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K Y B E R N E T I K A — VOLUME 37 ( 2 0 0 1 ) , NUMBER 1, P A G E S 1 0 3 - 1 0 8 

ON AN ESTIMATION PROBLEM FOR TYPE I 
CENSORED SPATIAL POISSON PROCESSES 

J AN H U R T 1 , P E T R LACHOUT2 AND DIETMAR PFEIFER 3 

In this paper we consider the problem of estimating the intensity of a spatial homo­
geneous Poisuon process if a part of the observations (quadrat counts) is censored. The 
actual problem has occurred during a court case when one of the authors was a referee for 
the defense. 

1. INTRODUCTION 

In this paper we consider a spatial homogeneous Poisson process £ with unknown 
intensity /i > 0 which is to be estimated by quadrat counts. However, not all of the 
information is present; rather, only those quadrats are counted for which the number 
of points does not exceed a fixed number K > 0. Such a situation actually arose 
when one of the authors was a referee for the defense in a recent court case. Toner 
dust particles produced by a copy machine were counted on a critical document 
by electron microscopy, but the intensity of the underlying Poisson process was 
estimated on the basis of type I censored quadrats only which did not contain more 
than K = 4 observed particles. (The non-mathematical reasoning of the laboratory 
for this kind of censoring was to exclude what they called "systematic errors".) Since 
the resulting underestimate for the intensity of the Poisson process was unfavorable 
for the accused, however, a "naive" bias correction for the estimate was suggested, 
which could be understood and accepted also by non-mathematically trained judges. 
In this paper, we want to show that this "naive" intensity estimator is related to 
the maximum-likelihood estimator for type I censored data, and investigate the 
asymptotic properties of these estimators. 

2. A "NAIVE" ESTIMATOR FOR TYPE I CENSORED DATA 

The original problem can be reformulated in mathematical terms as follows (see [1] 
or [3] for a survey on censorization): suppose X i , . . . , X n are independent Poisson 
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distributed random variables with parameter A > 0, distributed as X, corresponding 
to the counts f (-4i) , . . . , £(An) in disjoint quadrats A\,..., An of equal area 
A = fim(Ai), where m denotes Lebesgue measure. Observed are the couples (TVi, Ji), 
i = 1 , . . . ,n with Wi = min{XuK + 1} and U = l{Xi < K}. Let N = E H i 7*> 
S = Yl7=i hWi. Obviously, the estimator 

1 N' 
\oo, 

£ , / V > 0 
N = 0 (i. e. all observations are censored) 

for A which was used in the court case is biased, with 

K-l 
X i+í 

-—' l\ \K+1 XK+1 

E[Xi\X1<oo]=E[X\X<K] = ^ = A < A - - ^ - e _ A < A. 

i=0 i=0 

Let for abbreviation denote 

a(A, K) = E[X\X < K], 6(A, K) = E[X\X > K]. 

Then obviously, 
oo Xi 

T-
-̂ --/ i\ \K+i XK+1 

KA,AT) = A - i | ^ — = A+ ^—->x + -—e-^>\, 

i=K+l ' i=K+l ' 

and 

a(A, K) P(X <K) + b(A, K) P(X > K) = X. 

The "naive" estimator A2 under censoring is then given implicitly as solution of the 
equation 

S + (n-N)b(X,K) = A 

The idea behind the "naive" estimator is as follows: S gives the number of observed 
particles without censoring, and (n — N) &(A, K) is close to the expected value for 
the number of censored particles when A is known, so S + (n — N) b(X, K) is ap­
proximately equal to the total number of counted particles, say T, with T/n being 
the "classical" unbiased estimate for A. Note that in general, there is no explicit 
solution for A2; however, since b(X,K) is strictly increasing with A and convex with 
limA--4co&(A, IOM = 1> -imA->o b(X, K) = 0, there is always a unique positive so­
lution for A in case of N > 0, which can easily be calculated using e. g. computer 
algebra systems. For N = 0, i.e. all observations are censored, we put A2 = 00. In 

the case of toner dust particles, S = 159 uncensored particles were reported within 
N = 234 quadrats of 0.5 mm2 each, with a total number of n = 240 quadrats. From 
these figures, one obtains 

Ai = 0.679487, A2 = 0.791128 
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which means that A2 (and therefore possibly also A) is actually considerably larger 
than Ai. 

