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SOLUTION SET IN A SPECIAL CASE 
OF GENERALIZED NASH EQUILIBRIUM GAMES1 

JOSEF CACH 

A special class of generalized Nash equilibrium problems is studied. Both variational 
and quasi-variational inequalities are used to derive some results concerning the structure 
of the sets of equilibria. These results are applied to the Cournot oligopoly problem. 

1. INTRODUCTION 

In this paper we use first-order analysis to compute a generalized Nash equilibrium 
(GNE) in a game. There does not exist any universal technique how to solve this 
problem analytically. In addition, one cannot expect uniqueness of its solutions in 
general. To obtain deeper analytic results we make use of a special structure of 
constraints and utility functions of the game. 

An economic background of equlibrium problems can be found in [1, 5, 9, 12, 
15]. We refer to Harker [7] to learn more information about history of formulation 
of Nash and generalized Nash equilibria in the form of so-called variational (VI) 
and quasi-variational inequalities (QVI) and about some basic results in this area. 
Concerning the mathematical theory of VI and QVI, the reader is referred to [2, 4, 8, 
10]. In the later works Outrata and Zowe [14] and O-utrata, Kocvara and Zowe [13] 
GNE is modeled via so-called mathematical program with equilibrium constraints 
(MPEC) and in the latter work a corresponding mathematical theory about MPECs 
is developed. 

The aims of this paper are 

(a) to analyze the structure of the solution set of generalized Nash equilibrium 
problems under some special assumptions; 

(b) to give an efficient algorithm for computing these special GNE; 

(c) to apply obtained results to the Cournot oligopoly problem. 

The outline of this paper is as follows. In the next section we introduce basic 
definitions and results about variational and quasi-variational inequalities. The third 

xThis research has been partially supported by the grant No. A1075005 from the Academy of 
Sciences of the Czech Republic. 
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section is devoted to general Nash equilibria which have only one constraint "across 
all players". In Section 4 these results are extended to the case, where there exist 
more "across all players" constraints, but each of them holds only for an isolated 
group of players. Section 5 presents applications of previous results to the Cournot 
oligopoly. 

The following notation is employed: Xi is the ith component of a vector i G l n 

and Rn denotes the nonnegative orthant of Rn . For a index set I C { 1 , . . . , n} , xj 
is a subvector of a vector x with components Xi, i G I. For x, y G Rn the inequality 
x < y means Xi < yi, for all i G { 1 , . . . , n } . For a convex set II C Rn and x G II, 
Nn (x) is the normal cone to II at x in the sense of convex analysis. 

2. PRELIMINARIES 

Consider a classical problem from the game theory: 

Find y* G Rn such that 

y* G argmax Ui(yi,y*_i) for a l i i G { 1 , . . . , n } ; t2 '1) 
<xi<yi<Pi ' 

where j/_i = (j/i,--- ,l/i-i,y»+i,• • • ,2/n). 
The function Ui [Rn -» R] is the utility function of the ith player which is max­

imized subject to box constraints «i < j/i < Pi (j/i is a strategy of ith player). 
Solution y* of this problem is the so-called Nash equilibrium. 

Let us denote by T the set of feasible strategies 

r : = { y G R n | a < 2 / < / 3 } , (2.2) 

where a = ( a i , . . . , an)
T and /? = (f t , . . . , /3n) . 

We pose now the following assumption about utilities: 

(Ul) the functions Ui (• - y l j are concave and differentiate for all i G { 1 , . . . ,n} 
and for all y* G T; 

Then this problem can equivalently be replaced by a variational inequality (VI): 

Find y* G T such that 

E - V y ^ i (y*) • (Vi - y*) > 0 for all yeT; 
i = l 

with T given by (2.2). 
A standard existence and uniqueness result concerning the VI above is stated in 

the next lemma. 

