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SECOND ORDER ASYMPTOTIC DISTRIBUTION OF 
THE ^ - D I V E R G E N C E GOODNESS-OF-FIT STATISTICS1 

MARIA CARMEN PARDO 

The distribution of each member of the family of statistics based on the /^-divergence 
for testing goodness-of-fit is a chi-squared to o(l) (Pardo [12]). In this paper a closer 
approximation to the exact distribution is obtained by extracting the ^-dependent second 
order component from the o(l) term. 

1. INTRODUCTION 

For a sequence of n observations on a multinomial random vector X = (X\,..., XMY 
with probability vector w = (n\,..., KMY- ]Ci=i fl"i = 1. Let 7To = (7Toi,..., KQMY 
a prespecified probability vector with 7T(H > 0 for each i and J2i=i TTOI = 1. Then to 
test the simple hypothesis HQ : n = 7T0 against Hi : 7r -̂  7r0, the most commonly 
used statistic is Pearson's X2 (Pearson [14]); 

м 

*2 = £ (X( - n-Koi) 

i=i nWoi 

which is asymptotically distributed as a chi-squared with M— 1 degrees of freedom. 
Cressie and Read [7] and Read and Cressie [20] introduced the power divergence 

family of statistics 

where the index parameter A G R, A / —1,0. It can be easily seen that Pearson's 
X2 (A = 1), the loglikelihood ratio statistic (A —* 0), the Freeman-Tukey statistic 
(A = —1/2), the modified loglikelihood ratio statistic (A —> —1) and the Neyman 
modified X2 (A = —2), are all special cases of this family. These authors proved 
that under the same regularity conditions each member of the power divergence 
family follows the same asymptotic distribution (a chi-squared with M — 1 degrees 
of freedom). 

^ h i s work was supported by Grant DGICYT PB96-0635. 
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The classical chi-square approximation of the distribution of Pearson's statistic 
X2 is suspected to be poor unless each expected cell frequency is reasonably large. 
A common rule of thumb used by statisticians for many years is that for the chi-
square approximation to be meaningful, each expected cell frequency must be more 
than 5 (Rao [16], p. 396). To circumvent this difficulty various approximations to the 
distribution of the statistics 2nIx(X/n) 7r0) have been given by Read and Cressie [20] 
and a comprehensive review of the most important results in this area can be found 
in their book as well as the references therein. One of these approximations is 
given using local Edgeworth expansions. This approximation was firstly given by 
Yarnold [25] for the Pearson chi-square statistic under the null hypothesis, by Siotani 
and Fujikoshi [22] for the log-likelihood ratio and Freeman-Tukey statistics and for 
the power divergence family of statistics by Read and Cressie [20], We therefore 
omit motivation or justification of this method of asymptotic expansion for the 
distribution function of a quadratic form. 

We consider the family of statistics based on the ^-divergence measure between 
the observed proportions x/n and the hypothesized proportions 7r0 introduced by 
Pardo [12] 

M 
S^X/n^o) = " i / z d / m H W ^ ^ o ) , 

where 

Rt(X/n, x0) = J2{<t> (Xi/"2
+7r0 ') " \ & W " ) + * (*«)]} 

for a given continuous concave function </> : (0, co) —• R with 0(0) = lim*j0 </)(t) £ 
(—00,00]. The Ify-divergence was introduced and studied by Rao [17], Burbea and 
Rao ([4, 5]), Burbea [3] in many statistical problems. Some properties of this family 
of divergences can be seen in Pardo and Vajda [13]. If the ./^-divergence is "too 
large" the null hypothesis is rejected. An approximation to the exact distribution 
of the statistic S<f>(X/n,7ro) under uniform hypothesis was obtained from 

TE(c) = P (S+(X/n, wo) <c) = TXM_, (c) + o(l) (1) 

where TXu is the chi-square distribution function on v degrees of freedom. This 
result holds for every member of the family, as n —• co. 

