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K Y B E R N E T I K A — VOLUME 36 ( 2000 ) , NUMBER 4, P A G E S 3 8 9 - 3 9 9 

LINEAR APPROXIMATIONS 
TO SOME NON-LINEAR AR(1) PROCESSES 

JlRI A N D E L 

Some methods for approximating non-linear AR(1) processes by classical linear AR(1) 
models are proposed. The quality of approximation is studied in special non-linear AR(1) 
models by means of comparisons of quality of extrapolation and interpolation in the orig­
inal models and in their approximations. It is assumed that the white noise has either 
rectangular or exponential distribution. 

1. INTRODUCTION 

Consider a non-linear AR(1) process {Xt} defined by 

Xt = A(X t_i) + e t, * > 1 , (1.1) 

where A is a measurable function and et is a strict white noise with a density h. 
A random variable Xo is supposed to be given. Let Ee2 < oo. Denote 7 = Eet, 
a1 — var et. There are applications such that it is possible to obtain a long realization 
of the white noise without any signal. Then parameters of the white noise like 7 
and cr2 can be estimated very precisely. 

In some cases it can be proved that a non-linear process is stationary. Then there 
are two ways how to approximate it by a linear stationary process. 

(i) If expectation and covariance function of the non-linear process are known then 
one can try to find a linear stationary process with the same characteristics. 
Pemberton [4] studied this approach and applied it to special threshold autore-
gressive models, because it was proved in [3] that the autocorrelation structure 
of a piecewise constant autoregressive threshold model with k regimes is the 
same as that of an ARMA(p,p) model with p < k — 1. 

(ii) If the function A is smooth, then it is possible to expand it in a Taylor series 
and to use only its linear approximation. This method is discussed in [6]. 

In this paper we study quality of approximations of the type (ii). We demonstrate 
our ideas on the model 

Xi=uX<_l+eu *>1, (1.2) 
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where u > 0, q G (0,1), random variables et are non-negative and Xo is also a non-
negative variable. In order to compare values obtained by a linear approximation 
with the true ones, we need exact formulas for extrapolation and interpolation in 
the model (1.2). Such results can be derived only for some distributions of the white 
noise et. Here we present two such cases. 

A. Rectangular d is t r ibut ion of t h e white noise. Assume that et ~ R(a,6) 
where 0 < a < 6 < co and R denotes the rectangular distribution. The model (1.2) 
with this white noise will be denoted by TZ(q)uj1a) b). Further we define 7£(</,u;) = 
ftfa.w.O-l). 

It is known that for z > 0 the equation x = uxq + z has a unique positive root 
xz. Define a = xa) (3 = X}>. Then there exists a distribution of XQ such that the 
process {Xt}t > 0} is strictly stationary and a < Xt < f3 for all* > 0 (see [1]). 

B. Exponent ia l d is t r ibut ion of t he whi te noise. Assume that et ~ Ex(l) 
where Ex(l) is the exponential distribution with parameter 1 having the density 
h(x) = e~x for x > 0. In this case we denote the model (1.2) by £(q,u). For 
simplicity, here we investigate only the model £(|,u>). 

Our approximations are based on an AR(1) process Zt = v + pZt-\ + et where 
et is a white noise with Eet = 0, varet = cr2. It is known (cf. Lemma A.l) that 

џ = EZt 

1 - P ' 
vаr Zt 

I-P2 

Approximations of the parameter v will be denoted as i>, v} etc. and similar de­
notations will be used also for approximations of other parameters of the AR(1) 
model. 

In a simulation study 10 000 realizations of the process 1Z, ( | , l) and 10000 real­
izations of the process £ (~, l) were calculated. The length of each realization was 
10000. The average p. of arithmetic means of realizations and its standard deviation 
Sp were calculated as well as the average of empirical autocorrelation coefficients p 
and its standard deviation Sp. The results, which will be used in the following parts 
of the paper for numerical illustrations, are summarized in Table 1. 

Table 1. Results of simulations. 

Model ß Sp P Sp 

* ( * . - ) 

* ( * . - ) 

1.858 

2.578 

0.0046 

0.0140 

0.369 

0.282 

0.0093 

0.0095 

2. METHODS OF LINEARIZATION 

Consider model (1.2) with a general non-negative white noise. For q = 0 we have 
Xt = w + et and for q = 1 we have Xt = uXt-\ + et. In both cases Xt is a linear 
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process. It can be expected that q = 0.5 leads to a model which mostly differs from 
a linear one. 