3. THE MAXIMUM-LIKELIHOOD APPROACH 

Let us first observe that for the joint distributions of Wi and if, we have in general 

(P(Xi=w) fOTW<K 
P(Wi=wJi = l) = I 

[ 0 otherwise, 

f P(Xi >K) for w = K + 1 
P(Wi = wJi = 0) = I 

y 0 otherwise. 

The frequency function f - i.e. the counting density - for each pair (Wi,Ii) is 
hence given by 

f(w,j) = [P\(Xi = w)]j[P\(Xi > K)l{w = K+1}]1~\ w = 0 , . . . , K + 1 , j e {0,1}, 

where PA denotes the underlying parametric probability measure. Given the ob­
servations Wi = Wi, Ii = ji, i = 1 , . . . ,n, the likelihood function L(A;w,j) with 
w = (w\,..., wn), j = (j\,..., jn) can hence be written as 

£(A;w,j) = Y[f(wiJi) = Y[[P\(Xi = Wi)]ji[P\(Xi>K)l{wi = K + l}]] 
l/TAv^i = ™i)\ L^M^í * nj±\wi = J\ -r i ; 1 

í=i i=i 

= 1[PX(XÍ = WÍ)Y[PX{XÍ>K) 
ie& ieRc 

or, in terms of random variables, 

L(\-W,I) =G(\,K)n-Ne~NX\s f j (TVi!)"1 

Wi<K 

with the index set & = {i\wi < K, i = l , . . . , n } = {i\ji = 1, i = l , . . . , n } , 
survival function G(\,K) = P\(X{ > K) and W = (Wu...,Wn), I = (Iu...,In). 
Note that Yl\Vi<K Wi = S and ^2Wi<K h = N. To maximize L, it thus suffices to 
maximize In L which is up to a term independent of A equal to 

V (A; W , I) = (n - N) In G(A, K) - NA + 5 In A, 

with 
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Here we have used the relationship 

G'(\, K) = G(\, K-D- G(\, K), i. e. f g ^ = ̂ ^ - 1. 

Equating the partial derivative of the log-likelihood function to zero hence gives the 
equivalent expression 

S + (n-N)b(\,K) _ 
n ~ A ' ( 2 ) 

which corresponds precisely to equation (1). The corresponding maximum-likelihood 
estimator is thus identical to the naive estimator above. 

4. ASYMPTOTIC PROPERTIES OF THE (NAIVE) ML-ESTIMATOR 

In this section we study the asymptotic distribution for the properly normalized 
estimator sequences obtained form equations (1) and (2). The argumentation here 
follows closely the general scheme introduced in [2]. Let 

K \i 
F(\,K) = P(Xi<K) = e~x_2^> 

3-
j=o J 

oo 

G(\,K) = P(X{>K) = l-F(\,K)=e-x __ ^ , 
j=K+l J ' 

Note that here II(A, 5, N) = ^-L*(A; W, I) is just the partial derivative of the log-
likelihood function above. Further, 

E(N) = nF(\,K), E(S)=n\F{\,K-l). 

For the sequel, let A0 denote the true underlying Poisson parameter. Then 

±E[H(\,S,N)] = G^°'^(F(\,K)-F(\,K-l))-(F(\0,K)-F(\0,K-l)), 

which is independent of n. Denote this expression as H*(A,Ao,K). In particular, 

E[H(\0, S, N)] = H*(\0, \o, K) = 0. 

