
Kybernetika

Mohamed Ali Hammami
On the state observation and stability for uncertain nonlinear systems

Kybernetika, Vol. 36 (2000), No. 5, [531]--538

Persistent URL: http://dml.cz/dmlcz/135369

Terms of use:
© Institute of Information Theory and Automation AS CR, 2000

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/135369
http://project.dml.cz


K Y B E R N E T I K A — VOLUME 36 ( 2000 ) , NUMBER 5, PAQES 5 3 1 - 5 3 8 

ON THE STATE OBSERVATION AND STABILITY 
FOR UNCERTAIN NONLINEAR SYSTEMS 

MOHAMED ALI HAMMAMI 

In this paper, we treat the class of nonlinear uncertain dynamic systems that was con­
sidered in [1, 5, 9, 10]. We consider continuous-time dynamical systems whose nominal 
part is linear and whose uncertain part is norm-bounded. We study the problems of state 
observation and obtaining stabilizing controller for uncertain nonlinear systems, where the 
uncertainties are characterized by known bounds. 

1. INTRODUCTION 

Consider the following class of nonlinear systems 

{ x = Ax + Bu + f(t, xy u) 

y = Cx 

where x E IRn, u G H m , y G H p , A is a known constant (n x n) matrix, B is a known 
constant (n x m) matrix and C is a known constant (p x n) matrix. The (n x 1) 
vector f(t,x,u) assumed continuous in x represents the nonlinear uncertainties in 
the plant. 

For such systems, the authors in [3, 4, 7], obtained results concerning the con­
struction of observers relied on exact knowledge of the plant. Many authors [2, 3, 8] 
solved the problem of stabilization by an estimated state feedback law given by an 
observer design for nonlinear system of the form (1) where f(tyXyu) is a Lipschitz 
nonlinearity. 

In this paper, we start by presenting a nonlinear observer, in the presence of plant, 
that guarantees the observation error is globally exponentially stable. This observer 
design incorporates only the bound of the nonlinearities (uncertainties), and does 
not require exact knowledge concerning the structure of the plant nonlinearities 
/ ( f ,x ,u) . We show that the result of [9] subsist using a Kalman like observer. 
Next, a continuous feedback control is proposed to exponentially stabilize nonlinear 
dynamical systems (1) using the Lyapunov approach, based on the stabilizability of 
the nominal system x = Ax + Bu. Furthermore, for more general systems and under 
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some conditions on the uncertainties we show that the system can be uniformly 
exponentially stable. 

2. OBSERVER DESIGN 

Given a nonlinear system (1), one can estimate the states by using an observer, 
whose structure is as follows 

x(t) = G(x(t),u(t),y(t)) 

where x(t) is the state of the observer. It is needed that the estimation error, 

e(t) = x(t) - x(t) 

has to converge as fast as possible to zero. Most current methods lead to the design 
of an exponential observer, exponential stability is the most wanted. With the model 
given in (1), the problem is to design a continuous observer with input y(t) such that 
the estimates denoted by x(t) converge to x(t) exponentially fast. We shall assume 
the following assumptions. 

(Ti\) The pair (A,C) is observable. 

(7Y2) There exist 0 > 0 large enough and a function he, where /i#(•,-,•): IR x IRn x 
IRm -* W such that 

f(t)x,u) = S-lCThB(t,x,u) 

where S$ satisfies the following stationary equation 

0 = -OSe-ATSo-SeA + CTC, 0 > 0 , (2) 

and 
So = lim St 

t—•+oo 

with St £ 5 + the cone of symmetric positive definite matrices on IRn, which 
satisfies 

St = -0St - ATSt - StA + CTC 

(H3) There exists a positive scalar valued function p$ ([1]) such that 

\\he(t,x,u)\\< pefau), for all *ElR+, x 6 IRn a n d u £ l R m , 

where ||.|| denotes the usual Euclidean norm on IRn. 

Let e(t) = x(t) — x(t), the error difference between the estimated x(t) given by 
the following nonlinear observer dynamical equation, and the true state x(t) of the 
system (1), 

x = Ax + Bu - S;lCT(Cx -y) + M*,y,Pe) (3) 
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where 

{ o-Q(x,y,po) for all e ^ Ker C 

0 for .11 e E K e r C 
with 

S~lCTCe 
^ ( * i yipe) = —^(*,*0 ^ | C e » |—• 

We now state the following stability theorem for the observation error system 
given by (3) and the auxiliary function (pe(x,yjPe). 

