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KYBERNETIKA — VOLUME 86 (2000), NUMBER 3, PAGES 279-310

GAUSSIAN SEMIPARAMETRIC ESTIMATION IN
SEASONAL/CYCLICAL LONG MEMORY TIME SERIES!

JOSU ARTECHE

Gaussian semiparametric or local Whittle estimation of the memory parameter in stan-
dard long memory processes was proposed by Robinson [18]. This technique shows sev-
eral advantages over the popular log-periodogram regression introduced by Geweke and
Porter-Hudak [7]. In particular under milder assumptions than those needed in the log
periodogram regression it is asymptotically more efficient. We analyse the asymptotic be-
haviour of the Gaussian semiparametric estimate of the memory parameter in seasonal
or cyclical long memory processes allowing for asymmetric spectral divergences or zeros.
Consistency and asymptotic normality are obtained.

1. INTRODUCTION

Let {z,t = 0,%1,42,...} be a real-valued covariance stationary process with spec-
tral density f(A). We say that z, has standard long memory if

fQ) ~CA72 as X0, (1.1)

where 0 < C < oo and the memory parameter d satisfies |d| < 1/2. Whittle [19]
proposed an estimation technique based on the minimization of the function

T,(0) = % /_ {log fl)+ if‘((f)) } do (1.2)

where 0 is the vector of parameters to estimate, f(z) is the spectral density (absolute
knowledge of this function up to the vector of parameters 6 is thus assumed) and

I%(2) is the centered periodogram of {z¢,t = 1,2,...,n} at frequency z,
1 n 2 1 n
c — § : itz = = e §
In(Z) = ﬂ; 2 e (I?t - {L‘n) y, Ip = ; £ T¢.

This technique was originally proposed for short memory processes with a smooth
spectral density and in that case is asymptotically equivalent to maximum likelihood.

! Research supported by UPV grant 038.321-G55/98. I thank Peter M. Robinson for many useful
comments, an associate editor and the referees.
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The application of this methodology to standard long memory processes with a spec-
tral density satisfying (1.1) has been analysed by Fox and Taqu [6], Dahlhaus [5],
Giraitis and Surgailis [8] and Heyde and Gay [12] and /n-consistency and asymp-
totic normality have been proved, and when z; is actually Gaussian asymptotic
efficiency has been found. However these properties depend strongly on a correct
specification of f()) and if some kind of misspecification occurs the estimates will
in general be inconsistent. Particularly the estimates of long memory parameters
will be inconsistent if short memory components are misspecified. To overcome this
inconvenience Kunsch [15] and Robinson [18] considered a semiparametric discrete
version of (1.2) and assumed only partial knowledge of the spectral density so that
the Gaussian semiparametric estimates of d and C are obtained by minimizing

m

1 L, N
Q(C,d):r—n-z log CA;** + -1 () (1.3)

j=1

where I,()) = |[W(A)|? and W(X) = (2an)~1/25 7 exp(itA) z; are the (uncen-
tered) periodogram and discrete Fourier transform respectively, A; = 27j/n are
Fourier frequencies and m is the bandwidth number such that A,, is the last fre-
quency used in the estimation. It is required that at least m~'4+mn~! — 0asn — oo
such that the proportion of the frequency band involved in the estimation degener-
ates relatively slowly to 0 as n increases. Since j = 0 is omitted in (1.3) we do not
need specification or estimation of an unknown mean. Robinson [18] proved that if
d = argmin Q(C, d) over a closed interval of admissible estimates © = [A;, As], such
that —1/2 < A; < Az < 1/2, then v/m(d—d) s, N(0,1/4). This estimate overcomes
the log-periodogram proposed by Geweke and Porter-Hudak [7] in the sense that
its asymptotic variance is smaller. Moreover, unlike the log-periodogram regression,
the proof of the asymptotic properties does not need to trim out low frequencies and
much weaker assumptions than Gaussianity are imposed (see Robinson [17]). The
main disadvantage is that d can not be defined in a closed form.

The drawback of this estimate with respect to the parametric one is that only
/m consistency is achieved. Therefore the semiparametric estimate is much less
efficient than the parametric ones when they are based on a complete and correct
specification of f(A). This loss in efficiency is the price to pay for guaranteeing
consistency under misspecification of the spectral density at frequencies far from the
one we are interested in.

In this paper we study the properties of the Gaussian semiparametric estimate
proposed by Robinson [18] in the case of seasonal or cyclical long memory such that
the spectral density satisfies

flw+d) ~ CI"% a5 )07
flw=2) ~ DX % a5 )0t (1.4)

for C, D € (0,00) and d,, d, € (—1/2,1/2) and we allow

di #d; andfor C# D.
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Thus we allow for asymmetric spectral poles or zeros in the sense that the parameters
d;, C governing spectral behaviour just after w may be different from d, D which
govern spectral behaviour at frequencies just before w. Some parametric seasonal or
cyclical long memory models have been discussed by Jonas [14], Carlin and Demp-
ster [4], Gray et al [9], Hassler [11] and Robinson [16]. For a review see Arteche and
Robinson [2]. The case of an asymmetric spectral pole or zero at frequency w # 0
presents a peculiarity with respect to the analysis at the origin where the spectral
density function is symmetric. If the parameter we want to estimate is d; such that
d; < d; we need to trim out some frequencies close to w in order to get rid of the
influence of the periodogram at frequencies just before w where the spectral density
is governed by d2. Thus the Gaussian semiparametric estimates of d; and C are
obtained by minimizing

1 m 4 ,\2d
QC,d) = — > {1ogc,\;2 +%Ij} (1.5)
j=i+1

where ); = 2—:-1, j=1+1,...,m, Ij = I,(w+ ;) is the periodogram at frequency
w+ Aj and I = 0if d; > dy and | — oo more slowly than m as n — oo if d; < ds.
Concentrating C out of the objective function we have that minimizing (1.5) is
equivalent to minimize

~ 1 &
R(d) = log C(d) — 2d — ) log (1.6)
1+1
where C(d) = 1 f: A (1.7)
- m-l I+1 7 .

