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KYBERNETIKA — VOLUME 37 (2001), NUMBER 1, PAGES 21-37

SOLUTION SET IN A SPECIAL CASE
OF GENERALIZED NASH EQUILIBRIUM GAMES!

JOSEF CACH

A special class of generalized Nash equilibrium problems is studied. Both variational
and quasi-variational inequalities are used to derive some results concerning the structure
of the sets of equilibria. These results are applied to the Cournot oligopoly problem.

1. INTRODUCTION

In this paper we use first-order analysis to compute a generalized Nash equilibrium
(GNE) in a game. There does not exist any universal technique how to solve this
problem analytically. In addition, one cannot expect uniqueness of its solutions in
general. To obtain deeper analytic results we make use of a special structure of
constraints and utility functions of the game.

An economic background of equlibrium problems can be found in [1, 5, 9, 12,
15]. We refer to Harker [7] to learn-more information about history of formulation
of Nash and generalized Nash equilibria in the form of so-called variational (VI)
and quasi-variational inequalities (QVI) and about some basic results in this area.
Concerning the mathematical theory of VI and QVI, the reader is referred to [2, 4, 8,
10]. In the later works Outrata and Zowe [14] and Outrata, Ko¢vara and Zowe [13]
GNE is modeled via so-called mathematical program with equilibrium constraints
(MPEC) and in the latter work a corresponding mathematical theory about MPECs
is developed.

The aims of this paper are

(a) to analyze the structure of the solution set of generalized Nash equilibrium
problems under some special assumptions;

(b) to give an efficient algorithm for computing these special GNE;
(c) to apply obtained results to the Cournot oligopoly problem.

The outline of this paper is as follows. In the next section we introduce basic
definitions and results about variational and quasi-variational inequalities. The third
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Sciences of the Czech Republic.
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section is devoted to general Nash equilibria which have only one constraint “across
all players”. In Section 4 these results are extended to the case, where there exist
more “across all players” constraints, but each of them holds only for an isolated
group of players. Section 5 presents applications of previous results to the Cournot
oligopoly.

The following notation is employed: z; is the ith component of a vector z € R
and R} denotes the nonnegative orthant of R*. For a index set I C {1,... ,n}, zs
is a subvector of a vector z with components z;, i € I. For z, y € R* the inequality
z <y means z; < y;, forall i € {1,...,n}. For a convex set Il C R* and z € II,
Nn (z) is the normal cone to IT at z in the sense of convex analysis.

2. PRELIMINARIES

Consider a classical problem from the game theory:

Find y* € R® such that

y; € argmaxu; (yi,y*;) foralli€ {1,...,n};
a;i<yi<B; °

(2.1)

where y_; = (Y1, * » ¥i-1, Yi+1, " »Un)-
The function u; [R* — K] is the utility function of the ith player which is max-

imized subject to box constraints a; < y; < B; (y: is a strategy of ith player).
Solution y* of this problem is the so-called Nash equilibrium.
Let us denote by I the set of feasible strategies

''={yeR*|a<y<p}, (2.2)
where a = (al,...,an)T and 8 = (61, ...,ﬁn)T.
We pose now the following assumption about utilities:

(U1) the functions u; (-,y*;) are concave and differentiable for all i € {1,...,n}
and for all y* € T;

Then this problem can equivalently be replaced by a variational inequality (VI):

Find y* € I" such that

& 2.3
S Vi (u?) - (g —97) 20 forall y €T, 23)
i=1

with T given by (2.2).
A standard existence and uniqueness result concerning the VI above is stated in
the next lemma.

Lemma 2.1. Suppose that in VI (2.3) the feasible set I' is compact. Then this VI
has a solution. If, moreover, the Jacobian of the mapping F' defined by

F:y— (_Vyxul (¥), =Vy,u2 @)+, =V un (v))

is positive definite on the set I', then this solution is exactly one.
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Remark 1. From the preceding lemma it is clear that if condition (U1) holds,
then problem (2.1) has a solution.