By the SLLN, we also have 

lim -H(X,S,N)=H*(\,\0,K) a.s. 
n—»oo n 

Since the functions iJ(A, 5,IV) and H*(A, A0,-fO are decreasing and continuous in 
A with #*(A0, A0,If) = 0, we further have limn->oo A2 = A0 a.s., i.e. the (naive) 
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ML-estimator sequence is strongly consistent. Next, we see that H*(\,An,if) is 
differentiable w.r.t. A, giving 

9 fr*(\\ m X<>T?(\ K n (F^K"> ~ 2 F ( A ' ^ - -) + F(x>K ~ 2) • -H (X,Xo,K) = _ - F ( A 0 , R - l ) - ^ ^ - ^ + 

This allows for a stochastic expansion of H(\, 5, iV) as 
n 

H(X,S,N) = £ Y . + Zn(A) + n(A - A0) (iT*(A0,A0,K) + Bn(A)), 
i = l 

where 

v. - r • Wih , F ( A 0 , R ) - F ( A 0 , R - 1 ) , 1 

* " ~/i + "AT+ GlAoT^ u " Y i ) ' 
Z«(A) = ( l / A - l / A 0 ) ( 5 - n A 0 F ( A 0 , K - l ) ) + . . . 

i(F(X,K)-F(X,K-l) F(X0,K)-F(XQ,K-1)\( . 
+ l G(ATkl GTAoTtT) ) (n-N-nG(<Xo,K)), 

and Rn(A) -+ 0 for A -+ A0 a.s. Observe F(Y) = 0 and 

Var(Yi) = E(Y?) 

„ n r n , A 0 F(A 0 ,K - l ) + A2F(A0 ,K-2) 
Ao 

, ( F ( A 0 , K ) - F ( A 0 , R - 1 ) ) 2 ^ 2A0F(A0 ,R-1) 
+ G2(A0,K) G{Xo'K) X0 

= F(A0,R) + ( l / A 0 - 2 ) F ( A 0 , t f - l ) + F (A 0 ,R -2 ) + . . . 

Cr(A0,AJ 

From the CLT, we finally obtain 

(A) A 0. 
71—ЮO 

Hence, 

where 

1 £ y , -A^(0,Var(Y1))f -^Zn v n f-' n->oo v n 
v t = i 

4=èYi+4=z„(A) 
Vn(A2 - Ao) = ' = 1 . A N(0)(7

2) 
-" (Ao,A0, A ) + itn(A) n->oo 

ff2 = Var(Y0 
tf**(A0,A0,K)2 Var(Yi) 

(cf. equation (3)). 
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5. SIMULATION STUDIES 

The following table contains some results of simulation studies, which were per­

formed with a Poisson intensity of An = 0.8. 100 and 500 samples each of size 240 

were generated, with censoring at the level K = 4. The table contains the empirical 

quantities corresponding to the estimates A2. 

empirical sample size 100 sample size 500 
mean 0.800751 0.794921 

variance 0.00326 0.00344 
standard deviation 0.0571 0.0587 

skewness 0.1357 0.0941 

kuгtosis 2.472 2.901 
s. e. of sample mean 0.00571 0.00262 

median 0.794053 0.795833 
lst quartile 0.76487 0.7542 

Зrd quartile 0.84824 0.8357 
min 0.675 0.6167 
max 0.93823 0.9924 

Note that by relation (3), the corresponding asymptotic standard deviation s = 

ojyjn with n = 240 is here given by s = 0.057743 which is quite close to the 

observed standard deviations of 0.0571 and 0.0587, resp. On the basis of the normal 

approximation for the estimator A2 we thus obtain an asymptotic 95 % confidence 

interval for the true A0 in the initial example as 0.791128± 1.96*0.057743 or (0.6795, 

0.9043). Note that the lower interval value here is even larger than the originally 

used estimate Ai. 

(Received July 13, 2000.) 
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