Then the procedure consists in obtaining an estimate of d;, d, = arg mingee R(d)
where © = [A1, A3] is the set of admissible values for d; and then plug d; in (1.7) to
obtain an estimate of C, C(d1). A similar procedure, using frequencies just before
w, can be used to estimate D and ds. In Section 2 we proved the consistency of d;
while the asymptotic distribution is obtained in Section 3. Finally technical lemmas
are placed in the Appendix. '

2. CONSISTENCY OF. THE ESTIMATE

In order to prove the consistency of dy we need the following assumptions:

A.l. Fora€(0,2] andw € (0,7), as A — 0t:
flw+d) ~ CA24(14+0(1%)
fw=X) ~ DA(1+00)
where C, D € (0,00), |d2| < 1/2 and dy € © = [A,Ag] where —1/2 < A} < Ay <

1/2. The choice of A; and A, reflects prior knowledge on d;, for example if we know
that f(w + A) 4+ 0 as A — 0% a reasonable choice is A; = 0.
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A.2. In a neighbourhood (—#6,0) U (0, 6) of w, f(X) is differentiable and

diixlogf(w:t/\) = 0o\ asx—ot.

A3. z;—Fz; = z;‘;o aj€ei—j and Z;io af < 0o where Ele;|Fi-1) = 0, E[¢?|F;_,)
=1fort=0,%1,£2,..., F; is the o-field generated by €, s <t and there exists a
random variable ¢ such that Ee? < oo and for all n > 0 and some « < 1, P(|e;| >
n) < &P(|e| > n).

Ad4. If d1 2 dzt
1 m
— 4+ — —0asn— o0
m n

and if dy < dj:

nd:—dl

m(logm)% — (0 as n — oo.

m
— + —logm +

n m
Assumption A.1 and A.2 are those imposed in Arteche [1] for the asymptotics of
the log-periodogram regression and correspond to those in Robinson [17] for w = 0.
Assumption A.3 says that the innovations in the Wold decomposition of z; are a
square integrable martingale difference sequence that satisfies a milder homogeneity
restriction than strictly stationarity. Assumption A.4 distinguishes the cases d; > d»
and dy < dz. In the former m tends to oo (necessary for consistency) but more slowly
than n (due to our semiparametric specification of f(A)). In the latter we introduce
the trimming number ! which has to go to infinity with n at a slower rate than m
but its rate of divergence as n — oo is higher the larger the difference dy — d;. This
is because the higher dy with respect to d; the more influential the periodogram
at frequencies just before w (where the spectral density is governed by d3) in the
estimation of d; (see Lemma 1) such that a larger trimming is needed. The more
restrictive case comes up when dy — d; approaches 1. In that case I—"%—(log m)? — 0

as n — oo so that if m ~ n? and I ~ n?, then 1 > 6 > ¢ > 2/3 ensures A 4.

The following theorem establishes the consistency of the Gaussian semiparametric
estimate of d; in (1.4). We only focus on the case di < d2. The proof when d; > d»
is a straightforward extension of that in Robinson [18] when w = 0.

Theorem 1. Let assumptions A.1-A.4 hold. Then as n — co
dy B dy.
Proof. d; = arg mine R(d) where R(d) is defined in (1.6). Write S(d) = R(d) —
R(dy) and N5 = {d: |d — d;| < 6} for 0 < 6§ < 1/4 and N5 = (—00,00) — N;. Then
P(|dy — di| > 6)
= P(EN;NO)=P ( Ni::‘fe R(d) < inf R(d)) <P ( Ié:lg"@ S(d) < 0)
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because di € Ns N ©. Now define the following subsets of the set of admissible
values O,
A=A if di<Ai+ -;-
={d: A <d< Ay} such that
d12A>d1—% if d12A1+%
o {d: Ay <d< A} ifd1_>_A1+%
2T 0 otherwise

Thus P(d, — dy| > §) < P ( inf 5(d) < 0) +P (me(d) < 0)

Write S(d) = U(d) — T(d) where U(d) is the deterministic part of S(d) obtained by
replacing Ij by CA; 241 and sums by integrals, and T(d) is the remainder.

T(d) =1lo g{cgl)} log{—g—%} { Z ( )Z(d d){9(d — dy) + 1}}
=141
+ 2(d—dy) {—rr—zl—_l f: logj—log(m—l)+1}
j=l+1
where m
_1__1 3o AN, (2.1)
1+1

Note that U(d) achieves a unique minimum in ©; for d = d;. Now,
P indeSO):P(inf U(d)-T(d <O><P( T(d)| > 'fUd).
(int, 5@ oL (U@-T(@)<0) < P (sup T@]> inf U(a)

Using the mean value theorem we have
1
log(l+z)<z-— gxz, —log(l—z) >z + %1‘2

for 0 < z < 1. It follows that

2 :
Nurlwfc:) U(d) > min (26 — log{26 + 1}, —26 — log{1 — 26}) > %— (2.2)

On the other hand, from the inequality |log(1 + z)| < 2|z| for |z| < I, we deduce
that for any nonnegative random variable y, P(2|ly — 1| < ¢€) < P(| log y| < e) for

€<1/2 and
P{log(%) >e}§P{ >-2‘-}

and thus supe, |T(d)| £ 0 if

C(d) - C(d)
C(d)
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C(d) - C(d)

C(d) = OP(I)

a) supg,

b) supg,

2(d—dy) +1 " (I yad-ar) _ 1| = o(1)

m—1 +1'm — 1|

c)

1 m .
— Z'H logj — log(m — 1) + 1‘ =o(1).