Consider the model 7£(<7,u;,a,6). The first method of linearization used in this 
paper is based on the approximation of the function y = u>xq by its tangent at a 
point £, which has equation y = u(l — q)£q +uq£q-1x. Then the model (1.2) can 
be approximated by 

Zt = u(l-q)Zq + Loqiq-lZt^ +et= u(l-q)£q + 7 + uq^'1 ZX-\ + et 

(2.1) 

where et = et — 7. We consider only values £ G [«,/?]. A natural choice would be 
£ = EXt. Since the stationary distribution of Xt needed for calculation of EXt is 
rarely known we use £ = (a + /3)/2 in our paper. Lemma A.4 gives that 

O^uq^-1 <uqpq~l < 1 

and thus (2.1) represents a stationary AR(1) model. If a = 0 and 6 = 1 then 7 = 0.5, 
a = 1, p = 2.618 and f = (a + P)/2 = 1.809. In the case of ft (\, l ) , the parameters 
of the AR(1) process Zt given by (2.1) are ft = 1.866, p = 0.372 and v = 1.172, 
which corresponds to model 

Zt = 1.172 + 0.372Zt_i + et. (2.2) 

In our second method we approximate the function y = u>xq on [a,/?] by a line 
y = u + vx derived by the least-squares method. The coefficients u) v minimizing 
y (uxq — u — vx)2 dx are 

u = 

V = 

^(lí^!)^,.^,.^!)^.^}, 

( , .^{^(^--«)-M(^-^)}. 
In this case we have for the model (1.2) an approximation 

Zt = u + vZt-i +et = U + vZt-i + et , (2.3) 

where U = u + j and et = et — 7. It follows from Corollary A.3 and Lemma A.4 
that 0 < v < 1 so that (2.3) represents also a stationary AR(1) model. 

Numerically, for 72. ( | , l) the second approximation gives u = 0.650, v = 0.378 = 
p, p. = 1.848, v = 1.149 and it yields 

Zt = 1.149 + 0.378Z«_i + et. (2.4) 

By the way, an AR(1) process {Zt} with parameters corresponding to values p, and 
p given in Table 1 for the model % (\y l ) , i.e. with expectation 1.858 and autocor­
relation coefficient 0.369 is 

Zt = 1.172 + 0.369Zt-i + £:t. 
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Other approximations can be based on piece-wise linear functions, which would 
lead to threshold autoregression. 

Now, consider model £ ( ^ , l ) . In this case the distribution of Xt has support 
(l,oo). The expectation of Xt is not known. Since y/x is a concave function, we 
have Ey/Xt-i < y/EXt^i and thus for stationary {Xt} we get EXt < £ where 

c tl \ J " + V^ 2 + 4 

€ = « W ) = V 2 ' 
If we approximate the function y = ujy/x by its tangent at the point £, i.e. by 
y = Ljy/^/2 + UJX/(2\/^)} then we come to the model 

LJ r~ i-d /(JJ r' \ CJ 
Zt=2^+27ZZt-i+et=\2^+l) + MZt-1+et 

where St = et — 1. It is easy to show that the function r(cj) = LJ / 2>/f(u;) is 

increasing on [0,oo) and the equation r(u) = 1 has a unique root UJ- = 2.62362. It 
means that for u £ [0,o;o] our process Zt is stationary. In the special case u = 1 we 
have £ = 1.272 and 

Zt = 1.564 + 0.443Zt_! + et (2.5) 

with EZt = 2.809. 
The linear least squares approximation of the function Uy/x on [1,00) cannot be 

used and so we consider its weighted form 

/•OO 

nin / e"x(ujy/x — u — vx)2 dar. 
">u Ji 

Since 

Ixe~x' 
i x2e~x dx = -(x2 + 2x + 2)e~x, 

f y/xe~x dx = -y/xe~x + \/~<& (V~xj , 

fx3'2e~xdx = -x3l2e~x - \\f~e~x + \>f~$ (Vte) , 

we get 

u = 2 w e v / 7 r [ l - $ ( V 2 ) ] , 

v = |{l-e^[l-$(V2)]}. 