Several reasons justify the choice of uniform hypothesis. Sturges [23] initiated the 
study of the choice of cells and recommended that the cell would be chosen to have 
equal probabilities with M = 1+2.303 log10 n. Mann and Wald [11] for a sample size 

n (large) and a significance level 7, recommended M = 4 ( 77-) where z1 is the 

upper 7—point of the standard normal distribution. Schorr [21], confirmed that the 
'optimum' M is smaller than the value given by Mann and Wald and suggested to use 
M = 2n2!5. In Greenwood and Nikolin [9] it is suggested to use M < min I i lognj . 
Cohen and Sackrowitz [6] proved that for the above hypothesis a critical region 
of the form _Ct = iM x ») > c> w n e r e c is a positive constant, /i,-, i = 1 , . . . ,M, 
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are convex functions and X{ > 0, i = 1 , . . . ,M, is unbiased. In our case if we 
choose <j) so that SQ was convex, the proposed tests are unbiased for equal cell 
probabilities. Bednarski and Ledwina [2] established that for every fixed number of 
observations, every continuous and reflexive function h : A M X A M —• R* where 
A M = { ( P i ) - - J P M ) 7 E i ^ i P » = !>.P» > °> i = 1.---.M} and every 0 < c < 
sup{c/P(/i(p, x) > c) < l ,p e A M } , exists q e A M such that the test with critical 
region h(q) x) > c is biased for testing Ho • P = <Z- In the book of Read and Cressie 
[20] (pp. 148-150) an important historical perspective illustrating the importance 
of choosing equiprobable cells can be seen. All this justifies that in the rest of the 
paper we consider equiprobable cells. The statistic, S<f>(X/n)7To) that we study in 
this paper is a continuous function in A M X A M — {(0, 0)} and then, it is not unbiased 
in general for unequal cell probabilities case. 

In this paper following Read [19] we extract the <f> dependent second order compo­
nent from the o(l) term in (1) to obtain an asymptotic expansion for the distribution 
function of the quadratic form given by the statistic S(j>(X/n) TTQ) closer to the exact 
distribution function than (1). 

The power divergence family of statistics is a particular case of the family of 
goodness-of-fit statistics studied by Zografos et al [26] based on the measure of 
divergence called ^-divergence, introduced by Csiszar [8] and Ali and Silvey [1] is 
given by 

<P V1) ~~[ n \n7r0i/ 

for any continuous convex function <p : [0,oo) —> RU {oo}, where 0(p(0/0) = 0 and 
0(p(p/0) = lim^^co ^ p (for a systematic theory of these divergences see Liese and 
Vajda [10] and Vajda [24]). We can observe that for 7r0,- = 1/M, i = 1 , . . . , M, 

S<j>(X/n, 7r0) = Ctp^X/n, 7r0) 

for 

M0-*(--±±)-J*(i)-J*(i) 
when <p<f, is convex. 

So the results obtained in this paper are valid for some of the families of statistics 

For example an important family of statistics 5^ is obtained if we consider the 
family of functions, 

[(xa-x) a±\ 
<j>(x) = <j>a(x) = r a-an 

[ —xlogx a = l. 

In this case the S^ is convex if and only if a e [1,2], for M > 2, and if only if 
a e [1,2] or a e [3,11/3], for M = 2. Moreover, 

aPa(X/n>*o) = S<t>a(X/n,*o) 
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for 
( -2(lДЧ-l)°Ч.rQ'-rl ^ n , л 

2M«l(a-l) a>0,aфl 2Maa(a-l) 

&(*ьг& + bsãi) « = -• 
(pQ(x) = < 

Note that 
M (X 

n / M 
Sф2(X/n, TГo) - 2 ^ -----: . 

Then the result obtained by Yarnold [25] appears as special case of our main theorem. 

2. NOTATION AND PRELIMINARY RESULTS 

Define Wj = y/n(Xj/n — 7Toj), with 7r0j = 1/M, j = 1,. . ., M and let W = 
(PVi,..., Wry where r = M — 1. Therefore, W is a lattice random vector taking 
values in the lattice 

L = {w = (wi,..., wry : w = yfn(x/n — 7rJ) and x E K} , (2) 

where 

^ 0 — ( ^ O l , • • -,7T0r) 

and 

K = < x = (xu . . . , xry : Xj > 0 integer, j = 1, . . . , r; ^ ar; < n > . 