If d; < dy (I = 0) the left hand sides of b) and c) are O(m~!~%A-41)) and Q&™)
respectively from Lemmas 1 and 2 in Robinson [18]. If d; > d3 (I — 00) the left hand
sides of b) and c) are O((;L)!*+2(4=41)) and O(%&™) respectively from Lemmas 2
and 3 in the Appendix. Since 1+ 2(A —d;) > 0 in Oy, condition A.4 implies that
b) and c) hold.

In order to prove a) write,

C(d) ~ C(d) _ A(d)

C(d) ~ B(d)
where Hd—di)+1 F 2d-di) /.
0=t (G5) 6
_ m . 2(d-d,)
B = XY ()
I+1

for g; = Cz\,-““‘. Since B(d) + |B(d) — 1| > 1 it follows that

iGr)lfB(d) >1—sup|B(d)-1| > (2.3)
1 o,

N =

for all sufficiently large m using Lemma 2. Now, by summation by parts, A(d) is
bounded :n absolute value by,

R ) S )] e
m—1 relt1 m—1 m—1 joipNIi
3 m \20-d) | m 7
(" B . 2.5
tanem) |12 (G @9
j=lt1

Using the mean value theorem we have that for r > 1,

2(d—d,) _ Ad-d1)-1 4
(102 ] < 2t (14 2) 7 8
r r r>1 r r
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in ©. Thus the supremum in ©; of (2.4) is bounded by

3 m—1 r 2(d—d,) r+1 2(d—dy) r I;
w2 (7)o () 3 )
r=l41 j=l41 J
2(A2—d1)+1 m-—1 Z(A—d )+1 1 r I'
m r 1
< — — — 2 .
< (@m0 2@ R G
r=Il+1 j=l+1
Since (727)* — 1 for all a we focus on the analysis of
m-—1 r
r\2(8-d)+1 1 (Ij )
> (= 1> (£-1)]. (2.6)
rel+l (m) r? j=it1 \Ji
Now,
I ( gj) 5,1 2
=< —-1=(1-=) 2+ —[f; = |ej|*L;] + (2nI; — 1 2.7

where I = Ie(w + A;) = [We(w + ;)% We(A) = 7= Tiy @™, fj = fw + X)),
I; = In(w+ }j) and aj = a(w + )j) = Y pe, axe*@+2i). Assumption A.1 implies
that

_9%

= 0(A9). (2.8)

Assumptions A.1 and A.2 and Lemma 1 imply that for n sufficiently large,

Ll_ i\*  n*4-dlogj
Thus
m-—1 r
r 2(A—d1)+1 1 g I
E{ @ =|E (l‘f—’-)g—’-}
r=l41 j=l+1 179
e N28-d)+ 1 < i\ A% n2(dz—dl)logj
= O(Z(;) =} (;;) (1+<;) +W)
1+1 141
m\o ( mye n2d-d)(logm)?  n2d-d)logm
= 0((;) (1+('n_) Y @y T T [ida=di) ))

in ©; under A 4. ~ }
Since [laf? — b/2) = |Re{(a—b) (a-+5)}| < |(a—b) (a-+8)| < |a—b||a-+b], applying
the Cauchy-Schwarz inequality we have that E|I; — |a;|?I;| is bounded by

{EL; — 0; EWW; — &; EWW; + |oj|*EL; }°
- - 1
{EL; + 0 EW;W; + & EW;W; + | |°EL; }* . (2.10)
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From Lemma 1 we have that as n — oo
3 logj . _s4 . ; logj, 24,

because Ij = 5= 11 D ey €6 ei(‘"’)(“’+"') and under A.3 EI; = 5. Thus
under A.4 and d; > dy, (2.10) is O (( ) A; (d’+d‘)). Now

m-1 2(A-di)+1 ] "1
E{ > () =103 ;(Ij—lan%-)}

r=l+1 j=l41 J

_ TN/ r\2a=d)+ 1 IS (log g Porp\ %

-0 Z(E) = j ; : (2.11)
i+1 1+1

We distinguish the cases dy —d; > 1/2, = 1/2, < 1/2. When d; — d; < 1/2, (2.11)

is
n%=%(logm)7 <= , 1 nd2=d1(log m)3?
Z- _\96™)7 (A-di)—(d2—d1)-3% | — g —
0 ( m2(a—di)+1 E " =0 [3+d2—dy =o(1)
(2.12)
in ©; because of A.4. Now if dy — d; =1/2, (2.11) is

0 (\/_(logm Z 2(A—dy)- 1(10g1‘)) (M)) :o(l) (213)

m2(A-di)+1
I+1

in ©; and because of A.4. Finally when d — d; > 1/2, (2.11) is
(log™m)% 1 (4y—di) = 2(A-dy)—1 n2=41 (logm)?
0 (———-———mm ol (da- 1)1};1% (a-di)-1) = o T Traa (2.14)
+

and consequently (2.11) is o(1) in ©; under A 4.
The final contribution to (2.6) comes from the term involving 27l; — 1. Write

