16). If C = ^K^(0)co
+T1~hl > 0 then 

liminf sup Pn > m (Vi2<'+̂ )+<- \un - u(m)\ > c) 
n->°° meca

L^(uX0)
 v ' 

( *+v-\i\ \ 

n^°+*)+d\un-u(m)\ > C) 
»^X»„»nT ' 

linf sup P n , m f \un - u(m)\ > -\u(mn) - CJ(0)| J 
+°° mG{0,mn} \ * J 

' I exp | - i c ^ ) + d / ( x 0 ) J K\x) dx(l + o(l))} 

1 / 2C \ -+i-i7i r 0 

-ikum) /W/Jf(,)di 

which proves the statement. • 

Now we are ready to formulate the main result of this paper. 

T h e o r e m 8. If the experimental design satisfies condition (16) then the rate r = 
2U+n)+d IS *^e optimal rate for estimating the functional u : m H-> D7m(xo) and the 
classes of distributions Vn([i, L, V, 8, rj). The sequence of local polynomial estimators 
ran)7(xo) is optimal. 

P r o o f . We already know from Theorem 4 that the optimal rate, if there is any, is 
larger or equal to 2(s+n)+d an (* ^ e local polynomial estimators ran>7(rro) has at least 
this rate. Therefore, it remains to show that the order of convergence of any further 

^ ^ ' + T-.7 . 

estimator £ n , possibly different from ran>7(xo), is not larger than cn = n2(*+1)+d. 
Let dn > 0 be any sequence with dn/cn -+ oo. 

liminf sup P(dn\kn — K(P)\ > C) 
n->oo PeVn{fiyLiV,S}rj) 

> liminf sup P n , m (n*(+Zv&d \un - u(m)\ > C^-) 
n->°° mGC^(C/-0) \ dnJ 

> - exp | -a(Ce) ' + I - M J , 

for any positive e. Therefore, for any C > 0 

liminf sup P(dn\kn - K(P)\ >C)>-
n->oo peVn^LyySy1)) 4 

which proves that cn is the optimal convergence order. • 



A Note on the Rate of Convergence of Local Polynomial Estimators in Regression Models 5 9 7 

4. DISCUSSION 

Under relatively mild conditions we derived an optimal convergence rate for esti­
mating the 7th derivative of the regression function m. Our special emphasis was to 
consider general conditions on the covariables. The only conditions on the distribu­
tion of the independent (Xi, Y{) are the existence and smoothness of the first second 
moments, see (19) and (20), and (15). There are several possibilities to generalize 
the results presented here. 

Let w : Rd —> R be any function such that w is continuous on Sw — {x G 
Rd,w(x) / 0} and Sw is bounded. Then (15) implies 

lim / whn (x - x0)jin(dx) = f(x0) I w(t) dt. 
n->oo J J 

This statement is a generalization of Proposition 3 and allows the use of discontin­
uous kernels like K(t) = L_i ud(t) for constructing the local polynomial estimator 
in Theorem 4. 

Moreover, condition (15) can be considered as some local version of the weak 
convergence of distributions. To see this, note that (15) is equivalent to 

lim sup 
n-+ooyeK 

/ whn (x - x0 - hny)џn(dx) - f(x0) \ w(t) dt = 0 (29) 

for all w G C00(Rd) and all compact K cRd. On the other hand (15) implies (17) 
for any function g which is continuous at x0. Therefore ~pn converges locally to a 
distribution with a Lebesgue-density / that is continuous at x0. A special case for 
this situation was studied in Example 1. 

Up to this point we assumed that the Lebesgue-density / of the limit distribu­
tion is continuous at x0. This is not always fulfilled. In Example 2 the sequence 
~fin converges weakly to the uniform distribution on [0, l]d with the corresponding 
Lebesgue-Density f0(x) = l[0fl]d(x). If x0 belongs to the boundary of [0, l]d where 
/o is discontinuous it can be shown that there is no f(x0) which fulfills condition 
(15) for all compact sets K. On the other hand, f0 is continuous both on (0, l)d and 
outside [0, l]d. Therefore, to include boundary effects we have to generalize (15) in 
the following sense: 

Let C be the system of all Borel sets C G 93d so that 

lim l«C(-c) exists for every x G Rd. 
a—Kx) 

For C G C introduce the set 1(C) by 

1(C) = f x G Rd , lim laC(x) = l ) . 
I a->oo J 

Note that every cone C with vertex 0 belongs to C. In this case we have 1(C) = C. 
On the other hand, let C be any Borel set such that the origin 0 belongs to the 
interior of C. Then holds C G C and 1(C) = Rd. 
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Now we suppose a finite decomposition C of Rd into sets C G C. Denote by ar; 
the vector aC = (ac)cec G lRlcl. Now we set 

Д n(Q, .К' Jac) = sup J 2 
xЄK cec 

џn(xo + (x + Q) П C) Xd(xo + (ж + Q) П C) 
- a c Лd^xo + x + Q) Xd(xo + x + Q) 