The asymptotic expansion of the random vector W (Siotani and Fujikoshi [22]) is 
given by 

P(W = w) = n-r'2<p(w) { l + n - ^ H + * ~ % M + 0(n-" 3 / 2 ) } (3) 

where 

p(u/) = (27r)-r!2 | f ir 1 / 2exp f—w^^w) 

is the multivariate Normal density function, and 

, / x l r ^ « / j l r - ^ ^ i 

*.w = --£-£+-£.$• 

with 
r 

wM = ~Y1WJ> fi = d^Sfao) "" *o*o'-
i = i 
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This result gives us a local Edgeworth approximation for the probability of W at 
each point w G L. In the case where W has a continuous probability distribution 
function, we have that 

P(W eB)= I ... I <p(w){l + n-^2hx(w) + n-lh2(w)} dw + 0(n~3l2). 

However, when W has a lattice distribution, as occurs here, then Yarnold [25] in­
dicated that the above expansion is not valid. Rao [15] expressed this lattice sum 
as a Stieltjes integral when B is a Borel set. However Rao's expansion is difficult 
to apply and Yarnold has obtained a useful evaluation for the case when B is an 
extended convex set, i.e., when B is a set which can be represented as 

B = {w = (wu ..., wry : js(w*) <ws< 0s(w*)i 

w* = (wXi... ,wa-i,wa+i,... tWr)* e Bs} (5) 

where Bs C Rr-1 and ySi0s are continuous functions on Rr~l, s = 1 , . . . , r, which 
is given by 

P(W e B) = Jx + J2 + Js + 0(n-3'2) 

where 

Ji = / . . . / ^ H { 1 + n-ll2hx(w) + n-lh2(w)} dw, 

J2= _n-i/2^n-(^)/2 £ ... W . . . / 
« = 1 tu.+iGL.+i u>reLr

JB' J 

(Si (y/nws + mr0s) <p(v>j)y\£,*) dwi ... duv5_i, 

J3= 0(n~l), 

with h\ and h2 defined in (4), 

Lj = {WJ : Wj = y/n(xj/n — ffoj) and Xj is integer} , 

Si(t) = - - W - 1 / 2 , 

05(w*) and 75(itv*) are as in (5), and 

h(w)yffl) = h(vu..-,ws-1,0s(w*))ws+l)...lWr) 

-h(wu..., ws^i,ls(w*)i tu , + 1 , . . . , u;r). 

3. THE EXPANSION FOR 5^ 

The general distribution function of the family S^X/n^o) under the uniform hy­
pothesis, can be described as follows 

P(Sф(X/n, ҡ0) < c) = P(W Є Bф(c)) 



442 M. C PARDO 

where 

5 0 ( c ) = {w = (wu...,wry :5^((x/n,xM /n) ,7r0) < c} 

being 

r 

WM = — 2_J Wj) x = \ / n ^ + rc7To and ZM = y/^WM + n/M. 
i=i 

B<f>(c) can readily be seen to be an extended convex set where ys(w*) and 0s(w*) 
are chosen such that if ws = Js(w*) or irJ5 = 6s(w*)) s = l , . . . , r , then it holds 
S<f,((x/ny XM/K), TTO) = c. Therefore using the result of Yarnold [25] with B = 5^(c), 
the second order expansion for the distribution function of the general family S^ is 
obtained in the following theorem. 