2y -1 = =33 e, et
nt 1s=1
= —E(et—1)+ ZZcos{(t—s)(w+/\)}ete,
t£s

using sin(A) = —sin(—A). Thus

-1

mz (_)2(A wH 1 Z @2l — 1)

m
r=I+1 j=i+1
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AB—d)+l ¢ — |

Z ( ) - (2.15)

1+1

Z(ft -1)
mz:( )Z(A di)+1 1 IZ

141 141

ZZCOS{(t—S )(w+ Aj)}eres|. (2.16)

t#s

Under A.3, 1577 (e?) & 1 from Theorem 1 in Heyde and Seneta [13] and

7"2-:1 (%)Z(A—dx)'i'l rr—;l -0 (i (;)Z(A di)+1 i) o(1)

r=lt1 141
and thus (2.15) is 0p(1) in ©;. Assumption A.3 also implies that

E [quc, Z cos{(t — s) (w + /\j)}}

s t#s i=l+1

= 2 }: Z [ZZCOS{(t—s)(w+/\j)}cos{(t—s)(w+/\k)}—nl

j=l+1k=i41 Lt=1s=1
= (r=Dn?=2(r—1)2n (2.17)
for r such that 0 < w + A, < . To prove (2.17) write
cos{(t — 5) (w + Aj)} cos{(t = 8) @ + M)} = ate + bus + cus +

where
ays = cos[s(w + Aj)] cos[s(w + Ag)] cos[t(w + Aj)] cos[t(w + Ax)]
bes = cos[s(w + A;)]sin[s(w + Ag)] cos[t(w + A;)] sin[t(w + A)]
cts = sin[s(w + Aj)] cos[s(w + Ag)] sin[t(w + A;)] cos[t(w + Ax)]
dis = sin[s(w + A;)] sin[s(w + Ag)] sin[t(w + A;)] sin[t(w + Ag)]. (2.18)
Now
n? .
gzats—;zgdts = _4— ifk=j
= 0 otherwise
and n n n n

which proves (2.17), and thus (2.16) is

T\ 2A-d)H (o DE) 1 ™ 2(A—d)-1
Op (Z (};{) 2 ) =0p (mz(A—d,)-H H-er ’

1+1

o (@) )0
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as n — oo. Thus we have proved that supg, (2.4) = 0,(1).

NOW Sup@ (2.5) 1S bounded by
E (— - 1) .

3 m 2(Az—dy)
m—1 ( 1)

Because (;7)* — 1 for all @ as n — 0o we focus on X |E;'_'H(§Jl - l)l and use (2.7)

(2.19)

to show in the same manner as above that supg, (2.5) is 0,(1). Since d; < dj,

m

1 gi (1 1;
plls |- bk
{m,§ 212}

1 /(7\° i\®  n2da=d)og m®
- (S5 (o (0 25289) -o() -
1+1
under A.4. On the other hand,

1 a1 ) 1 <N nd2=d1(log j)3
E{‘T;Z?_'Ili—laj' chl}‘—‘o(;z_j_%:};—:m—

1+1 1+1
n%=% (logm)3
= ( [3+da—di =o(1)
under A4, and finally X an |27 I¢; — 1] is bounded by

Z cos{(t — s) (w + A;)} ez€s

1+1 t s#t

%Z —D|+|

= op(1)+0, (\/—%) = 0,(1).

We have shown that supg, |A(d)| 2, 0 and thus

C@) _
C(d)

A(d)| _ supe, |A(d)| 20
o) | B(d)| = infe, [B(d)]

sup

and the proof is completed in the case d; < A1+ % Butifd; > A+ %, O, is not an
empty set and P(infe, S(d) < 0) may be different from zero. However we will see

m
that in fact P(infe, S(d) < 0) — 0 as n — co. Write p = p, = exp (,ﬁ > logj)
i1

m . 2(d—d1) .2d .
and S(d) = log{D(d )} where D(d) = =L ;1 (f;) 4 I;. Since l4+1<p <
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m then,
-\ 2(d—dy) .\ 2(A—dy)
mf(l> 2 (l) forl+1<j<p
(C2Y p p
.\ 2(d—dy) .\ 2(A1-d;)
inf (l) > (l) forp<j<m.
92 \p P

It follows that
inf T 1
inf D(d) 2 = > i

289

1+1
where
.\ 2(A—dy)
; for I+1<j<p
a; = ; 2Ar—dy) '
(p) for p<j<m
Thus
i 1 ¢ :2d
P (gxsz(d) < 0) <P ('ﬁ;(aj -1 L < 0) .
Under A 4,
1
p ~ exp (m—_i{m[logm — 1] —[logl — 1]})
= exp(—1+ logm)exp (Irlnoiry - :Tl‘ofll)
m m
= 2o~ T,
and
p —
=i+l ! 200 —d)+1 (2(A—dp)+1)pHa-d)
Thus

1 « 1 <&
—2 (4 -1)2——> a1

1+1 1+1 _
~ 2(A=-dy)+1
e2A-d)+1) " m—1" (m-)m¥E=4)
= : —140(1).

e(2(A—di)+1)

Choosing A < dj — 1/2 + 1/(4e) (which can be done without loss of generality
because d; — 1/2 > A; in ©3) we have that for m sufficiently large and -"; —.0 as
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m — 00, Zy 3 (aj —1) > 1 and

m 2dl f
P (ﬁ Z(a,- - 1)< 0) ( IZ(a, - 1) L41< 1)

I+1 1+1
< ( 12(1—1) 15%2(%—1))
1+1 141

IA

1 « I;
Pl|l— P — g _ > .
( mo7 2@ Y (su 1) - 1>
1+1
Since EH—I aj ~ pidi- -a) fp 2AA=di)qg 4 p2(di=A1) fm 22(A1-d1){p = O(m) it fol-
lows that