Suppose further that there exists one constraint which concerns all single strate-
gies of the players, the so-called “across all players” constraint. Then we have the
following problem:

Find y* € R® such that
(S) y; € argmax u; (yi,y*;) forallie{l,...,n};
a; <y <B;

o(vivz;)2o

where g [R" — R] defines the above mentioned “across all players” constraint. Any
solution of this problem is entitled a generalized Nash equilibrium (GNE).
The set of feasible strategies I's, given by

Fs:={yeR"|g(y) <0;a<y<B}; (2.4)

is now a subset of set I" given by (2.2). Suppose in the sequel that I's is nonempty.
Further assume that assumption (U1) holds and pose the following assumption about
the constraint function g:

(C1) the functions g ( . ,yii) are convex or monotone and continuous for all i €
{1,...,n} and for all y* € I's .

Then this problem can equivalently be replaced by a quasi-variational inequality
(QVI):
Find y* € X[, K; (y*;) such that
n . . n . (2.5)
-21 —Vyui (y*) - (yi —y7) 20 forallye X Ki(y2,);
1=
where K; (y*;) = {z € R|as <z < Bi; g (2,4%;) <0}

Further equivalent reformulation of this problem which we will be using is the
so-called generalized equation (GE):

Find y* € R" such that

Vi u (v°) A (2.6)
Oe + NX?=1 Ki(y;) ",
_vyn Un (y‘)
where Nx-_._1 Ki(v2,) (y*) is the normal cone to the set X}_; K; (y*;) at y* in the
sense of convex analysis.

Now we state two results; the former concerns the existence of solutions to QVI
(2.5) and the latter concerns the relation between solutions of a special VI and QVI
(2.5).
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Lemma 2.2. Each solution of the VI of the type (2.3) with I" replaced by I's is a

solution of QVI (2.5). These solutions are termed normal equilibria (cf. Rosen [15]).
The converse is not true in general.

Suppose now that there exists more “across all players” constraints g; (y),...
. »gm (v). The set of feasible strategies is given by the formula

Fm:={yeR"|gj(y) <0forallje{l,... m};a<y<p}.

Lemma 2.3. Suppose that we have more “across all players” constraints. Let y*
be a solution of QVI (2.5) with K; (y*;) given by

Ki (y:;) = {IL‘ € Rlai S.’B Sﬂi; 9;j (xay:i) SOfOl’ a.ll] € {1’ ’m}})

and let y* satisfies condition

9; (¥*) <0 forallje{l,...,m}. (2.7)

Then y* is a solution of VI (2.3). Conversely, if a solution of VI (2.3) fulfills (2.7),
then it is also a solution of mentioned QVI.

Lemma 2.1 combined with Lemma 2.2 tell us that QVI (2.5) has always a solution.
Lemma 2.3 is a slight modification of Theorem 5 from [7] and implies that the
solution set of QVI (2.5) is composed from solutions to VI (2.3) which are inactive
to all “across all players” constraints and from solutions which are active to some
such a constraint. Let us call the last mentioned solutions, i.e. those in which the
inequality g; (y) < 0 becomes an equality for any j, active solutions of the QVI (2.5).

3. SINGLE-CONSTRAINT CASE

To find active solutions of a QVI is a difficult task, but in the case described below

this set can be suitably characterized. Before we state the next lemma, let us pose
another assumption about utilities :

(U2) Vyui(y) = fi(yi,g(y)) foralli € {1,... ,n} and for ally € I's, i.e. Vy,u;(y)
depends only on y; and g (y).

Theorem 3.1. Suppose that conditions (U1), (U2) and (C1) are satisfied, then the
set * of active solutions of the QVI (2.5) has the following form

gr ) oe| SO =0a<y S RaE NG k() 0)
=13Y

such that Vi € {1,...,n} onehas (y},0) € £ (a:) (3.1)
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Proof. The form of the set Q* follows immediately from the GE (2.6). Indeed,
we know from this GE that there exists a vector a € Ny AP (y*) such that

V!/l uy (y*)

Vyatn (¥7)

By virtue of condition (U2) and due to equality g (y*) = 0, this can be rewritten
to

fl (yI,O)

= a;

fn (5, 0)

which completes the proof. m|

Now let us consider the following assumption:

(U2’) ui(y) = fi(yi,g(y)) for all 2 € {1,...,n} and for all y € Tg, i.e. u;(y)
depends on y; and g (y).