Theorem 1. Let <j> : (0,oo) —» R a concave and twice continuously differentiate 
function with <f>n(l/M) negative. The asymptotic expansion for the distribution 
function of the statistic S(j)(X/n) TTQ) can be expressed as 

P(S<i>(X/ni TTO) < c) = Jf + J* + J$ + 0(n~3'2) 

where jf, J_f and J3 are defined by Ji,J2 and J3 respectively from Yarnold's re­
sult [25] by setting B = B^(c). Furthermore 

J* = P(xl < c) + ^ = ^ J P(Xr
2 < c) ( -8 (M + 1)) + P(X r

2
+ 2 < c) ( ~ 

^ 2 4 ^ ( 1 / M ) _ 21 (̂1/M) _ ____ (f(l/M)\2 _ 

M^"(l/M)^ ; +MV( l /MY ; M2 \^"(1/M)/ 

- 2 4 ( M - 1 ) ) + ^ M < , (2(M-2) ( ^ +A (^)V 
+ 0(n-3!2) 

Also J* can be approximated to first order by 

J* = (N+(c) - rfl2V^(c))e-cl2 /{(2irn)r/2 M~M>2) , 

where 
N<f>(c) = the number of lattice points in B^c) 
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and 

V<p(c) = the volume of B<f>(c) 

W2 (l_\M/2 J. , c(M - 1) ((f(l/M)V 
T(l + r/2)\Mj | 1 + 32M 2(M+l)n U <t>"(l/M) J ^ M 2 ^ 

7фIV(ì/M) 

ф"(ì/M) 
(M-í)) l+0(n- 3 l 2 ) . 

Proof . The proof is completed in two parts and the results are derived in a 
similar fashion to that for the power divergence statistic by Read [19]. 

Firstly jf is evaluated for which we consider the transformation 

z% = w*H = wl(Ir) - 1 ) diag(7r0)-1/2-4 (6) 

where 

Ir is the identity matrix of order r = M — 1, 

1 = ( 1 , . . . , 1)* is a 1 x v vector, 

A* = ( a i , . . . , aM) is an r x M matrix such that (AiX/7To) is orthogonal 

and 

^=(v^ I . . )v
/ ï7м) ť -

On one hand, on being (A^y/Wo) an orthogonal matrix we have that A%A = Ir and 
At

y/Wo = 0. Therefore, as z% = uv*(Ir, -l)diag(7r0)""1/2-4, it follows that 

Az = d iag(7r 0 )" 1 / 2 (I r ,- l ) t tv = (wiVM,..., WMVM\ . 

Consequently Wj = y/l/Ma^z. On the other hand, 

II'ftII = A*A - A'y/^x/^A 

and applying that (A,\/7Fo) is orthogonal we have that II'fiH = Ir. So (3) can be 
expressed as 

P(W = ID) = n - ^ l f i l - 1 / 2 {/(*) + 0 ( n - 3 ! 2 ) } 

where 

f(z) = (27r)- rl2 exp ( " ^ ) ( l + «-1/2flfi(*) + n " 1 ^ * ) ) (7) 

with 

9l(z) = -Tl/2 + 73/6, 

02(*) = 5 2 W/2 + ( l - M 2 ) / 1 2 + T2/4-T4/12 

and 
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м м 
Ъ = __(a)z)JW, Ъ = MŢ,(a)z)\ 

i = i J = I 

M M 
Tz = __(a)zfVM, T 4 - M E ( ^ ) 4 . 

i=i i - 1 

From Yarnold's result [25] and (7) it follows that j f can be rewritten as 

ji=l ...ff(z)dz 
JB%(c) J 

where 
B*,(c) = {z:zt = wfH and w G B^(c)} . (8) 

By interpreting f(z) as the continuous density function of a random variable Z, it 
is possible to interpret jf as the distribution function of S<j>((ztH~1 /Vn)' + 7To, -KQ) 
which will be abbreviated S^(ztH~1) and its characteristic function is given by 

c(t) = I ... fexp (itS^z'H-1)) f(z) dz. 