1 & g\ I;
a0 (1-%) 2

141

1 ¢ i\“ 7\, n¥4-dlog;
on (5t +0 () (1 (3)+
m a
= 0 ((3)) ==

as n — 00, under A.4 and because @ > 0. On the other hand,

Z(a; — |ej 1]

H-l

di(]p
= ( Z(a] -1) ]2+§, gdl]) )

I+1
n%=d (logm)?*
Op (——W =0p(1)

as n — oo under A.4, and finally

LS ey~ 1) (@nl 1)

141
= 3 E( &= —7 i(a: +1) (2.20)
141
T ) LS (e~ eos{(t— ) + M)} ees.  (2:21)
t st 1+1

Since ,—HL_—, S>(a; — 1) = O(1), (2.20) is op(1). Now (2.21) has variance

Z (aj —1) Z (ar — 1) (Z Z(au +bis +cis +dis) — Tl)

2
n (m j=l+1 k=141 t=1s=1
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where ays, bis, ¢t and dys are defined in (2.18). Thus the variance of (2.21) is

n? m 2
nz (m N Z(a; 1 - ;ﬁ (Z(aj _ 1)) . (2.22)

141 141

The second term of (2.22) is O(n~!) because Y}, (a; — 1) = O(m). Now

o=y () Rl

1+1 1+1 p+1

1 4(8-d) m\ 4(81=d1)
= O|pl +l(—> 4+ mlo m(—)
(P ogp P g P
1\ Aa=d)
= O(mlogm+l<—> )
m

logm  [4(A-d)+1
—l)2 Z 4 = ( + mad—d+z | o(1)
1+1

and thus

because 4(A — dy) + 2 > 0. Thus (2.21) is 0,(1) and consequently P(infe, S(d) <
0) — 0 and the proof is completed.

3. ASYMPTOTIC DISTRIBUTION

In this section we show that under some conditions stronger than those needed
for consistency but milder than the assumptions imposed in the log-periodogram
regression in the sense that Gaussianity is not needed,

vm(dy —di) S N (o, i) :

The constancy of the asymptotic variance of d; makes easy the use of approximate
rules of inference. We also observe the gain in efficiency with respect to the log-
periodogram regression where the asymptotic variance has an upper bound of 72 /24
and a lower bound 1/4 but this lower bound is not attainable by that class of
estimates (see Robinson [17] and Arteche [1]).

We introduce the following assumptions:

A.2’. In aneighbourhood (—6,0)U(0,6) of w a(X) = Y 4o, axe’*? is differentiable

and
d _ la(w £ A)| +
d,\a(w:t/\)_0<-———:\— as A—07.
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A.3’. Assumption A.3 holds and
E(C?IFt_l) = M3 and E(f?lFt—l) = M4, t= O,il, e

for finite constants p3 and p4.

A4, fdy > ds,

142a 2
1, mlogm)® o s om0,

n2a
and if d; < dy
logm 3 n2(d;—d1) m1+2cx
( I ) (lOg m)4 im logm + (lOg m)2 —0
as n — 00.

Assumption A.2’ implies A.2 because f(\) = %;Ia()\)|2. A.3’ implies that z; is
fourth order stationary and holds if the ¢; are independent and identically distributed
with finite fourth conditional moments. A.4’ is Assumption A.4’ in Robinson [18]
if d; > dy but when d; < dz a strong trimming is needed as in the proof of the
consistency. Taking m ~ n? and [ ~ n® we have that in case d; > d3, 0 < 2a/(1+20)
suffices, but when ds > d;, A.4’ can only be satisfied if d2 — d; < o/(3 + 4a). For
instance when @ = 2, dy — d; has to be smaller than 2/11. However we can relax
A.4’ by strengthening A.3’. We thus can consider:

A.5. The fourth cumulant of ¢; is zero for all t.

A.6. Ifd; > dy; A.4’ holds and when d; < d;

12 ’ n2(42—d1) m1+2a

log m)3
(logm)? —(]ogm) + gy 08m + o (logm)? — 0

12
as n — o0.

Assumption A.5 is implied by Gaussianity and A.6 entails (d2 —d) < o/2(1+a),
where the upper bound is 1/3 when a = 2. This requirement is not much stronger
than dz — d; < 1/2 which is satisfied if there is both a left and right (stationary)
spectral pole at w.

Theorem 2. Under A.1,A.2°, A.3’ and either A.4’ or A.5 and A.6,

)
- as n — o0.

Vm(dy —dy) SN (o, 7

Proof. Like in the proof of consistency we focus on the case da > d;, the proof
with dy < d; is a straightforward extension of that in Robinson [18]. Since d; is
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consistent under the conditions in Theorem 2, then with probability approaching 1
as n — oo d; satisfies

dR(d,) _ dR(dy) N d?R(d)

dd ~ " dd a@ (=) 3D

0=

where |d — dy| < |d — dy|. Write

~ — 1 2d k
Ci(d) = mj;;l ;% (log ;)" I.