This approximation gives 

Zt = u + vZt-i + et = (u + 1) + vZt-i + et 
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with et = et- 1. For LO = 1 we have u = 0.757873, v = 0.310532 and 

Zt = 1.758 + 0.311Z|- r+ et (2.6) 

with EZt = 2.550. 

3. ESTIMATING THE PARAMETERS OF THE NON-LINEAR MODEL 

Assume that a, /? and 7 are known parameters. If we have a realization Z\)..., Zn 

of the process 7^(g, a;, a, 6,) then EZt and /? are easily estimable parameters. We 
denote their estimates by /i* and p*. The moment method applied to (2.1) gives 

" < l 7* . + T - / . - . • * - ' = • . (3-D 
Inserting £? = p*£/(uq) into the first equation we get for estimates 9 and w of the 
parameters q and w the following formulas: 

. PZ - _ P* n 2x 
? p ^ + ^ ( l _ ^ ) - T ' ^ - - i - ^ ' 

In the second method u and i; are quite complicated functions of q and LO SO that 
the equations 

r = y = A«*, * = !>* (3-3) 

must be solved numerically. The solution of these equations is denoted by q and LO. 
Consider the model 7£(g,u>). If we take \i = \i* = 1.858 and p = p* = 0.369 then 

(3.2) yields q = 0.498 and LO = 0.997. From (3.3) we obtain q = 0.486 and LO = 1.013. 
All the estimates are quite close to the true values of the corresponding parameters. 

In the model £(^,u>) we estimate only one parameter LO. The moment method 
applied to the first method of linearization leads to equations 

| v£+ i 
A * - " " u T - > P = 

1 - - V ""2VT 
2V^ 

Their solutions will be denoted by w\ and u*, respectively. 
Using the second method of linearization we come to equations 

2cjev/7r"[l - $(\/2)] + 1 w „ ,-., „ / - „ 
A» = _ l _ V " - , p = -{l-ey/~\l-* (V2)]}. 

l _ | { l _ e v ^ [ l _ $ ( V 2 ) ] } 2 

Their solutions will be denoted by LO* and LO2 , respectively. If we insert values 
p. = 2.578 and p = 0.282 from our simulations, we obtain 

LO* = 0.922, LO*2 = 0.608, w+ = 1.266, wj = 0.908. 

In this case the estimates considerably differ from the true value LO = 1. 
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4. EXTRAPOLATION 

Let Xt be the LS extrapolation of Xt one step ahead based on {Xt-\) Xt_2,. 
is known that for model (1.1) we have 

Xt = X(Xt-1) + 7, E(Xt-Xt)
2 = a2. 

}. It 

The LS extrapolation two or more steps ahead in model (1.1) is more complicated. 
Some results for 72.(^,1) and for £ ( | , l) can be found in the Appendix. In a 
simulation of the length n = 10 000 of TZ (^, l) one step ahead extrapolations Xt as 
well as extrapolations Z\ of (2.2) and Zf of (2.4) were calculated. The averages of 
(Xt-Xt)

2
y (Xt-Zt)2a,nd (Xt-Z?)2 are denoted by <r2, a*2 and <r+2, respectively. 

They are given in Table 2. Similarly, in a simulation of the length n = 10 000 of 
£ ( | , l) one step ahead extrapolations Xt as well as extrapolations Zt of (2.5) and 
.Z+ of (2.6) were calculated together with the corresponding averages <r2, <r*2 and 
<т+2. SeeTaЫe2. 

Table 2. Results of extrapolations. 

Model a2 à2 a*2 <r+2 

* ( ł . i ) 
П\л) 

0.083 0.084 0.084 

1.000 1.017 1.060 

0.084 

1.020 

Values <r2 and <r2 are close which verifies quality of simulations. Values <r*2 and 
<r+2 are also very close to <r2, which shows that the LS extrapolations based on 
linear approximations have nearly the same quality as the LS extrapolations in the 
considered non-linear models. 