L e m m a 2 .1 . Suppose that in VI (2.3) the feasible set T is compact. Then this VI 
has a solution. If, moreover, the Jacobian of the mapping F defined by 

F : y -> ( - V y i u i (y), - V y 2 u 2 (y),... , - V y n u n (y)) 

is positive definite on the set T, then this solution is exactly one. 
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R e m a r k 1. Prom the preceding lemma it is clear that if condition (Ul) holds, 
then problem (2.1) has a solution. 

Suppose further that there exists one constraint which concerns all single strate­
gies of the players, the so-called "across all players" constraint. Then we have the 
following problem: 

Find y* G W1 such that 

(S) y* G argmax u{ (yu y*_{) for all i G { 1 , . . . , n} ; 
<*i<vi<0i 

«(vi.ylJ<o 

where g [W1 —> E] defines the above mentioned "across all players" constraint. Any 
solution of this problem is entitled a generalized Nash equilibrium (GNE). 

The set of feasible strategies Ts, given by 

r 5 := {y G Rn \g (y) < 0; a < y < p }; (2.4) 

is now a subset of set T given by (2.2). Suppose in the sequel that Ts is nonempty. 
Further assume that assumption (Ul) holds and pose the following assumption about 
the constraint function g: 

(CI) the functions g(-,y*_i) are convex or monotone and continuous for all i G 
{ 1 , . . . , n} and for all y* G Ts . 

Then this problem can equivalently be replaced by a quasi-variational inequality 
(QVI): 

Find y* € X" = 1 K{ (y*_i) such that 

E - V y i « . (y*) • (Vi - y*) > 0 for all y € X t i Ki [vU)', ^ 
i=l 

where K{ (y*_^) = {x G R\ai < x < A; g (x,yli) < 0} ' . 

Further equivalent reformulation of this problem which we will be using is the 
so-called generalized equation (GE): 

Find y* G W1 such that 

0 Є 

- V ÿ l u i (y*) 

-V У П ІІ„(ÎЛ) 

(2-6) 

+ N*?=гMv-i)
ІУ*)> 

where -Vx ? K(V* ) (v*) IS ^ e normal cone to the set X i = 1 Ki (y*Li) at y* in the 

sense of convex analysis. 

Now we state two results; the former concerns the existence of solutions to QVI 
(2.5) and the latter concerns the relation between solutions of a special VI and QVI 
(2.5). 
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L e m m a 2.2. Each solution of the VI of the type (2.3) with T replaced by Ts is a 
solution of QVI (2.5). These solutions are termed normal equilibria (cf. Rosen [15]). 
The converse is not true in general. 

Suppose now that there exists more "across all players" constraints <ji (y),... 
• • • >0m (y)- The set of feasible strategies is given by the formula 

T M := {y € Rn | gj (y) < 0 for all j G { 1 , . . . , m} ; a < y < /J } . 

Lemma 2 .3 . Suppose that we have more "across all players" constraints. Let y* 
be a solution of QVI (2.5) with Ki (yl{) given by 

Ki (ylt) = {x£R\ai<x<fc 9i (x-yV) < 0 for all j G { 1 , . . . ,m} } ; 

and let y* satisfies condition 

9i (y*) < 0 for all j G { 1 , . . . ,m} . (2.7) 

Then y* is a solution of VI (2.3). Conversely, if a solution of VI (2.3) fulfills (2.7), 
then it is also a solution of mentioned QVI. 

Lemma 2.1 combined with Lemma 2.2 tell us that QVI (2.5) has always a solution. 
Lemma 2.3 is a slight modification of Theorem 5 from [7] and implies that the 
solution set of QVI (2.5) is composed from solutions to VI (2.3) which are inactive 
to all "across all players" constraints and from solutions which are active to some 
such a constraint. Let us call the last mentioned solutions, i. e. those in which the 
inequality gj (y) < 0 becomes an equality for any j , active solutions of the QVI (2.5). 

3. SINGLE-CONSTRAINT CASE 

To find active solutions of a QVI is a difficult task, but in the case described below 
this set can be suitably characterized. Before we state the next lemma, let us pose 
another assumption about utilities : 

(U2) VyiUi (y) = fi (yug (y)) for all t G { 1 , . . . ,n} and for all y G T5 , i.e. VyiUi (y) 
depends only on yi and g (y). 