Then

dR() _,
dd " C(d)

Ci(d 2 = d?R(d)  4{Cy(d)C(d) — C3(d
1(d) 121 Y (d) _ 4{C2(d)C(d) — (d)}

7 -
141 dd* ¢*(d)

Define also

~ 1
Fy= — Z (log)*32 I;, Ei(d) = — Z (log 7)*5** Ij,
'—I+1 J =141

thus . . - -
d’R(d) _ H{Fy(d)Fo(d) - FP(d)} _ H{Ex(d)Eo(d) — Ez(d)}

dd? Foz(d) Eg(d)
Fix ¢ > 0 such that 2¢ < (logm)?. On the set M = {d : (logm)3|d — d1| < ¢}
y LS4 1) 1og )t

1+1
S 26|d— dllEk+1(d1) S 26((10g m)k—2E'0(d1)

|Ex(d) — Ex(dy)|

IA

where the second inequality comes from the fact that

ljz(d—dl) _ 1|
2|d - dy|

on M. Thus for n > 0,

P (IEk(J) — Ex(dy)] > 17( )—m)
( ) o |de M)
v P (1B Buan>n (2) " 12 u)

< P(C(d) > goz(logm)™™) + P(logm)*|d - il > Q). (32)

< (logjym?4=4! < mmsw logj = elog j

< (Ze((log m)¥=2Eo(dy) > n
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Since from the proof of Theorem 1, C(d;) & C € (0,00), the first probability in
(3.2) tends to zero for { sufficiently small and k¥ = 0,1, 2. The second probability is

bounded by

P ((log m)?|d; — di| > c) (3.3)
< P ( inf  S(d) < 0) +P ( inf S(d) < o) +P (inf 5(d) < o)
@,NNsNM ®,nNs 02

where M = (—00,00) — M. We have already shown in the proof of Theorem 1 that
the last two probabilities in (3.3) tend to zero. The first probability is bounded by

P T(d)|> inf U(d)]. 34
(pue @12 ot U@) (3.4
As in the proof of Theorem 1,
C2
inf U(d) > ———.
eml!r\;anM (d) 2 (logm)®

Call y = 2(A —di) + 1. On ©y, 7 > 0. Consider ()" (logm)® = iz (eem)®

6
where 0 < a < 7. Now glﬁfnﬂl-——>0asm—rooand

PN P21
(m'y-a) :Eml'%‘

Under A.6 (and of course A.4’), }:— — 0 as n — co. Choose a < %, which can always

be done because vy > 0. Then (%)7 (logm)® — 0 as n — co. Thus noting the form
of T(d) and the orders of magnitude obtained in Lemmas 2 and 3 it follows that

under A.4 or A.6 (3.4) tends to 0 if
C(d) - C(d)
C(d)

=0p ((log m)—s) .

®,;NNs

Using the notation in the proof of Theorem 1, and because of (2.3),

. . 1
ol 7D 2B 2 3

for all large enough m. Thus it remains to prove that supe,nn, [4(d)|=0p ((logm)~¢).
Now

g, M)
< s {12 (L>2(d—d1)+l '"Z-:l (1)2(d_d1)+1_13 i (ij-—l)
T @inNs m—1 reig1 ™ lizipr \Yi
)l )
m—1l\m-1 iS5 \Yi
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Since (%)a — 1 for all @ we focus on

e\ 20—+ T[S (L ) 1|/, )
oA @R ()| 2 (-
N r\m2 1| (1]- ) 1 |« (I, )
< L - 1)+ = < _1)|. 3.5
r:IX;I (m) r2 j=;+1 gj m é gj (3.5)

Now, using Lemmas 4 and 6, the first part of (3.5) is

m 1-26 1 | < (L
3 (%) =) (i —onl; + 27l — 1)
1+1 41
m — o
- o (S A (S )

my\ o 1\ * 1\!% logm
= Op ((;) + (_T;) logm+ (E) + \/E (36)
under A.4’ or A.6. Since § < 1 then (3.6) is 0,((logm)~%). Similarly the second
part of (3.5) is

ma+1

0, (%(\/m +1%m%)) = 0, ((log m)~°)

under A.4’ or A.6. Thus P (infg,nn,nsz S(d) < 0) — 0 and
L 9\ ~241
P(lEk(d)—E‘k(dl)l >n( ) )_,o

n
d’Rr(d) .
as n — 0o. Consequently _HEEJ is

A[{Ey(d1) + 0p(n?*)} {E?O(dl) + 0p(n241)} — {E1(d1) + 0p(n?®)}?]
{Eo(d1) + 0p(n241)}2
A[Fy(dy) Fo(dy) — F2(dy)]
F3(dy)
Now for £ = 0,1, 2,

n¢

+ 0p(1) as  n— 0o. (3.7)

Fuldr) - = > (log )"

I+1
C ¢ -k(IJ' ) i C L
— log/)* [ £+ —-1)| < (logm)* —— -1
|m-’z+zl( s \s m—’g; 9

= o, (%%%’-)“aogmu(%)%(logm)z)=op<1> (38)
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under A.4’ or A.6. Thus from (3.7) and (3.8)

d’R(d 1 & s ?
ddg )=4 {m — Z(logj)2 - (mL—I Zlogj) } (14 0p(1))+0p(1) B 4

1+1 141

as n — co. Now since C(d;) & C

dR(d)) A% I log A
ﬁ_dd = — Z ( C(d ) —log);

I+1

fod \/m 2d1
= 2X— —IC+0,,(1)Z log \; ———Zlog,\ A4

I+1

= \/—Z v (— - m,) (1+0p(1)) (3.9)

I+1

+ Evﬂﬂe,(l +0p(1)) (3.10)
I+1

where v; = logj— L7 37} log j satisfies 3} ; v; = 0. Since |vj| = O(logm), using
Lemma 6 we have that (3.9) is

meti I3
O,,( o logm + glogm)

under A.4’ and

a+
Op( 2logm+ T—logm)

under A.5 and A.6. In both cases (3.9) is 0,(1). Apart from the o,(1) terms, (3.10)
is