This assumption is expressed in terms of utility functions instead of their gradients
like in the assumption (U2). The next lemma gives us the relation between (U2)
and (U2’) for some special cases of function g.

Lemma 3.2. Suppose that the constraint function g has the form g (y) = Y"1, gi (v:)-
Then (U2) can equivalently be replaced by (U2’). The same holds for the form
9() =Tz 9: (w3)-

Proof. Suppose that (U2’) holds. When computing the derivative of u;, one
gets

Vi (¥) = Vifi (Wi, 9 ) + Vafi (vi, 9 ¥) Vi 9i (vi) ,

where the symbol V f; (1, z2) means the partial derivative of the function f; (z1, z2)
subject to z; and analogously Vs f; (z1,z2) is partial derivative subject to zo . The
validity of (U2) is now easy to see.

Conversely, if (U2) holds, then

u; (y) = / Vyiui (y) dys = / fi (yi,gi )+ Y 9j (yj)) dy;.

J#i
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Let as describe the last indefinite integral as the function F, i. e.
ui(y) =F (yf, > g (Z/j)) =F (yi, —gi () + Y 9; (yj)) :
J#i J

The validity of the assumption (U2’) follows directly from this formula. The proof
for T, i (i) can be established in a similar manner. o

The solutions set 2* can be easily computed provided we add the following as-
sumptions:

(U3) fi(-,0) are strictly monotone for all i € {1,...,n};

(C2) g(-,y*;) are strictly monotone and continuous for all i € {1,...,n} and for
ally*eTls.

In this situation one gets from Theorem 3.1 a useful corollary.

Corollary 3.3. Suppose that the condition (U1), (U2), (U3) and (C2) are satisfied.
Then the set Q* of active solutions of the QVI (2.5) has the form

- 9@ =0y, e € [ah,...,n}\mﬂfl,...,n}\l—] )
=4Y
yi- € {71-}Uleg., B7.] (3.2)

with ao*, 8%, I*,~]. computed by the following algorithm:
Algorithm. Introduce the index sets

I’ . ={ie{l,...,n}|g(-,y-i) are increasing}

inc

If ={ie{1,...,n}|fi(-,0) are increasing},

inc

and further introduce IS, and I _ in an analogous manner. Set I* = 0. To obtain

0* let us perform the following steps for all i € {1,... ,n}.

Step 1: Compute the values a} = f; (a;,0) and b} = f; (8;,0);

Step 2: If a} and b} are both positive, then put

o3, 8] = lai, Bi] fori € I;

[ef,B;1=1[B:,8] forie Igec;
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Step 3: If a} and b} are both negative, then put
[a; B; ] = [a‘ual] forie mc;
[a:‘,ﬂ:] = [a,',ﬂ,'] for 1 GIgec;

Step 4: If min {a},b;} < 0 < max{a},b}}, i.e. there exists =} such that
fi (zF,0) = 0, then put

o5, 6] = [, 3] fori€ (IhN1T.);
[}, 67 = [25, 81 for i € (I N1,c)
YU lag, B] = (B} U e, 7] fori€ (I NIf.);
(U lag, 871 = {as} U e}, B forie (I .NIh,).
Ifiell , addito I*.

inc?

Proof. Suppose that y* € Q* (given by (3.1)). From the convex analysis we
know that Ny~ . (v2) (y*) = X?=1NK.'(y_‘_~) (yf). This implies that (y;,0) €

I (NK‘,(y. ) (y;‘)) foralli € {1,...,n}. We compute now the cones NK'_(y. ) (yF)-
Since '

Ki(y*;) = {z|a <z < Bi; g (z,9%;) <0}
={z|m <z < B 9(zv%) <g(vhhvty)},
one has
. {zlai <z < P52 <yf}=[ai,yf] if g(-,y-:)is increasing;
K' (y—i) =
[vi, Bi] if g(+,y-;)is decreasing.