This expression is identical with our original definition if C = {Rd} and ac = (a). 
Instead of (15) we now require that there is a vector fc(x0) such that for the sequence 
/in, hn —> 0, for every s > 0 and for every compact set K cRd 

lim &n{Qshn,hnKM*o)) = 0 (30) 
, n—>oo 

holds. In Example 1 we studied a situation where the Lebesgue-densities fn of /in 

converge locally to a density / that is continuous at x 0 . (30) corresponds to a local 
weak convergence to a limit measure with Lebesgue-density / which is for all C G C 
in a neighborhood of x 0 continuous on the interior of x 0 + C and fulfills 

fc(xo)= .lim f(x). 
xex0+c 

Put x0 = 0 in Example 2. Then (30) can be shown for C\ = [0, oo)d, C2 = Rd\Cu 

l(Ci) = d , 1(C2) = C 2 , / d ( 0 ) = 1, and / C a (0) = 0. 
Condition (16) was crucial in the proof of Theorem 4. Now condition (30) implies 

likewise 

lim I whn(x-xo)Tin(dx) = yy fc(xo) I w(t)dt Vw G C 0 0 ( E d ) . 
n-"coJ £tc Ji&) 

If ]CCec fc(xo) JifC) K(x)dx > 0 is satisfied then we get under assumption (30) 

being weaker then (15) the same optimal convergence rate, n 2(a+*»)+<*, for the local 
. polynomial regression estimator as in Theorem 4. 

Finally, it should be mentioned that for rj = 1 and v(x) = vi(x) a more explicit 
representation for the conditional expected value and variance of mn ,7(x0) can be 
derived: Let BK be defined as in (33), 

BK,= (fya+l3K2(y)dy) 
\J ' a€A<a,PeA<, 

and 
Ґ-1V+1 

MK{xo) = ( Y, D0m(xo)
{-^- fya+0K(y)dy) . 

Then by the same technique as in the proof of Theorem 4 we get 

E[m n , 7 (x 0 ) |Xi , • • • ,Xn) = m W ( - 0 ) + / . . ' ^ - ^ ' ( - l J ^ l T ^ B ^ M i c ^ o ) + oP(hs+1) 

V l f i i n ^ x o ) ! ^ , . . . , ^ ] = - j ^ W ^ e ^ . 
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In this case the optimal bandwidth hn = c(x0)n
 2(*+l)+d

 ? 

'v(x0) elBZlBK2B^1 

1*0) = ( 
f(x0)eTBJ<

1MK(xo)MK(xo)TB^eJ 

minimizes the asymptotic conditional mean square error and is optimal in this sense. 

5. PROOFS 

P r o o f o f P r o p o s i t i o n 3. Denote by Sw the support of w. For any e > 0 choose 
S = S(e) E (0,1) so that 

\w(x) - w(y)\ < £ for \\x - y\\ < VdS. 

Let Q = (— | , \]d. For any S > 0 we can find the smallest natural number N = N(S) 
and f i , . . . , < j v G K d s o thatjthe sets t\ + SQ,... ,t^ + SQ are disjoint and cover Sw. 
Note that there is a cube Q C Rd so that (j£.i(*i + *Q) Q 0 f o r e v e r y * e (°> -0-
Therefore, 

Lv / / v \ 
NSd = ] £ Ad(íi + SQ) = Xd | J ( t ť +SQ)\< Xd(Q) =: C 

Í = I \ť=i / 
(31) 

for any 5 G (0,1). Introduce the sets 

A. = xo + hnti + ShnQ 

which cover the support of Wh„(- - xo)- As w is continuous we find Uj.v. € A; so 
that 

r - N 

/ Whn(x - X0)Mn(da;) = 5ZtWA-(ti* ~ Xo)'Pn(Ai) 

and 

r f N 

/ w(y) dy = / Wfc. (a? - x0)Arf(dx) = ^u>/ . n (t>. - x0)Xd(Ai). 

Note that ||u. - v{|| < Vdhn6. Then 

/ whn (x - «o)Mn(da;) - /(-*>) I ™(f) d* 

s /(->Esh<^>-^°>K> 
i = i 

V^r . / " - " ^ M r f /(^o)Ad(Aj)-7In(A.) 

,Nєedud 

Sdhi 

< fíXo)ííls
dhd

n + WwWooNStAnióhnQ, hnSw, f(x0)). 
- v hi 
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The term on the right-hand side tends to zero by (31), by assumption (15), and for 
£ - > 0 . 

For g is continuous at xn and Sw compact we have 

un := sup \g(x) - g(x0)\ -> 0, n -> oo, (32) 
XEhnSu, 

and 

Eя„ 
1 n i n 

- J2Шi) - 9Ы)whn (x0 - XІ) < un- J2 EPn \whn (x0 - Xt)\ = o(l) 
7 1 • 1 1=1 

П ' 1 

г=l 

by the first part of Proposition 3. Moreover, we see that 

^t^-^i^t'r-^Azo-X^O^) 
1 = 1 n 2 = 1 n 

and therefore 

1 n f 
~ 5 Z Whn (xo ~ Xi) -rn_,oo f(x0) / w(y) dy. 