Z”J zzm (ilt=2) (wAj)

l+1 t=1s=1

= Zv,222qe,cos{(t—s)(w+/\ )}-—2221
MR 1=2sm1

where z; = 0 and
zz = qzc,c,__, for t=2,3,...,n,

& = Zv, cos{s(w + Aj)}. (3.11)

I+1
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The z; form a zero-mean martingale difference array and from a standard martingale

CLT (Hall and Heyde [10], section 3.2) 3"}, z; converges in distribution to a N (0, 1)
random variable if

n
a) Y E(z}|Fi-)-150
1

b) Y E(zI(|lz:| >6)) -0 forall §>0.
1

To prove a) write Y 1 E(22|Fi-1) — 1 as

n t-1 2 n ft-1 2
ZE |:€tz (Z fsct—s) IFt—-l] ~-1= Z <Z Csct—s) -1
2 s=1 2 s=1
n t-1 n t—-1
{ZZe,c, s — 1} + ZZZere,ct_,c,_,.

t=2 s=1 t=2 r#s

The term in braces is

n-1 n—t n—1ln-t
{2(53—1)263}+{21 cf—l}. (3.12)
t=1 s=1 t=1 1

=1 s=

Now Y io) Lyt 1 ¢2 is equal to

E E (E vj cos{s(w + A; )})

t=1 s=1 \I+1
= n2 Z E Zcosz{s(w + X))} (3.13)
=41 1
+ —ZZZvJkaZ[cos{s 2w+ +A)}+cos{s(Aj —Ap)}].  (3.14)
I+15£k

From formula (4.18) in Robinson [18], namely,

-1

<

—1 cosf —cos(qgf) gq-—1
ot) = - 3.15
1 cos(ft) Ton? 3 (3.15)

T

1t

.,
[

for 6 # 0,mod(2n), we have that for j such that 0 < w + A; < 7 (which holds for n
large enough),

n n-—t nlnt

Z Z cos?{s(w + )} = 3 Z Z(l + cos{2s(w + A;)})

t=1s=1
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_ 1 cos{2(w + Aj)} — cos{2n(w + };)} n-1
= 22(" 4sin’(w + ;) 4
_ (n-1)
= 2 + 0(1). ‘
Since
2
1 « 1 « , 1 &K, . 1 2
—— D v = —— D (logj)* - (—m Zloga> =140 (("—gn:")—)
I+1 141 1+1

we have that (3.13) is

4—n-’ (1 +0 ((l°§nm)2>) (("_41)2 + 0(1))

= = <(";1)2 (g(logm)z» —1 as n—oo.

Now for j, k such that 0 < 2w + A; + Ay < 27 (which always holds for a large
enough n) and j # k we can again apply formula (3.15) and we get that

n—1ln-t

z Z[cos{s(?w + Aj + Ak)} + cos{s(Aj — Ax)} = —n + O(1)

i=1s=1
so that (3.14) is
1 & m
0 (; ZU;) =0 (;) = o(1).
1+1
Thus the second term in (3.12) tends to zero as n — oo. The first term has mean

zero and its variance is
n—-1 /n-t 2
; 2
0] E E c; .
t=1 s=1

les| < < o= Z v = (@2’5’2) (3.16)

H—l
and for 1 < s < n/2, by summation by parts, |¢,| is

Now

vj cos{s(w + A;)}

n\/_'Z

I+1

\/— Z (vr — vr41) Z cos{s(w + Aj)}+ \/_vacos{s(w + )}

r=I41 j=l+1 1+1

= ( r;+llog(1+) + \;ﬁlogmn) o(?jl‘) (3.17)
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because 2;11 cos{s(w +j)} = O(ns™!) for 1 < s < n/2 (see proof of Lemma 4)
and [log (1+ )| < 1/r for 7 > 1. The bound in (3.17) is at least as good as that in
(3.16) for n/m < s < n/2. Consider w a harmonic frequency (which can always be
done for n sufficiently large), then ¢, = ¢, and from (3.16) and (3.17)

ZC _ (n m(lc;gzm) + (logmm)2 Z 5'2) -0 (M) (3.18)

>

and the variance of the first part of (3.12) is O (ogm)*') hys 3.12) is 0p(1). In
n P

order to prove a) it remains to show that

n t—1
DD D erksciorcims = 0p(1). (3.19)

t=2 r#s

The left hand side of (3.19) has mean zero and variance

nn t-1 u—1
E Z Z Z Z E E[frfsfpfq] Ct_rct_,(,‘u_pcu_q

t=2u=2 r#s P#q

n  n min(t-1,u-1)

QZZZZ Ct—rCt—sCu—rCy—s

t=2u=2 r#s

n t-1 u—1

2ZZth Lcl ’+4ZZZEC‘ rCi—sCy—rCy—s. (3.20)

t=2 r#s t=3 u=2 r#s

The first part of (3.20) is O ((log m)*n~"') from (3.18). The second part is bounded
in absolute value by

4i§(§c, ,Zcu ) <4(th) (ii § cf). (3.21)

t=3 u=2 t=3u=2t-u+1
Now
n t—1 t-—1 n—-2
G=S i i- DG <n3 i,
t=3u=2t-u+l ji=1
81 = n(log m)?
<n ic2 +n ic? = =7
= ; JCj Z J¢ mi
[nm'%]-}-l

using (3.16) and (3.17). Thus noting (3.18) we see that (3.21) is
0 (n(logm)2 (log m)2> —0 ((logm)4> — o)
ms

m3 n
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and (3.19), and thus a), are proved.
In order to prove b) we check the sufficient condition

ZE[Z?] —0 as n— oo
t=1

Now

n

n t-1 4 n t-1 4
Z E[2}] = Z E l:et Zf,ct_,J = mZE Ze,ct_,]
1 - 2 s=1 2 1
n t—-1
< “4ZE I:ZZZZe,erepeqct_,ct_rct_pq_q]
2 s 1

r P q=

n n n t—-1
<y (zcz) S N
2 s=1

t=2 s r=1

=0 (n (Z::c?) 2) =0 ((lii'—"—)i> =o(1)

in view of (3.18) and this concludes the proof of the theorem. o

4. APPENDIX: TECHNICAL LEMMAS
Let v; = Mg_—? be a scaled discrete Fourier transform and denote 9; the complex

C2x;
conjugate of v(A).