Suppose now that i € I?

inc*

From the relation
[-00,0] whenz =1
Niyg () =40 wheny<z< 4§
[0,00] whenz=3§
we can deduce
[0,00] when a; <y}
N, (y,) W) = Njg, ) ) = {

R when o; = y;.
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Now, if the conditions of the second step of the algorithm hold, then (y},0) €
£ ([0, 00)) for all y} € [y, Bi), i-e. [af,Bf] = [ai, B:]- If the conditions of the third
step hold, then (y¥,0) ¢ f;* ([0, o)) for all y; € [a;, B;] but only for y; = e it holds
(@i, 0) € fr,—l (R)v Le. [a:aﬂ:] = [a‘i’ai]'

Finally, if the conditions of the fourth step hold, then
y! € [ai,z!] whenielIl

dec

y! €[z:,8:) wheniel

inc?

(yf,O) € fi—l ([0, 00]) for all {

and (;,0) € f;7* (R) in the case when i € bed

inc*

The proof for i € I3, can be performed in a similar way. a

Remark 2. In assumption (U3) we can suppose that the functions f;(y:,0) are
only monotone; nevertheless the structure of the solutions set 2* can again be de-
scribed analytically, but it is more complicated.

The description of the set * can be simplified under one additional assumption.
Before we state this result, let us introduce a more restrictive variant of assumption

(U3).
(U3") fi(-,0) are strictly decreasing for all i € {1,...,n}.

Corollary 3.4. Suppose that the assumptions (U1),(U2), (U3’) and (C2) are sat-
isfied. Consider the variational inequality:

Find 2* € T such that

n (3.3)
Y —fi(21,0)- (i - 2]) 20 forallyeT;
=1
with T" given by (2.2).

Then there exists just one solution 2* of the VI above and one can describe 2* via
z* in the following way:

. : 9@ =0 Syf <2} forie I
Q=0 (z ,g,a,ﬁ) =Jdy .
z; <y; <P forieIj, (3.4)

Furthermore, Q* is nonempty if and only if g (2*) > 0.

Proof. The Jacobian of the mapping F' : y = (=f1(¥1,0),... ,—fn (¥n,0))
from VI (3.3) is positive definite due to (U3’), which means (due to Lemma 2.1) that

there exists exactly one solution of the mentioned VI. VI (3.3) can be equivalently
rewritten

—fi(27,0) - (yi —2zf) >0 forall y; such that y e ,i € {1,... ,n};
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i.e., if a} and b} from Corollary 3.3 are both positive, then 2} = ;, if a} and b} are
both negative, then zf = a; and if there exists an z} such that f; (z},0) = 0, then
z; = z}. The form of Q* follows immediately from the algorithm.

From the relations which define 2* we infer that

9(z") 29 (alﬂm,ﬂlgu) .

This implies the second statement of this corollary due to the structure of the set
Q. ]

We illustrate now the above theory by a simple example.

Example 1. Consider the generalized Nash equilibrium problem from Harker [7],
where the utility functions and constraints are defined by

u1 (y1,92) = — (1) — Sy1y2 + 34ys;
uz (Y1,¥2) = — (y2)2 - %yxw + 94—7.1/2;
[1,61] = a2, 8] = [0,10];
9(y) =y1 +y2 - 15.

Then from the derivatives of functions u; and us given by
Vv (41,92) -2y — 3y, + 34

Vy2u2 (yl’y2) —2ys — ‘-E;-yl + 94_7

we can see, that they satisfy condition (U2) with f; and f2 given by

f1(y1,9 () 2y, —8g(y)—6
f2(y2,9 (%)) -3y -29()+ %

The Corollary 3.4 cannot be used because the function f; (:,0) is strictly increasing,
i.e. the condition (U3’) does not hold. The conditions (U1),(U3) and (C2) are
evidently satisfied; therefore we can use the algorithm from Corollary 3.3.

In its first step we compute

* __ . * __ 2,
a; = —6; 1= 3
*« __ 11, *
a; =3 2 =—2
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8t interior solution

Q
active solutions

R
|
NQ -
I
o

-

0 1 2 3 4 5 6 7 8 9 10
al=yl. al. ﬂlzﬂl.