T h e o r e m 3 .1 . Suppose that conditions (Ul), (U2) and (CI) are satisfied, then the 
set fi* of active solutions of the QVI (2.5) has the following form 

ÍГ 
g(y*) = 0; a < y* < (3; 3 a G Nxr^K.^v) (v*) 

such that Vi € ( 1 , . . . ,n} one has (y*,0) G /f1 (a.) I (3.1) 
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P r o o f . The form of the set Q* follows immediately from the GE (2.6). Indeed, 
we know from this GE that there exists a vector a G 1VX?_ KAy*.) (v*) s u c ' 1 ^ a t 

yynun(y*), 

= а. 

By virtue of condition (U2) and due to equality g (y*) = 0, this can be rewritten 

to 

Л(VÎ,0) 

= a; 

fn(y*n,o)\ 

which completes the proof. • 

Now let us consider the following assumption: 

(U2') Ui(y) = fi(yug(y)) for all i G { 1 , . . . ,n} and for all y G T5 , i.e. u{(y) 
depends on yi and g (y). 

This assumption is expressed in terms of utility functions instead of their gradients 
like in the assumption (U2). The next lemma gives us the relation between (U2) 
and (U2') for some special cases of function g. 

L e m m a 3.2. Suppose that the constraint function g has the form g (y) = Y^Ji=i 9i (yi)-
Then (U2) can equivalently be replaced by (U2'). The same holds for the form 
9(y) = Yl?=i9i(yi)-

P r o o f . Suppose that (U2') holds. When computing the derivative of iti, one 
gets 

Vifctii (y) = Vi / i (yug(y)) + V2 / i (yug(y)) ^yigi (yi), 

where the symbol V i / i (xi,X2) means the partial derivative of the function / i (xi,X2) 
subject to x\ and analogously V2A (x\>X2) is partial derivative subject to x<i . The 
validity of (U2) is now easy to see. 

Conversely, if (U2) holds, then 

i (y) = / Vy.Ui (y) dy{ = / U I yugi (y{) + ^9j (Vj) J dyf. u 
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Let as describe the last indefinite integral as the function F, i. e. 

ui(y) = F (vuY^9i(vi) J = F I vu-9i(v%) + Yl9i(w) 

The validity of the assumption (U2') follows directly from this formula. The proof 
f°r nr=i 9i (Vi) c a n he established in a similar manner. • 

The solutions set fi* can be easily computed provided we add the following as­
sumptions: 

(U3) fi (-, 0) are strictly monotone for all i G {1 , . . . , n}; 

(C2) g (• ,y*_.j) are strictly monotone and continuous for all i G {1 , . . . ,n} and for 
all y* G T s . 

In this situation one gets from Theorem 3.1 a useful corollary. 

Corollary 3.3. Suppose that the condition (Ul), (U2), (U3) and (C2) are satisfied. 
Then the set fi* of active solutions of the QVI (2.5) has the form 

ÍГ = I 
9(y*) =0; y{i,...,n}\I* e [a{i,...,n}\I^/3{i,...,„}\/*] , 

V/. €{7/.}U[aJ.,i0M J (3.2) 

with a*,/3*,/*,7j. computed by the following algorithm: 

Algorithm. Introduce the index sets 

J/nc = {* G i1i • • • >n) 19 (• > y-i) are increasing } 

LL = {* e i1'-- in}l/<(-»0) are increasing}, 

and further introduce I%ec and l£ec in an analogous manner. Set /* = 0. To obtain 
f)* let us perform the following steps for all i G {1 , . . . ,n}. 