The function S^(ztH~1) can be expanded in a Taylor series as 

C r - < f f - U - . t . | ,,-1/2 < A V M ) , „-l l<j>IV(l/M) _ n r _3/2x /Qx 

_,(z.ff ) - z z + n 2 W / ( 1 / M ) r 3 + n i g ] j _ ^ _ 4 + 0 ( n ). (9) 

Furthermore, on being 

exp (a + n- 1 ' 2 /? + n^jj = e a ( l + n" 1 ! 2/? + n " ^ + /?2/2)) + 0 ( n " 3 ! 2 ) , 

it follows that 

«p (flS^-'H-1)) /(r) = (2*)"'" exp («.<* - I*'* + "-1"i*ur{l/M)T'a 

+ "- Z^WM)^' + 0(""'/:) ' ) " + ""^ W 

+ «-1<72(z)) = (27r)- r!2 exp((2i< - l)z*z/2) ( l + rT 1 / 3 t ; i (-) 

+ n^v^z)) (1 + n " 1 / 2 ^ ) + n-lg2(z)) + 0(n~^2) 

where 
Al/M) _. . 

U l ( z ) ~ 2Af*»(l/-V) " 
and 

^ 2 
_ 7<^(1/M) _ J _ l^'"(l/M)\2

 2 2 
W"48AfV(l/M) 4 8M2 \^»(1/M)j 3 ' 
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So it follows that 

where 

c(t) = <тrE[b(Z)] + 0(n-3'2) 

Z~N(0,<т2Ir), 

<т2 = (-2ü + l)-1 

anc 

Kz) = i + n-^^/2 + n/e + * - $ ^ r , ) 

, n-i (H *'"WM) (T2 ? T T x . 7^(1/M) 
+ n ^12M^(1/M)(r3 " 3TlT3) + 48MV(1/M)r41' 

" 87^ f ^ O W ) r3<2+(-^/2+r3/6)2/2+(l-M2)/12+r2/4-r4/12 j . 

On being 
AZ~N(0,a2AAt) 

with 

( 1"~ M • * • ~ M \ 

• •• , I . 
~ M " * ' * ~ M / 

(dkZ* ̂ cijZ*) is a bidimensional normal with mean vector (0, 0)* and variance-covariance 

matrix a2 I i Af i \/M )* ^° ^ e r a n ( l o m variable a^z?* conditioned by 
ajZ* = / is a Normal with mean -t/(M-l) and variance ( 1 - 1 / M ) ( 1 - ( 1 / ( M - 1 ) 2 ) . 
Noting that if X is a Normal with mean /i and standard deviation 0*, then 

f 0 r o d d 

I (r/2)82'/» r e V 6 n 

it follows that 
E[(a)Z)] = E[(a)Zf] = 0, 

E[(a\Z)(a)Z)] = \ ~W * ^ J 

U 2 ( i - ^ ) * = > 
since for & ^ j 

£[(4Z)(aj.Z)] = £ [£7[(aU)(«}-7)|aU = t]]=E [(a\Z)E[a)Z\a\Z = *]] 

= E[(a\Z)(-l)(a\Z)/(M - 1)] = - £ [ ( a ^ ) 2 ] / ( M - 1) = - | ^ 
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and for k = j) it is clear that the expectation is given by 

E[(a)Zf) = *>(l-±). 

Analogously, 

E[(a\Zf(a)Z)] = 

E[(a\Zf(a)Zf) = 

E[(a\Zf(a)Zf) = 

Then, 

£?pi] = E[T3] = 0, 
M M 

-^Ѓ(i-Å) Mi 
З И ( l - i ) 2 k = j 

^ ( 1 - * + ^ ) * # i 

3^(1-ivV) 2 * = І 

- 6 ( 9 ( l - л V ) 2 ^ + лfт) M i 

l б a Ҷ l - ^ ) 3 * = j 

-?[-?] = Mf^f^E[(a\Z)(a)Z)) = M^\M-l)+**M(l-±yj=0, 
k = lj =1 \ / / -1І 

_2 £[T2] = cr 2 M(M-l) , 
E[T!T3] = 0, 

£[T4] = 3cr4(M-l)2 , 
£[r3

2] = 3o-6(2M2 - 6M + 4) 

and hence, 

c(t) = crrE[b(Z)) + 0(n-3'2) 

+ ^ ( M ! _ 3 M + 2 ) + ( l ^ + f M ( M ^ ) _ : ! ( M z i ) l | + 0 ( „ _ 3 / ! 