Theorem 1. If the assumptions (Hi), (H2) and (Tiz) hold, then the system (3) is 
an observer of the system (1). 

P roo f . Using (Hi) one can consider, as in [3], the Lyapunov function 

V(e) = eTSee. 

Then, one can verify that, the matrix Se solution of (3) is positive definite. Indeed, 
it suffices to change the equation (2) into a Lyapunov equation 

-AT - 6-l) Se + Se (-°-I - A^ = -CTC < 0 

and for 9 large enough, the eigenvalues of the matrix (— | J — A) are in the open-
left-half plane. 

Taking into account (W3), the error equation is given by 

e(t) = Ae(t) - S;lCTCe(t) + <pe(x, y, pe) - /(*, *, u). 

The derivative of V is given by 

V(e) = eTSee + eTS9e 

V(e) = eTSeAe + eTATS0e - 2eTCTCe + 2eTS*(^(£, y, pe) - f(t, x, u)). 

Using (2) and (« 2 ) , 

V(e) < -eeTSee - eTCTCe + 2| |Ce|M* f u) - 2pB(t) u) * ' „ ' „ ° . 
I l 0 e l l 

Thus, 
V(e) < -6eTS9e - \\Ce\\2 + 2||Ce||p,(*, u) - 2||Ce||p,(t- u). 

Hence, 
17(e) < -6eTSee. 

This estimation holds for 0 large enough. Therefore, 
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V(e) < -9V(e). 

Using the fact that V satisfies 

Amin(s*) | |eH2<F(e) 

one obtains the following estimation for 6 large enough 

||e||2 < Kexp - 0t, K > 0. 

It follows that the origin of the error equation is globally exponentially stable. 

3. GLOBAL STABILITY 

We shall construct a suitable control Lyapunov function at zero, which according 
to [6], guarantees feedback asymptotic stabilization. Suppose that the following 
assumptions hold. 

(H4) The pair (A,B) is stabilizable, therefore, there exists an (m x n) matrix K 
such that the eigenvalues of the matrix AK, defined by AK = A + BK are in the 
open-left-half plane. 

(H$) There exist a (nxg) constant matrix D and a function /i(-, •, •) : IRxIRn x l l m —+ 
IR?, such that 

f(t,x,u) = Dh(tix,u) (4) 

and 
K e r 5 T P c K e r D T P (5) 

(He) There exists a positive scalar valued function p ([2]) such that 

\\h{t)x)u)\\<p(x)). for all <6lR+, x G HT and u G IRm. (6) 

The following theorem shows asymptotic stability of system (1). 

Theorem 2. If the assumptions (W4), (H§) and (7^6) hold, then there exists a 
smooth function v such that the feedback law 

u(x) = Kx + v(x) 

stabilizes globally and asymptotically the system (1). 

P r o o f . Consider the Lyapunov function 

V(x) = xTPx 

where P = PT > 0 is such that P(A + BK) + (A + BK)TP = - Q , Q > 0. 
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The derivative of V along the trajectory of the system (1) in closed loop with u = 
Kx + v where v is an other control is given by 

V(x) = -xTQx - 2xTPBv + 2xTPf(t) x, u). 

Thus, using (4) 

V(x) = -xTQx - 2xTPBv + 2xTPDh(t, x, u). 

Taking into account (6), we obtain 

V(x) < -xTQx - 2xTPBv + 2\\DTPx\\p(x) 

Let 
Q(X) = -xTQx + 2\\DTPx p(x) 

and 
q(x) = 2xTPB. 

Therefore by (5), one has 

BTPx = 0=> DTPx = 0, VxG IET. 

It follows that 
q(x) = 0 => Q(X) < 0 

One can deduce that V is a control Lyapunov function for the system 

x = (A + BK)x + Bv + Dh(t, x, u) (7). 

Let 
u(x)= |k(-c)||2 with <;i(x) = 2xTPvi, i = l , . . . , m . 

According to Sontag's theorem [6], the following C°° state feedback for x ^ 0, 

defined by 

where 

v(x) = (vi(x,t /) , . . . , t ;m(x,y)) 

[ 0 if x = 0 

^ <Ti(x) li not 

( 0 if v = 0 and Q < 0 
(Ti(x) = 

K^S±2^±E. if not 

stabilizes globally and asymptotically the system (7). Hence, the feedback law 

u(x) = Kx + v(x) 

stabilizes the system (1). 
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Remark 1. Notice that this class of nonlinear systems includes the case treated 
in [10], it means that if D = B with q — m) one can refine the result of [10]. 