Step J: Compute the values a* = fi (a.j,0) and 6* = /»(A,0); 

Step 2: If a* and 6* are both positive, then put 

k-,#] = K/3.] forte/L; 

W,/a?l--W.,Al for*e^ec; 
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Step 3: If a* and 6? axe both negative, then put 

[aJ,/3;] = K o i ] for.e/L; 

[«*,#] = [«.,&] for .G/d
s

ec; 

Step 4: If min{a*,6*} < 0 < max {a*, 6*}, i.e. there exists x* such that 
/i(x*,0) = 0, then put 

[«lfi] = [<*ux*i] for i € (Jfnc n J>ec) ; 

[*lPi] = [-lPi] forte ( / ^ n / i , ) ; 

{7;}U[a*,i9*] = {A}U[ai,x*] for i G (jd 'ec n j / n c ) ; 

{7*} U [a*,/3*] = {ai} U [x*,ft] for i G (j-'nc fl Jmc) • 

If i E //nc, addi to J*. 

Proof. Suppose that y* G ft* (given by (3.1)). Prom the convex analysis we 
know that Nx^=iK^yl^(y*) = X ^ i ^ ^ . ) (v*)- Th-S implies that (y*,0) G 

ff1 ( ^ ( y i . ) (»i)) f o r alH G {1, . . . , n}. We compute now the cones -VK.(y..) (</*)• 
Since 

-ftTi (»*0 = {x | a i < x < A; </ (xfyV) < 0} 

= {x\ai<x< A; P {x,y-i) < 9 (»,?,y*i)}, 

one has 

[{x | ai < x < A; x < y*} = [ati,y*] if g(•,y_t)is increasing; 
JQ (yli) = < 

[ [y*, A] if ff (* > y-i) is decreasing. 

Suppose now that i G J£c. 

Prom the relation 

[—oo,0] when x = 7 

N[y,8] (x) = { 0 when 7 < x < (J 

[ 0,00] when x = 8 

we can deduce 

, 00] when ai < y* f[0,« 
N-... 

when ai = y*. 
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Now, if the conditions of the second step of the algorithm hold, then (y*,0) G 
frl ([0,oo]) for all y* G [ai,/3i], i.e. [a*,/3*] = &,&]. If the conditions of the third 
step hold, then (y*,0) £ f^1 ([0,00]) for all y* G [ai/fa] but only for y* = ai it holds 
(a«,0) G / r 1 W , i.e. [a*,/3*] = [auai]. 

Finally, if the conditions of the fourth step hold, then 

fy?€[a i -x j ] when i e i f c . 
(yl0)efr"([0,oo]) for all { 

lVi € [xJ./JJ when t € J/C l 

and (ai,0) G /i""1 (E) in the case when i G I;nc. 

The p r o o f for i G i^ec c a n ^ e Performed in a similar way. • 

R e m a r k 2. In assumption (U3) we can suppose that the functions /i(j/i,0) are 
only monotone; nevertheless the structure of the solutions set $1* can again be de­
scribed analytically, but it is more complicated. 

The description of the set Q,* can be simplified under one additional assumption. 
Before we state this result, let us introduce a more restrictive variant of assumption 
(U3). 

(U3') fi (•, 0) are strictly decreasing for a l i i G { 1 , . . . , n} . 

Corol lary 3.4. Suppose that the assumptions (Ul), (U2), (U3') and (C2) are sat­
isfied. Consider the variational inequality: 

Find z* G T such that 

(3.3) 
£ - / i ( ^ 0 ) - ( y i - z * ) > 0 for all yeT; 
i= i 

with T given by (2.2). 
Then there exists just one solution z* of the VI above and one can describe Q,* via 
z* in the following way: 

U*=íГ(z*,g,a,ß)~{ 
9(y*)=0;ai<y*<z* for i 6 I?DC; 

zl<y*<Pi iorieI9
dec 

Furthermore, fi* is nonempty if and only if g (z*) > 0. 