*(^)-«H+4^("+4) 
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21^(l/M) _ 1)2 _ __. (V"(1/MA 2 _ 3M _ _ a 
+ M V ( 1 / M Y ' M*\<t>"(l/M)) K *MT*) **\m i) 

2 

r2 

W-eM.^^M^^) 2 . , ) ) }^^, 
Taking into account that <rr is the characteristic function of a x2 and recalling 

that c(t) is the characteristic function of the distribution jf, we have that 

+B* (IS)2 (2M2" 6M + 4) + 24M(M -!) 

+ ^ < « ) ( - | ^ ^ - - + ̂ iaM ( M-1 ) 2 

-^(?S)!"'!-Mt!,-! ,(J'- |> ,) + * ' < t l 

»(^-^'(^^ + ̂ (^)^))}+^-)-
Secondly, the approximations for Jj an(^ ^ ( c ) a r e evaluated. On one hand we 

know that if ws = ys(w*) or ws = 0a(u;*), 5 = 1 , . . . ,r, then 5^((x/n,XM/n)>7To) = c 
and on the other hand 

S<j> ((x/n, xM/n)} 7r0) = wtQ~1w + o(l), 

then 
<p(w) = (27r)-r/2 |fir1 /2exp(-c/2) + o(l) 

when ws = 7,(tu*) or w, = 05(w*),s = 1,. . . , r . 
From these facts it follows that 

0 . ( 0 (S^W, + MTTo.) <p(w))y.\w») 

can be written as 

(27r)-/2|n|-V-eXp(-c/2) ( ^ ( v W + n * - . ) ) ^ ? , + o(l). 

Therefore by applying Theorem 4 of Yarnold [25] it follows that 

Jt = (Jtye) - n*l*V4(c))e-<l* /([2my \Q\)1/2 + o(l) 
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being 1V<^(c) the number of points in the lattice L which are also in B^c) and V^(c) 
the volume of B^c). So 

*»(«)=/_..-/"--I-Г/ЧW-/--
1/2 

. . . / dw = \Q 

where z is defined by (6) and B^(c) is defined by (8). 

Consider the transformation z —• u such that 

«*u = S^z'H-1), 

i.e., from (9) 

,,«_-_._, „--/- A W -, , n -i 7^(1/M) 3 / 
U U " ^ + n 2M^(l/M) r 3 + n 4 8 M V W ^ ) 4 + ° ( >' ( 1 0 ) 

By writing 

* = rf^ti) + n " 1 ! 2 ^ ) + n~ld3(u) + 0 ( n " 3 ! 2 ) , 

(10) can be written as 

Aw M 

+H- 1 h r f u « ) d 3 ( t t ) + 4 ( « ) r f 2 ( « ) + ^ ^ ^ E(°}di(«)) a(°} r f-(«)) 

where di(i/),d2(u) and d$(u) are such that verify d\(u)d\(u) = w*w 

M!(-W-) + 2Mf/'4'WM) £(•.*(-»• = ° 

2^(«)*(«)+4(«)*(«)+wnriuM) P,"}'''W)I('>}*W) 

1^'V(1/M) £*,,,, „. „ 
+ 4 8 M A W ) , S ( ' ' ; ' ' I ( ° ) ) =" 

obtaining after some algebraic operations 
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di(u) = U, 

d2(u) = 
ф"'(l/M) м 

шi/Ц"(i/м)Ң^аjU) аj} 

«-> = 4 ( ^ J ) ll^CWVL'.,. 