The conditions of the second and the third step hold neither for ¢ = 1 nor for
i = 2 and in the fourth step we determine that

z1=9 z3=7%
[a1, 81] = [9,10];
[e3, 851 = [0, %]
Ir={1}; =0
Consequently, the solution set 2* (3.1) has in this case the form
yi+y;—15=0,0<y; < 3

= ('y;7 y;) = [(97 6) ’(10’5)];
9<y; <10o0r y;7 =0;
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i.e. the line segment which connects the points (9,6) and (10, 5).

However, there exists the solution y, = (5,9) of VI (2.3) defined by u;,us and
[a, B] which satisfies condition g (i) < 0. Due to Lemma 2.3 y},, is a generalized
Nash equilibrium too. The Jacobian of the mapping

F:y— (—Vylul (y) s _vy2u2 (y)) H

has the form

hence it is positive definite, which implies that this interior solution is exactly one
due to Lemma 2.1.

4. MULTI-CONSTRAINT CASE

Let us turn now our attention to the case, when there exist more “across all players”
constraints than only one, but each of them concerns only an isolated group of
players. Suppose that the whole set of players is decomposed in m disjoint sets, i.e.

I=1{1,... = I IL;NI;=0fori#gj;
{1, y,n} J.éJMJ iNI; =0 for i # j;

where M :={1,...,m}.
Define the mapping ind : {1,... ,n} = M such that

ind(i) =j ifandonlyifi€ I;.

Denote by y;; the subvector of a vector y with elements y;,i € I;. Due to above
mentioned structure it holds

9 (W) =95 (v1;) 5 (4.1)

for all j € M.
Now we can introduce the GNE problem:

Find y* € R® such that .
(MU) y; € argmax u; (yi,y%;) forallie{1,...,n}.

a;<y;<B;
9ind(s) (v;.v:‘,)so

Under assumptions (U1) and (C1) (for all functions g;) this problem can be replaced
by the QVI:

Find y* € X|_, K; (y*;) such that
n . (4.2)
D -Vyui(y*) (i —y!) 20 forally € XL, K; (y%,);

=1
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where K; (y*;) = {z |ai <z < Bi; Gind(i) (T9%;) <0}

In the next Lemma we specify a form of the subset of the solution set of QVI
(4.2). Before we state this Lemma suppose that the index set M is split into two
disjoint index sets K and L. At the rest of this section let us suppose, that the set
K contains such groups of players which have interior solutions and on the other
hand that L contains groups with active solutions. Define by I'k the set

FK = {ylx|aIK SZIIK Sﬂlx},

and the set I';, analogously.
Suppose that the conditions (U1) and (C1) (for all functions g;) hold in the rest of
this section and pose the further conditions:

(U2-M) Vyui(y) = fi %91 (Y),... ,9m (v)) for alli € {1,... ,n} and for all y € Ty,
i.e. Vy,u;(y) depends on y; and g; (y),j € {1,...,m};

(U3-M) the functions f; (-, gk (y*),0L) are strictly decreasing for all i € {I;|j € L}
and for all y* € I'k;

(C2-M) the functions g; (',yii) are strictly monotone for all j € L, for all < € I; and
for all y* € T'y;

(POS) the Jacobian of the mapping

F:yne = (=fi (vi,9x (y),01) i € Ik )
is positive definite for all yr,, € Tk;

Consider further the variational inequality:

Find z* € I'x such that

(4.3)
> —fi(z, 9k (27),00) - (yi —2f) >0 forally € Tk;

i€lk

This VI has due to positive definitness assumption (POS) and due to Lemma 2.1
exactly one solution. Let us denote it by yj, .
Now consider another variational inequality

Find 2* € 'y, such that

Z —fi(2f,9x (1) 01) - (vi—2) >0 forallyeTy;
i€l

(4.4)

where yj_ is a solution of the previous VI (4.3).
This VI has again exactly one solution due to assumption (U3’-M) which implies
positive definitness of its mapping —f (v, 9x (¥, ) ,0L). Let us denote it by y7, -
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Lemma 4.1. Denote by 0}, the set of solutions y of the QVI (4.2) which satisfy
the conditions

g(y) < 0 forallkeK; (4.5)
a(y) = 0 forallle L. (4.6)

Then under conditions (U2-M), (U3-M), (C2-M) and (POS) Q} is nonempty if
and only if

9 (v,) < 0 forallkeK; (4.7)
ot (vi,) > 0 forallleL. (4.8)

The form of Q is
Ok = {y|vrx =i y1, € (v7,,91,00,8) for L€ L}; (4.9)

where the sets * (y}’l, g, oy, ﬂl) are defined by (3.4).