(3.4) 

P r o o f . The Jacobian of the mapping F : y -> (—/i ( y i , 0 ) , . . . , - /n(yn»0)) 
from VI (3.3) is positive definite due to (U3'), which means (due to Lemma 2.1) that 
there exists exactly one solution of the mentioned VI. VI (3.3) can be equivalently 
rewritten 

- / - W > 0 ) - (yi-zl) > 0 for all y{ such that yeT.ie {!,... ,n} ; 
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i.e., if a* and b* from Corollary 3.3 are both positive, then z* = /%, if a* and b* are 
both negative, then z* = cti and if there exists an x* such that fc (x*,0) = 0, then 
z* = x*. The form of fi* follows immediately from the algorithm. 

Prom the relations which define z* we infer that 

9(z*)>9(<XiL,PiLc) 

This implies the second statement of this corollary due to the structure of the set 
ft*. • 

We illustrate now the above theory by a simple example. 

Example 1. Consider the generalized Nash equilibrium problem from Harker [7], 
where the utility functions and constraints are defined by 

ui (2/1,2/2) = - (2/i)2 - §2/iy2 + 34yi; 

u2 (2/1,2/2) = - (2/2)2 - f 2/12/2 + x2/2; 

[ai,/3i] = [a2,A] = [0 f10]; 

9 (y) = 2/1 + 2/2 - 1 5 . 

Then from the derivatives of functions u\ and u<i given by 

VгдUiføьЫ 

V„2«2(Уl,У2). 

-2yi - ІУ2 + 34 

97 
-2y2 - fyi + Ҷ-

we can see, that they satisfy condition (U2) with /1 and f2 given by 

Л(УI,$(У)) 

./г(У2,ÿ(y)). 

| У I - ! Í / ( У ) - 6 

L-ІУ2-ЫУ) + £ 

The Corollary 3.4 cannot be used because the function /1 (•, 0) is strictly increasing, 
i.e. the condition (U3') does not hold. The conditions (Ul),(U3) and (C2) are 
evidently satisfied; therefore we can use the algorithm from Corollary 3.3. 

In its first step we compute 

a* = - 6 ; 6* = | ; 

a2
 = "2") &2 -= —2. 
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A = 10 

9 

8 
A* 
7 

6 

5 

4 

3 

2 

1 

a2 = a2 = 0 

+ 
J _ 

interior solution 

active solutions 

0 1 2 3 4 5 6 7 8 9 10 
a, = Y\ a\ Px = P\ 

The conditions of the second and the third step hold neither for i = 1 nor for 
= 2 and in the fourth step we determine that 

-.* _ Q. -.* __ 2 2 . 

[a*,/?*] = [9,10]; 

W,«l = [o,f]; 
/* = {!}; 7i*=0. 

Consequently, the solution set ft* (3.1) has in this case the form 

y*+j/2*-15 = 0 ; 0 < y 2 * < f ; 

9 < y* < 10 or y* = 0; 
W = {(yl,y*2) = [(9,6), (10,5)]; 
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i.e. the line segment which connects the points (9,6) and (10,5). 

However, there exists the solution y*nt = (5,9) of VI (2.3) defined by tii,U2 and 
[a, /?] which satisfies condition g(y*nt) < 0. Due to Lemma 2.3 y*nt is a generalized 
Nash equilibrium too. The Jacobian of the mapping 

F : y -> ( - V y i u i (y), - V y 2 u 2 (y)); 

has the form 

i 3 
- 2 L4 f 

hence it is positive definite, which implies that this interior solution is exactly one 
due to Lemma 2.1. 

4. MULTI-CONSTRAINT CASE 

Let us turn now our attention to the case, when there exist more "across all players" 
constraints than only one, but each of them concerns only an isolated group of 
players. Suppose that the whole set of players is decomposed in m disjoint sets, i. e. 

/ = { i , . . . , n } = i u / i / i n / i = 0fori7fej; 

where M := { 1 , . . . , m}. 
Define the mapping ind : { 1 , . . . , n} -> M such that 

ind (i) = j if and only if i E Ij. 