5. INTERPOLATION 

Formulas for interpolation in models H Q, l) and £ ( | , l) can be found in the Ap­
pendix. Formula for interpolation in linear AR(1) model is well known but for 
convenience it is remembered in Lemma A.l. Let Xt be interpolation of Xt given 
{...,X t-2,-Xt-i,-Xt+i,-Kf+2,...}. We denote by Zt

% and Z+* interpolations in pro­
cesses (2.2) and (2.4), respectively, when we deal with 7 J ( | , l ) . If we consider 
£ ( | , l ) then Zt

x and .Z+* are interpolations in processes (2.5) and (2.6), respec­
tively. A simulation of 1Z ( | , l) of the length n = 10 000 was calculated and the 
averages of (Xt - X?)2, (Xt - Z*t

1)2 and (Xt - Z+%)2 denoted by a?, <r*2 and <r+2, 
respectively, are given in Table 3. A similar simulation was carried out also for 

* ( ! . - ) • 

Table 3. Results of interpolations. 

Model âf af af2 

* ( * . - ) 
H\л) 

0.069 0.075 0.075 

0.882 1.018 1.016 
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We can conclude that r/t*
2 and erf2 are also close to (7?, but the differences are 

larger than in the case of extrapolation. 

APPENDIX 

Lemma A . l . Let {Zt} be the AR(1) process defined by 

Zt =v + pZt-\+et (A.l) 

where p 6 (—1,1) and {et} is a white noise with Eet = 0, Ee2 = <r2 < co. Then 

v a2 

EZt = - , varZt = - -7, corr(Zt, Zt-\) = p. 
1 - p 1 - pz 

The best linear extrapolation Zt of Zt given {Zt-S, s > 1} is Zt = v + pZt-\. The 
residual variance of extrapolation is E(Zt — Zt)

2 = a2. The best linear interpolation 
Z? of Zt given {Zt-Si s / 0} is 

Z? = -£-(Zt-\ + Zt+\) + vl~P 

and its residual variance is E(Z — Zt)
2 = JXTT ï+F 

Proo f . The assertion is well known. Q 

Lemma A.2. Let - c o < a < (5 < co. Let / be a continuous function on [a,/?]. 
Let y = u + vx be the least squares approximation of / on [a,/?]. Then there exist 
xi, X2 such that a < x\ < X2 < /? and that u + vx\ = f(x\), u + VX2 = f(x2)-

Proo f . Since u, v are such that f^[f(x) - U - Vx]2dx attains its minimum at 
U = u, V = v, the equations 

/ [f(x)-u-vx]dx = 0, (A.2) 
J a 

J a 
x[f(x)-u-vx]dx = 0 (A.З) 

are satisfied. It follows from (A.2) that there exists x\ G (a,/?) such that f(x\) — 
u — vx\ = 0. In the remaining part of the proof we assume without loss of generality 
that a > 0. If f(x) — u — vx ^ 0 for all x £ (a, /?), x ̂  x\, the we have either 

f(x) — u — vx > 0 for a < x < x\, 
(A.4) 

f(x) — u — vx < 0 for x\ < x < /? 

or 

f(x) — u — vx < 0 for a < x < x\, 
(A.5) 

f(x) —u — vx>0 for x\ < x < (3 
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because / is continuous and other cases such as f(x) — u — vx > 0 for x ^ x\ 
etc. would be in contradiction with (A.2). Assume that (A.4) holds. Then we can 
see that 

rP x r*i rP 
/ — [ f ( x ) - u - v x ] d x < / [f(x) - u - vx] dx + / [f(x) - u — vx] dx 

Ja x\ Ja Jx\ 
r/3 

= / [f(x) — u — vx] dx = 0 
Ja 

which contradicts (A.3). T h e case (A.5) is similar. D 

Corol lary A . 3 . Let the assumptions of Lemma A.2 be fulfilled. Moreover, let 
f'(x) exist for all x G (<*,/?)• Then there exists f G (a,(3) such that v = / ' ( £ ) . 

L e m m a A . 4 . In the model 7£(g,u;, a, b) we have uqf3q~~l < 1. 

P r o o f . Remember tha t /? satisfies /? = u(3q + b. Then 1 = a;/?*"1 + 6//?, which 
gives ujf3q~l < 1. Since q G (0,1) , the assertion follows. • 

Let the model (1.1) hold and let Ko,... ,Xt be known. The naive extrapolation 
of the variable Xt+m (m > 1) is given by 

K;+1 = x(xt) + T, x;+m = A(x;+m^) + T. 