Proof. If we suppose that (4.6) holds for a solution of the QVI (4.2) , then we
can substitute g, in place of gz, (y) in each f; (vi, 9k (), 9L (v)). Now if we consider
strategies from the subvector yr, of y , then by (U2-M) and (4.1) derivatives of their
utility functions Vy, uk (y) = fr (yx, 9% (¥),0L), k € Ik, do not depend on strategies
from the subvector y;, . The same holds for their constraints gx (¥) = gk (Y1), i- €.,
we can solve separately that part of QVI (4.2) which correspond to subvector yp, .
Due to (4.5) and Lemma 2.3 it suffices to solve VI (4.3) to obtain solutions of the
reduced QVI, but VI (4.3) has exactly one solution yj, due to the assumptions
imposed.

If we substitute gk (y], ) instead of gk () in Vyu (y) = fi (W,9x (¥),9L (%)),
l € I, we can solve separately that part of QVI (4.2) corresponding to the subvector
y1,, where | € L is arbitrary. We are thus able to compute the active optimal
subvector of strategies of the Ith group of players. In addition, the assumptions
of Corollary 3.4 are satisfied for each such a subproblem due to conditions (U2-
M), (U3-M) and (C2-M). The rest follows easily from this corollary and from the
nonnegativity condition (4.6). O

The preceding lemma, informs us, how to find the subset % of the solution set
of the QVI (4.2). The whole set 0 of solutions to this QVI can be obtained via
determining each Q%, K C {1,... ,m}, i.e,

= U o (4.10)
Kc{1,...,m}

Unfortunately, the total number of all subsets of the set {1,...,m} is 2™ and for
each such a subset we have to solve one or two variational inequalities. All in all
we have to solve approximately 2™+! problems to obtain the whole set Qf,. This
is numerically impossible provided the number of constraints g; is too large. The
preceding result can be applied, however, when we want to know, if some groups of
players have active constraints g; in contrast to others groups of players.



34 J. CACH

5. COURNOT OLIGOPOLY MODEL EXAMPLE AND GNE

Let us apply the principle from the preceding section to the Cournot oligopoly
model. In this model each firm ¢ € {1,...,n} furnishes a quantity y; to a common
market. Firm i incurs cost ff (y;) and obtains revenues y;-p (Y"i-; ¥i)- The function
p:int Ry — int R, is usually called the inverse demand curve. The utility functions
ui, 1 € {1,...,n} are given by formula

ui (y) =vi - (Z y.) £5 (9:)- (5.1)

Consider now the GNE problem (MU) from the beginning of the preceding section
with utility functions (5.1), with [a;, 8;] C int Ry and with constraints g; of the form

gj(y)=Zy,-—P,- forall je M ={1,...,m}; (5.2)
iel;
where P; > 0 for all j € M.
These constraints are the joint upper production bounds for isolated groups of firms
(for example for firms in different countries) which operate, however, on a common
market.
Assume that the following conditions from [11] hold:
(O1) ff are convex and twice continuously differentiable for all 7 € {1,... ,n};
(02) p is strictly convex and twice continuously differentiable on int R, ;
(03) t-p(t) is a concave function of ¢.

In the next lemma we show that these assumptions imply the assumptions of Lemma 4.1
for our Cournot oligopoly model.

Lemma 5.1. Suppose that conditions (01), (02) and (O3) hold in the Cournot
oligopoly model with g; given by (5.2). Then conditions (U2-M), (U3'-M), (C2-M)
and (POS) are satisfied for arbitrary subsets K and L of the set M.