Denote by yij the subvector of a vector y with elements y^i G Ij. Due to above 
mentioned structure it holds 

9j (y) = 9j (yij); (4.1) 

for all j e M. 
Now we can introduce the GNE problem: 

Find y* G W1 such that 

(MU) y* G argmax m (yi,y*_{) for all i e { 1 , . . . , n} . 
**i<Vi<Pi 

9ind(i)(yi>yli)<o 

Under assumptions (Ul) and (CI) (for all functions 9j) this problem can be replaced 
by the QVI: 

Find y* G X^= 1 K{ (yl{) such that 

-A (4-2) 
£ -Vy itn (y*) • (j/i - y*i) > 0 for all y € X^i K{ (yU); 
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where K{ (y*_^) = {x \a{ < x < A; p i n d ( i ) (x,y*_{) < 0} . 
In the next Lemma we specify a form of the subset of the solution set of QVI 

(4.2). Before we state this Lemma suppose that the index set M is split into two 
disjoint index sets K and L. At the rest of this section let us suppose, that the set 
K contains such groups of players which have interior solutions and on the other 
hand that L contains groups with active solutions. Define by TK the set 

TK •= {yiK | OLIK < yiK <PiK}] 

and the set TL analogously. 
Suppose that the conditions (Ul) and (CI) (for all functions gj) hold in the rest of 
this section and pose the further conditions: 

(U2-M) VyiUi (y) = fi (yugi (y),... ,gm (y)) for all i G { 1 , . . . ,n} and for all y G T M , 
i. e. VyiUi (y) depends on y{ and gd (y), j G { 1 , . . . , m}; 

(U3'-M) the functions /* (• ,</# (y*) >0L) are strictly decreasing for all i G {Ij \j G L} 
and for all y* G TK] 

(C2-M) the functions gj (• ,y*_i) are strictly monotone for all j G L, for all i G Ij and 
for all y* G TL; 

(POS) the Jacobian of the mapping 

F'-yiK -> (-fi(yu9K (y),oL) \ieiK) 

is positive definite for all yiK G TK] 

Consider further the variational inequality: 

Find z* eTK such that 

£ "fi (z*>9* (**) > °*) ' (»* - z*) > ° f o r a11 V^rK] 
ieiK 

This VI has due to positive definitness assumption (POS) and due to Lemma 2.1 
exactly one solution. Let us denote it by yj . 
Now consider another variational inequality 

Find z* G TL such that 
(4 4) 

] C - /< (zi>9K (v}K) , 0L) • fa - z*) > 0 for all y G TL ; 
ieiL 

where y*lK is a solution of the previous VI (4.3). 
This VI has again exactly one solution due to assumption (U3'-M) which implies 
positive definitness of its mapping — / (y,gK (y}K) >0L) . Let us denote it by y*jL• 
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L e m m a 4 . 1 . Denote by Vt*K the set of solutions y of the QVI (4.2) which satisfy 
the conditions 

9k (y) < 0 for all fc G X; (4.5) 

gi(y) = 0 f o r a l U e L . (4.6) 

Then under conditions (U2-M), (U3'-M), (C2-M) and (POS) Q*K is nonempty if 
and only if 

9k(y*jK) < 0 for all A; € if; (4.7) 

9i(y*iL) > 0 f o r a l l / e L . (4.8) 

The form of tt*K is 

n*K = {y\ yiK = V*iK\ W, € IT (y*Iitghah0i) for / G L) ; (4.9) 

where the sets fi* (y/f,g/,a/,)8/) are defined by (3.4). 