2 

15 
M 

7 ^ ( 1 / M ) A 

~-¥NMTU
 {aj u)ajj-

The Jacobian of the transformation is given by 

(az/fh.\ - T4.n~^( A i / M ) \ p . l f /V"(i/MA 

(0z/d«) - Ir + n ^ - 2 M i / v , ( 1 / M ) J^ + » Q M f ^ W M j 
x (3MP2 - 2u*u - uu*Ir) - 21^j^lp2\ + 0(n-*'2) 

where 
M M 

Pi = 2^(aiju)ajatj al-d -P2 = 2Z(ajw)2flJai-
J=i j=i 

In order to calculate the determinant of this matrix, the following general result 
is required where B and C are square r x r matrices and Ir is the r x r identity 

\Ir + n-l'2B + n-1C\ 

= l + n - ^ ^ + n-1 ( ^ «.- + I X3(6«6ji - 6«6ii) ) +0(n"3/2). 
i = i \ i = i «,j / 

Hence it follows that 

|0./N = 1 + »-/* ( - 2 M C ( ^ M ) ) 0. + j £ ««"«> " 5P + rV. 

^-«^(^y-^*)^-^> 
where 

M M M 

Gi = Z)(aJM)aJai» #2 = ^a)u?a)ai a n d ^12 = ]C(afc^)(fljw)(4aj)2-
J=i J=i k,j 



450 M. C. PARDO 

Using the identities 

Tx T2 - u*u T2 - 2utu 
Ql = WT2' Q2 = ^M— a n d Ql2= M • 

where z has been replaced by u on T\ and T2, we obtain that 

Ife/tai = i+.-/» ( - X i i ^ ) r 1 + ^ ( ( i 5 r 2 - 5 ( 5 + r ) „ ' „ + 4 r ? - 4 r 2 

^i(«) ,-'^^n--'-))^--*>-(») 
Substituting u for z, it follows that 

Vtfc) = |_7|1/2 / ... [\dz/du\du 
Julu<c J 

i.e. 

n" 1 

+ 3 ^ 2 1 (~( 1 5 + 5 r ) ^ + 11N3 + 4AT4) 

1 (rwM)V ^(1/M) ^ I V . , . 3 / 2 , 
X M ^ I 7 M ) 7 ~V(i/J»0( 3 2 ) J J + ( M 

where 

Mr= I ... Idu = (7rc)r/2/r(l + r /2) , 
Jufu<c J 
M / r \ r 

LN! = £ V M I J > ; * I * , #2 = ]T Jfcjfe, 
j = l \Jfc = l / Jfc = l 

M / r \ M / r 

N3 = 5 ^ M I ^ajjfcaimJjfcm ] , JV4 = ^ M I ^ a ^ a i m J j b m , , 
j = l \fc,m / t,j \fc,m 

аnd 

JJЬ = / . . . / ti* dti, Jjbm = / . . . / гijьгxm dтx. 
Ju*u<c J Ju*u<c J 

Furthermore, from the proof of Theorem 2.1.8 of Read [18], we know that 

J]fc=0, Jjfcm = 0 for k£m and Ikk=:^—1 fc = l , . . . , r . 
r -f- z 
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Hence 

Nr = 0, N2 = (M- 1)- Mr° 
M + V 

N3 = (M- l)M^j, At4 = N3 -(M- W - ^ j = O, 

so 

This is the result required and hence ends the proof. 

Remark 1 . If we consider <f>a(x) = (1 — a) 1(xa — x) with a = 2 then <j>"(l/M) = 
- 2 , 4>'"(l/M) = 0 and <f>IV(l/M) = 0, and we obtain 

/*» = P(x2<c)+{-^p-{P(X
2<c)(-(M + l)) + 3MP(x2

+2<c) 

and 

- 3(M - l)P(xr
2+4 < c) + (M - 2)P(X

2
r+6 <c) + 0 (n - 3 ! 2 ) 

r/2 / i \ A Í / 2 

that it is to say the result obtained by Yarnold [25]. 

The above approximation is closer to the exact distribution of the family S(f,(X/n, WQ) 
than the %2 approximation. However the effort required to calculate the second order 
approximation is substantial in comparison to calculating the %2 approximation. 