Obviously, there exists a function Hm such tha t Xt+m = Hm(Xt). The functions 

Hm, m > 1, satisfy 

Hi(x) = X(x) + T , #m+i(-r) = X[Hm(x)] + 7 for m > 1. 

The least squares extrapolation of Xt+m is 

Xt+m = Km(Xt) 

where 

/

oo 
Km(y)h[y-X(x)]dy (A.6) 

• O O 

for m > 1 (see [5], p. 346, and [2]). We can see that I<i(x) = Hi(x) but for m > 2 
we have generally tha t Hm(x) =£ I<m(x). 

Assume that variables Xo,..., X j - i , X y + i , . . . , Xn are known. Let X\j = {x0 , a?i, 
. . . ,Xj-i}Xj+i,.. . , x n } where Xj (1 < J' < n — 1) is excluded. Then conditional 
densities P(|) satisfy 

P(*il*\i) = ^P(^iki-iM^i+iki) (A.7) 

where 

K = p (a ; i + i | a ; i _i ) = / p (a ; J | x i _ 1 )p(^+i | a : j )da ; i 
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[see [5], p. 319, formulas (5.222) and (5.223)]. Since et has the density ft, we have 
p(xj\xj-i) = h[xj — A(x ;_i)]. The least squares interpolation of Xj is 

Xf = EІXjlXyj) = j XjPІXjЏ^áxj. 

Now, we specify the general formulas to the two cases of the model (1.2) mentioned 
in Introduction. 

A. Rectangular d is t r ibut ion of t he white noise. In the model 7£(g,u;, a, 6) it 
is clear that 

Kl(x) = BX(*) = - - y ^ +<-.*', 

II2(X) = —+U,^—+LJX* 

and simple calculations give 

*-,(,) = 5±» + (t_a)"(1 + g) [(* + ««)'*«-(. + « • ) * ] . 

If ra > 3 then expressions for A'm(x) are complicated even for such values of q which 
admit derivation of explicit formulas. In our paper we consider only the case a = 0 
so that et ~ R(0,6). Then h(x) = 1/6 for 0 < x < 6 and h(x) = 0 otherwise. 
Formula (A.7) gives 

P^X" V ~ min{x?+1> 6 + y/xJZ1} - maxjy^—T, (* i + 1 - 6)2} 

for 
max{^/Xj-i, (x ; + i - 6)2} < xj < min{x?+1,6 + y/Xj-i} 

and 0 otherwise. From here it is clear that the least squares interpolation Xj of Xj 
given X\j is 

Xf = E(X) |X\y) = ±[min{.r?+1,6 + ^/J—1} + maxf^SJIT, fo+i - 6)2}]. 

B. Exponential d is t r ibut ion of t he whi te noise. Here we consider the model 
£(^ ,CJ ) . First we have 

KX(x) = Hl(x)=U)y/i+l, 

H2(z) = 1 +uyuy/x + 1. 

Further computations lead to 

K2(x) = 1 +u3'2^ + V5FCJCW>^[1 - * (V2J^x) ] 
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where $ is the distribution function of N(Q, 1). Further we have H\(x) = K\(x). 
To find explicit formulas for interpolation we need integrals 

f e-s+u,v/F dx _ _e-x+wSZ + urfte->
a/*0 L/2i - ^ \ , 

Jxe-*+»^dx - ^ 3 + y ] ^ $ t e - ^ ) 

- (l + Y + _-^* + x) e " x + w ^ 

which can be obtained by direct calculation. The conditional density of Xj given 
X\j is 

q(xj)=p(xi\Xyj) = Ke-*i+»>& 

for 
Uy/x~_ < Xj < x j + 1 /u ; 2 

and zero otherwise where 

K'1 = exp{-wVr/ïJZT + w 3 / 2 ^ i 7 r n - exp {-^+Ц 
-Г-W-V/ŤFÍ w a / 4 <P ^-^)-,(^^-r-^y. 

The least squares interpolation of the random variable Xj is 

*? • *- (f ('+ T) ̂ '" [• ( % ^ ) "* ( ^ ^ - ^ ) 
( CJ2 a;3!2 \ 

1 + — + -y-*yxj-i + ^ V x i - i ) exp{-a;v^TTT + CJ3/2^/xTTT} 

- ( ^ T + ̂  + ^ - f ^ + ̂ l ) -
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