P r o o f . If we suppose that (4.6) holds for a solution of the QVI (4.2) , then we 
can substitute OL in place of gj, (y) in each fa (yi, gK (y), gL (y)). Now if we consider 
strategies from the subvector yjK oiy , then by (U2-M) and (4.1) derivatives of their 
utility functions VyieUk (y) = fk (yk,gK (y) , 0 L ) , k G IK, do not depend on strategies 
from the subvector yjL. The same holds for their constraints gK (y) = gK (yiK)-> -• e-> 
we can solve separately that part of QVI (4.2) which correspond to subvector yjK. 
Due to (4.5) and Lemma 2.3 it suffices to solve VI (4.3) to obtain solutions of the 
reduced QVI, but VI (4.3) has exactly one solution y} due to the assumptions 
imposed. 
If we substitute gK (y*lK) instead of gK (y) in Vyiut(y) = fi(yi,gK (y) , 5 L ( J / ) ) , 

/ G //, we can solve separately that part of QVI (4.2) corresponding to the subvector 
j / j . , where / G L is arbitrary. We are thus able to compute the active optimal 
subvector of strategies of the Zth group of players. In addition, the assumptions 
of Corollary 3.4 are satisfied for each such a subproblem due to conditions (U2-
M), (U3'-M) and (C2-M). The rest follows easily from this corollary and from the 
nonnegativity condition (4.6). • 

The preceding lemma informs us, how to find the subset Q,K of the solution set 
of the QVI (4.2). The whole set fl£. of solutions to this QVI can be obtained via 
determining each tt*K, K C { 1 , . . . , ra}, i. e., 

K= U "*• (4-10) 
I_-C{l,...,m} 

Unfortunately, the total number of all subsets of the set { 1 , , . . ,ra} is 2 m and for 
each such a subset we have to solve one or two variational inequalities. All in all 
we have to solve approximately 2 m + 1 problems to obtain the whole set f)£.. This 
is numerically impossible provided the number of constraints gj is too large. The 
preceding result can be applied, however, when we want to know, if some groups of 
players have active constraints gj in contrast to others groups of players. 
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5. COURNOT OLIGOPOLY MODEL EXAMPLE AND GNE 

Let us apply the principle from the preceding section to the Cournot oligopoly 
model. In this model each firm i Є {1,... ,n} furnishes a quantity УІ to a common 
market. Firm i incurs cost /? (yi) and obtains гevenues yi p (5ZJLI У*)- The function 
p : int R+ -> int R+ is usually called the inverse demand curve. The utility functions 
щy г Є {1,... ,n} are given by formula 

щ(y)=УiPVtyЛ-Гi{Уi)- (5-1) 

Consider now the GNE problem (MU) from the beginning of the preceding section 
with utility functions (5.1), with [Û:І,/ЗІ] C int IR+ and with constraints gj of the form 

9J(У) = Y,УІ ~ Pi for allj Є M = {1,... ,m}; (5.2) 
ІЄІj 

where Pj > 0 for all j Є M. 
These constraints are the joint upper production bounds for isolated groups of firms 
(for example for firms in different countries) which operate, however, on a common 
market. 

Assume that the following conditions from [11] hold: 

(01) fl are convex and twice continuously differentiable for all i Є {1,... ,n}; 

(02) p is strictly convex and twice continuously differentiable on int R+; 

(03) t • p (t) is a concave function of t. 

In the next lemma we show that these assumptions imply the assumptions of Lemma4.1 
for our Cournot oligopoly model. 

Lemma 5.1. Suppose that conditions (01), (02) and (03) hold in the Cournot 
oligopoly model with gs given by (5.2). Then conditions (U2-M), (U3'-M), (C2-M) 
and (POS) are satisfied for arbitrary subsets K and L of the set M. 

Proof. Condition (C2-M) is fulfilled obiously. Condition (POS) holds due to 
Lemma 12.2 from [13]. It remains to prove (U2-M) and (U3'-M). 
From (5.1) we compute 

Vy^i(y)=УiVpí^yij+pí^2/iJ -v/Пw); 

i. e. the functions fi from (U2-M) have forms 

/i(Уi,5i(î/),... ,9m(y)) 

( m m \ / m m \ 

Y,9І(V)+Y,PІ )+p EЫг/) + E p ; -v/fЫ-i = i i = i / \ i = i j = i / 
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Hence, (U2-M) is fulfilled. 
The function — V/f (j/i) is decreasing due to (01) and if we show, that 

( m m \ 

Y,v(y)+YspA <0; 
j=l j=l J 

then (U3'-M) evidently holds. 
From (03) we can derive 

V2 (* - p (t)) = 2Vp (t) + tV2p (t) < 0; 

i.e. 
2Vp(t) <-tV2p(t). 