Remark 2. Suppose that (H4) holds and the uncertainties /(^,x,i/) satisfies for 
all (t, x, u), 

f(t,x,u) < p(x) + a\\u\\, a > 0 . 

Then there exists a smooth function v such that the feedback u(x) = Kx + v(x) 

stabilizes globally and asymptotically the system (1) provided that a < 2)TZx(P)' 

Indeed, it suffices to take the Lyapunov function V(x) = xTPx. The derivative of 

V along the trajectories of (1) with u = Kx + v satisfies 

V(x) < - ( - A m i n ( g ) + 2aA m a x ( P ) ) | | t r | | 2 - 2xTPBv + 2\\DTPx\\p(x). 

Therefore, one can reach conclusion about the sign definiteness argument of V by 
using the same argument of the proof of the above theorem. 

Finally, we consider the following class of nonlinear systems 

i = F(t,x,u) + f(t,X)u) (8) 

where F, / are continuous in t and locally Lipschitz in x such that 

^ M , 0 ) = /(*,0,0) = 0 

Vtf > 0, x G IRn and u E IRm. The corresponding system without uncertainties 
f(t)x)u)) called nominal system is described by 

i = F(t,x,u) (9). 

Suppose that the system (8) satisfies the following assumptions required for stability 
purpose. 

CH7) The function F as well as the uncertainties function / are continuous uniformly 
bounded with respect to time and locally uniformly bounded with respect to the 
state x. 

(lis) There exists a controller u = u(t,x) which makes the origin x = 0 of (9) 
uniformly exponentially stable equilibrium point. In particular, there exists a C1-
function 

V : IR x H n -+ IR+ 

which satisfies 

A i N | 2 < V ( < ) x ) < A 2 | | x | | 2 , 

dV 
-^(t, x) + VV(t, x)F(t, x, u(t)) < -X3V(t, x) 

for all (t, x) E IR x IRn, \ly A2, A3 > 0, and 

дV 
дx < A4ІMI. 
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Suppose that, the uncertainties part of the system (8) satisfies, 

(Hg) There exists a positive function p} such that V£ £ IR, V# £ IR71, 

\\f(t,x,u)\\<P(t,x)\\x\\. 

It is worth noting that assumption (H7) is made to guarantee the existence of a 
classical solution for system (8) under any controller that is continuous and locally 
uniformly bounded. 
Then, one has 

Theorem 3. Suppose that the assumptions (/Y7), (Ws), (W9) hold and the non-
negative function p satisfies for all (t, x) £ IR x IRn, 

p(t,x) < ——. 

Then the system (8) with the controller u = u(t,x) given in (Tig) is globally expo­
nentially stable. 

P r o o f . Consider the Lyapunov function V(t,x) given in (Tis). The derivative of 
V along the trajectories of the system (8) with the controller u = u(t,x) is given by 

V(t, x) = ^(t, x) + ^(F(t, x, u(t)) + f(t, x,«)). 

Thus, by (7is) we obtain 

dV 
V(t,x)<-X3V(t,x) + —(f(t,x,u)). 

V(t,x) < -X3V(t,x) + \\^-\\\\f(t,x,u)\\. 

Therefore 
V(t, x) < -AaAxllxH2 + A4||a:|| | | /(t, *, u)||. 

It follows by (/Y9), that 

V(t,x) < -A3Ai| |s | |2 + \4p(t,x)\\x\\2. 

Hence, 
V(t,x)<(-X3X1 + X4p(t,x))\\xf. 

Therefore, using the fact that p(ty x) < ^ j ^ , one can obtain the following estimation 

v(t,x)<-i\\x\\2,i>o 

which implies, using the properties of V given in (Ws), that the system (8) with 
u = u(t) x) is globally exponentially stable. 
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4. CONCLUSION 

It is shown in this paper tha t the use of the degenerated Kalman observer solve the 
problem in observer design for a class of uncertain systems. Furthermore, we con­
struct a continuous nonlinear state controller which used to produce an exponential 
stability of the whole system in the presence of nonlinearity (uncertainties / (* , x, u)). 

(Received November 11, 1999.) 
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