Proof. Condition (C2-M) is fulfilled obiously. Condition (POS) holds due to
Lemma 12.2 from [13]. It remains to prove (U2-M) and (U3’-M).
From (5.1) we compute

Vyui (y) = 4:Vp (Z y.) +p (Z yz) - V£ (:);

=1

i.e. the functions f; from (U2-M) have forms

fii91 (®)5-.. ,9m ()

= uVp (Zyg (y)+ZP) +p (Zyz (y)+ZP) - Vf ().

j=1 Jj=1
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Hence, (U2-M) is fulfilled.
The function —V f{ (y;) is decreasing due to (O1) and if we show, that

Vp (Zgj (y)+ZPj) <0
j=1

=1

then (U3’-M) evidently holds.
From (03) we can derive

V2(t-p(t) =2Vp(t)+tVp(t) < 0;

i.e.
2Vp (t) < —tV2p(t).

The right-hand side is, however, negative because V2p (t) > 0 due to (02) and t > 0

because t = Y_ y; in our case. This completes the proof. ]

i=1

Let us illustrate the essence of the preceding lemma on a simple example.

Example 2. Suppose that four firms are acting on the market and incur the
following production costs

ff) =%v; 5 ) = 5592
I35 (y3) = %ya; f§ (ya) = 75_21/4;

and the inverse demand curve is given by
p(T)=T7"
Further, the box constraints have the form

[ahﬂl] = [0, 6]1 [C!g,ﬂg] = [Ov 6];
[a3,8s] =0,5]; (o4, B4] = [0,3].

There are two groups of firms, the first one is composed from the firms 1 and 2 and
the second one from the firms 3 and 4. The constraints g; have the form

9 (¥, ¥2) =1 +y2—10; g2 (¥3,y4) = y3 +ys — 5.
IfK = {1,2} and L = §), then y;K = (3.8792,2.8212, 3.8792,1.7633) and
92 (v},) = 3.8792+ 1.7633 — 5 = 0.6425 > 0;

i.e. condition (4.7) does not hold.
If K = 0 and L = {1,2}, then yj, = (2.5,0.9375,2.5,0) and

91 (v},) = 2.5+ 0.9375 — 10 = —6.5625 < 0;
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i.e. condition (4.8) does not hold.
If K = {2} and L = {1}, then yj,_ = (3.2211,0.5769), y7, = (3.2211,1.8989) and

g1 (v},) = 3.2211 + 1.8989 — 10 = —4.8800 < 0;

i.e. condition (4.8) does not hold.

If K = {1} and L = {2}, then yj,_ = (4,3), yj, = (4,2) and both conditions (4.7)
and (4.8) hold, i.e. the whole set (2, of the GNE in this Cournot oligopoly example
has the form

0, =97y = (4,3,(63,2),4, 1)
due to (4.9).

6. CONCLUDING REMARKS

In the single-constraint case it is easy to compute the solution set. Under assump-
tions of Corollary 3.4 we have to solve two separate VI ((2.3) to obtain interior
solution and (3.3) to obtain active solutions). If we suppose further that the func-
tions f; (s, -) are increasing for all ¢ € {1,... ,n} and that the functions g (-,y—;)
are decreasing for all ¢ € {1,...,n} then the solution set of the QVI (2.5) is com-
posed either from the interior solution generated by the VI (2.3) or from the active
solutions generated by the VI (3.3). Indeed, suppose that there exists a solution
y* of the VI (2.3) such that g (y*) < 0 and a solution 2* of the VI (3.3) such that
0 < g(2*). It is easy to deduce from (2.3), (U2) and (3.3), that

(fi (yrag(y*)) - fi (2:,0)) ) (y: —2:) 2 0 forallie {1, )n}'
6.1)

If we suppose, that there exists ¢ such that y} > z}, then from (6.1) we deduce
that f; (yf,9 (v*)) > fi(2],0), but it contradicts the assumptions that the function
fi (+,0) is strictly decreasing and f; (y;, -) is increasing. Thus y} < 2z} for all ¢ €
{1,...,n}, which means that g(y*) > g(z*) by virtue of the assumption, that
the functions g (-,y—;) are decreasing. This, however, contradicts the assumption
9(y") <0<g(2").

From the above discussion we come to the conclusion that it is possible to simplify
the description of the solution set under some additional assumptions imposed on
the functions u; and g in the single-constraint case. It is possible that a similar

substantial simplification of the problem occurs also in the multi-constraints case.
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