The right-hand side is, however, negative because V2p(t) > 0 due to (02) and t > 0 
n 

because t = Yl V% in o u r case. This completes the proof. • 
i=l 

Let us illustrate the essence of the preceding lemma on a simple example. 

Example 2. Suppose that four firms are acting on the market and incur the 
following production costs 

fi(yi) = hv^ fi(Vi) = ^V2i 
fi (Vs) = jgV3; ft (yi) = ^VA] 

and the inverse demand curve is given by 

p(T) = T-\ 

Further, the box constraints have the form 

[oi.A] = [0,6]; [a2,/?2] = [0,6]; 
[as,A] = [0,5]; [a4,/?4] = [0,3]. 

There are two groups of firms, the first one is composed from the firms 1 and 2 and 
the second one from the firms 3 and 4. The constraints <;. have the form 

9i (yi, 2/2) = Vi + J/2 - 10; 92 (i/3, J/4) = J/3 + J/4 - 5. 

If K = {1,2} and L = 0, then y*K = (3.8792,2.8212,3.8792,1.7633) and 

92 (y*K) = 3.8792 + 1.7633 - 5 = 0.6425 > 0; 

i. e. condition (4.7) does not hold. 
If K = 0 and L = {1,2}, then y*lh = (2.5,0.9375,2.5,0) and 

9i (y/J = 2.5 + 0.9375 - 10 = -6.5625 < 0; 
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i. e. condition (4.8) does not hold. 
If K = {2} and L = {1}, then y}K = (3.2211,0.5769), y}L = (3.2211,1.8989) and 

gi (y*lL) = 3.2211 + 1.8989 - 10 = -4.8800 < 0; 

i. e. condition (4.8) does not hold. 
If K = {1} and L = {2}, then y}K = (4,3), y}L = (4,2) and both conditions (4.7) 
and (4.8) hold, i. e. the whole set fijj. of the GNE in this Cournot oligopoly example 
has the form 

^ = ^ = (4,3, [(3,2), (4,1)]) 

due to (4.9). 

6. CONCLUDING REMARKS 

In the single-constraint case it is easy to compute the solution set. Under assump­
tions of Corollary 3.4 we have to solve two separate VI ((2.3) to obtain interior 
solution and (3.3) to obtain active solutions). If we suppose further that the func­
tions fi (t/i, •) are increasing for alH G { 1 , . . . , n) and that the functions g (•, y_2) 
are decreasing for all i £ { 1 , . . . , n} then the solution set of the QVI (2.5) is com­
posed either from the interior solution generated by the VI (2.3) or from the active 
solutions generated by the VI (3.3). Indeed, suppose that there exists a solution 
y* of the VI (2.3) such that g (y*) < 0 and a solution z* of the VI (3.3) such that 
0 < g (z*). It is easy to deduce from (2.3), (U2) and (3.3), that 

{fi(Vi,9(v*)) - / < « . 0 ) ) • (y* -z*) > 0 for all i e { 1 , . . . , n } . 
(6.1) 

If we suppose, that there exists i such that y* > z*, then from (6.1) we deduce 
that fi (y*,g (y*)) > fi (z*,0), but it contradicts the assumptions that the function 
fi,(• ,0) is strictly decreasing and fi (T/J, •) is increasing. Thus y* < z* for all i € 
{ 1 , . . . , n } , which means that g(y*) > g(z*) by virtue of the assumption, that 
the functions g(- ,y_j) are decreasing. This, however, contradicts the assumption 
g(y*)<o<g(z*). 

Prom the above discussion we come to the conclusion that it is possible to simplify 
the description of the solution set under some additional assumptions imposed on 
the functions Ui and g in the single-constraint case. It is possible that a similar 
substantial simplification of the problem occurs also in the multi-constraints case. 
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