Hence we have the assertion. ' • 

P r o o f of T h e o r e m 4. For the fixed kernel K we set 

BK=([y^K(y)dy) (33) 
\J ' \<*\<8,\0\<8 

and study the sequence of matrices Bn introduced in (10). Note that the continuous 
function wa^(x) = xa+^K(x) has a compact support. From Proposition 3 we get 

;«. - ( ; t J 5 - - ( - ^ - 1 ) ) -fc- /<*)"*. <«> 
V i = l n / \a\<8t\0\<a 

П 

and 

- i 

G4 >Я„ /,/_лD_л--(/(z0)ВД* 

As the determinant of a matrix is a continuous function of the elements of the matrix 
and BK is positive definite we get for An = {det(Bn) = 0} the relation 

lim Pn(An) = 0. (35) 
n—>oo 

As for every Pn E Vn(^, L, V, s, rj) the marginal distributions of X\, X2,. . . are fixed 
by the sequence /ii, /i2> •.. we see that the stochastic convergence in (35) is uniform 
with respect to the classes Vn(ii,L,V,s,r\). 



A Note on the Rate of Convergence of Local Polynomial Estimators in Regression Models 601 

For sufficiently large n the inequality Khn{x~ - Xi) > 0 implies that X{ G UXo. 
Hence by Taylor expansion of m at xn for X{ G UXo 

m(Xi) = ~2 Dam(x0)
{Xi~*°)a + ~T (Dpm(X{) - Dpm(x0))

 { X i ' ^ \ 
\a\<s ./»!=« 

where Xi lies on the straight line between x0 and X{. This yields for Yn = 
(Yl,...,Yn) 

E[Yn \Xu...,Xn] = (m(Xi))i<i<„ = ClDn + Qn 

with Cn from (10), Dn = ( ( - l )H^o Q m(a;o)) | a |< . , andQn = (EW=s{
D0m(Xi)-

Dpm(xo)} ^X<Z*0' )i<i<„- As the matrix B„ is regular on An, the complement of 
An, we obtain 

~P« [m„,7(x0)|X1;...,Xn]IAn = el^B-'Cr.WnEiYn I xi, • • •,Xn]IAn 

= IAneltlB-lCnWn(ClDn + Qn) 

= Ltc D7m(:r0) + IMn e^B^C^WnQn-

For the a-component of the vector of the remainder terms we get 

-^\(CT
nWnQn)a\ 

1 (Tn — X)a+P 
= \-~Z ((D0m(Xi) - DMxo))(-l)s\*^+nKhn(xo - Xt)) 

< 

\f}\ = S aWhW+W+~ 

.Eí-^ад-ł) 
n \(3\=s a\ßW° |a|+s+»? 

mxo)ÍY, -^J \\y\\H+s+VK(y)áy 

uniformly in Pn G Vn(fi, L, V, s, rj). From (35) we get that for any sequence of random 
variables Zn it holds ZnIAn = opn(/in+??" '), which leads to the representation 

EPn[^n,7(^o)|-Yi,...,Xn] 

= DMxo) + h^el7(±Bn)-- f^^ClWnQ^j + oPn(hs
n^-^) 

= DJm(xo) + 0Pn(hs+r>-W) (36) 

which holds uniformly with respect to Pn G Tn(n,L,V,s,rj). To deal with the con­
ditional variance we set 

Vn = Vpn[Yn\Xn] = diag(v1(X1),...,vn(Xn)) 
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and get 

-Un VPn [ m ^ l x x ,...,Xn]=IAcn e^B-1 (C^W„Vn W .fO„)B-1en ,7 . 

Note that by the conditions (3) and (15) it holds for a,/3 G A<s 

^\{clwnvnwZcn)at0\ 

< - J2hn]a]-W\\x0 - XiWW+WiK2)^ - Xi) = OP„(1) 
^ -I t = l 

and therefore 

V P „ [ m n n \ X , , . . . , X n ] = 0Pn ( - 4 - j - j ) • (37) 

uniformly with respect to Pn E Vn(ii,L,V,s,vi). This gives an upper bound for the 
conditional mean square 

Ep„[(m„,7(x0) - o7m(x0))
2 \Xu...,Xn] 

= 0<•-(;^aW) + 0<•.W*+"-w,)• ^n/in 

Choosing hn = conl^2i<s+^+d\ c0 > 0, and cn = hn
{s+Ti~hl) we have uniformly 

with respect to Pn G ? n ( / i , L, V, s,77) 

Epn [cn(mn,7(x0) - D^m(xo))2 \Xu...,Xn] = 0Pn(\) 

and therefore 

lim lim sup Pn(cn\fhnn(xo) - rn(x0)| > C) =0 
C->oo n->oo pnGPn( /x,L,V,s,r7) 

which completes the proof. • 

(Received October 2, 2000.) 
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