Note that the jf term would be the Edgeworth expansion term if S^ had a contin­
uous distribution function. The term J$ accounts for the error due to the discontinu­
ity. Finally, the term J$ = (^(n"*1) may be ignored as due to the asymptotic equiv­
alence of the family S<f> discussed by Pardo [12], it follows that n(J% — J32) —• 0 as 
n —» 00. Therefore any ^-dependent terms in J3 will be 0(n~ 3 ! 2 ) . As in the expan­
sion of S<f) distribution of Theorem 1 only includes terms larger than 0 (n~ 3 ' 2 ) , j£ 
can be viewed as independent of <j>. Apart from this term can only cause a constant 
adjustment to the distribution function independent of <j>9 this evaluation is complex 
(see e.g. Yarnold [25] for the Pearson statistic). 
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4. NUMERICAL COMPUTATIONS 

We compare the performances of the second order and chi-square approximations 
with the exact multinomial probabilities under equiprobable null hypothesis. We 
calculate the maximum approximation error incurred by TXM_X and Ts = J f + J* 
to TE- The sign associated with the maximum difference is recorded to know if 
there has been an over-estimate or under-estimate. The computations are carried 
out using FORTRAN programs. The results are illustrated with the family S<j>Q for 
<* £ (0,3]; M = 3,4,5,6 and sample sizes n = 10, 20. 

M = 3 n = 10 n = 20 
a Tx Ts тx 

Ts 

.3 -.1879 -.0700 -.1218 -.0289 

.5 -.1823 -.0776 -.1094 -.0218 

.7 -.1679 -.0618 -.0982 -.0195 

1 -.1542 -.0426 -.0935 -.0144 

1.5 -.1406 -.0288 -.0866 -.0059 

13/7 -.1280 -.0156 -.0822 -.0039 

2 -.1162 -.0158 -.0916 -.0044 

2.5 -.1397 .0170 -.1018 -.0138 

3 -.1542 -.0419 -.1140 -.0208 

M = 4 n = 10 n = 20 

a тx 
Ts тx 

Ts 

.3 -.2575 -.2193 -.1285 -.0546 

.5 -.2364 -.2153 -.1165 -.0466 

.7 -.2114 -.1926 -.1055 -.0344 

1 -.1934 -.1217 -.0900 -.0178 

1.5 -.1639 -.0265 -.0739 -.0055 

13/7 -.1507 -.0207 -.0817 -.0069 

2 -.1472 -.0313 -.0851 -.0074 

2.5 -.1419 -.0357 -.0692 -.0153 

3 -.1472 .0495 -.0718 -.0241 

M = 5 n = 10 n = 20 

a тx 
Ts тx 

Ts 

.3 -.4257 -.4247 -.1638 -.0705 

.5 -.4184 -.3947 -.1324 -.0570 

.7 -.3515 -.2843 -.1206 -.0530 

1 -.2281 -.1357 -.0784 -.0339 

1.5 -.0830 -.0294 .0373 -.0048 

13/7 .0752 .0283 .0337 .0064 

2 .0762 .0378 -.0701 -.0084 

2.5 .1013 .0697 .0601 .0194 

3 .0885 .0990 .0401 .0437 
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M = 6 n = 10 n = 20 
а тx 

Ts тx 
Ts 

.3 -.7269 -.7164 -.1914 -.1520 

.5 -.6855 -.6198 -.1713 -.1495 

.7 -.5467 -.4045 -.1431 -.1277 

1 -.3247 -.1671 -.1014 -.0683 

1.5 -.1742 -.0560 -.0538 -.0117 

13/7 -.1036 .0349 -.0444 .0103 

2 -.1132 .0434 -.0568 .0127 

2.5 -.0993 .0919 -.0293 .0322 

3 -.1420 .1799 -.0673 .0716 

The approximation Ts is the best since is the closest to the zero abscissa, i.e., 

the maximum approximation error resulting from using this approximation for the 

true distribution function TE of S<f>a is the closest to zero. There is more difference 

between Ts and TXM_X for M = 3,4 than M = 5, 6. Observe that we are comparing 

the Ts and TXM_X asymptotic distributions of the chi-square statistic, S<f,2. From 

this criterion we see that if we want to use the standard x 2 approximation then we 

should use a a value in the range [1.5,2]. 

(Received April 12, 1999.) 
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