Lemma 1. Let assumptions A.1 and A.2 hold and let k = k(n) and j = j(n) be
two sequences of positive integers such that j > k and £ — 0 as n — co. Then as
n — oo:

a) Elos[? = 1+ 0 (195037244 4 (£)°)
b) Evju; = O (18ix; 24 ))

C) EI'U]’I_)]C = O (_]\_O/E]—% ;(di_dl)Ak_(di_dl))

ogj y—(di=d1)y—(di—d1
d) Evju :o(‘—\/%,\j( ¢ ))

where d; = max(d,, d3).

Proof. See Arteche [1]. o
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Lemma 2. For € € (0,1] and € (¢,00), when I — 0o and £ — 0,

S @) w

j:l+1

sup
€e<Y<k

Proof. Fory >0

~ m ] v-1
m—lz(m-—l> -1

I+1
s - = AN
< 7/—7 (_I_ﬂ) 427" 1 dl‘+72/ <L) I T B
0 m—1 | m—1
y (1+1\" 1 Wy =1l<~(_i "
= m-1<m-1) * s m T 2 \m (42)

1+1

using the mean value theorem. The first term is O(m~717~1), the second is O(m~7)
and the third is O(m‘ll) for ¥ > 1, zero for y = 1 and O(m="1") if y < 1. Thus

(4.2)isO (( )7 ) and the left hand side of (4.1) is O (( ) ) because ¢ € (0, 1].
a

Lemma 3. Let | — oo and # — 0 as m — oo. Then,
l l

m

Z logj —log(m—1)+1|=
j=i+1

Proof.
’——Elogj—log(m—l)+1
1+1
- 1 log(1+1
= —IZ/_, 110g< )d2+—-—1'+ Iog(+)
142 Y7
1 1 1
- L - - 1
< 2/11 I_ldx+m_l+m_llog(l+ )
1+2 Y7
1" 1 l
< Irln—_*_——l Z ;+—(1+log(l+1))— (~logm) o
1
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Lemma 4. Let r > [ and I; defined in (2.7) and A.3’ hold. Then

3 (@rI; — 1) = 0y(r).

i=l41
Proof. Write

2rl; = 2m|We(w+ X2 =

1| ’
Z it(wHA;)

p— ete 7

n t=1

1 n 9 n t—1
= ;;cf+;;etz—;e,cos{(w-{-/\j)(t—s)}.

Thus

r

> @rl;-1)=

j=I+1

n t—1
2 - 1) + Eft Zfsdt—s
t=2 s=1

where d; = 2377, cos{(w+A;)s}. If w is a harmonic frequency of the formw = B

J. ARTECHE

(4.3)

n

where w is an integer then d; = d,,_;. Since in our analysis n — 0o, we can express
any frequency w € (0, 7] as a harmonic frequency for a large enough n. Also |d,| < ":1—'
and for 1 < s < n/2,|d,| < £+ & Thislast inequality can be proved in the following

way. Write
2
ds = Z cos(ws) cos(sAj) — — 2 sin(ws) sin(sA;),
"in e
then

r

% Zcos (sAj)]| + Zsm(s/\ )| -

141 1+1
By formulae (5.10) and (5.11) in Zygmund [20], Chapter 2),

lds| <

1 1 1
+Zcostv—§cosrt " for 0<t<w
and
. 1 <2
Zsmtv— —sinrt -
et 2 t
Thus
r r 1
ZCOS(/\J’S) < Zcos(/\js) + Zcos(/\js)
1+1
<

+ Z cos(Ajs) — = cos()\ s)| +

|_ - 1cos(,\ 5)
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+

!
1 1 1 1
3t _;_1 cos(Ajs) — Ecos(/\ls) + ‘5 ~3 cos(A;s)

l+2 for 15.‘;52
TS 2

IA

and similarly |Y77, ; sin(A;s)]| is bounded by

% sin(Ars)

+

Z sin(Ajs) — % sin(Ars)
1

1

Zsin(Aj 5) — %sin(/\;s)

1

+ + 522+1

m

%sin(/\ls)

and thus |d,| < £ + &.
Both terms on the right hand side of (4.3) have zero mean and variance respec-

! l ( )
1 1 [n] ( )
L ( ) s n ( )

which concludes the proof. m]

Lemma 5. Let j be a sequence of integers such that % — 0 as n — oo. Then
under A.1 and A.2’,

/,, () —12K(A—A-—w)d,\ = 0(1) if dy>d
_r la(w+ ;) ! B j h=

2(d2—dy)
0) G [;] ) if d; < ds.

Proof. A.1 and A.2’ imply that we can pick § € (2)j, ) such that for some

C < oo,
la(w4+X)| < CA™%, |a(w—=2A)| < CA~%

and
o (w + )| < CA~H71 o (w - A)| < CA~%!

for 0 < A < 6. Now split the integral up into,
w—4§ w—%i- w+%7'— w42 w48 T
Lol Ly Lt L
- w—4§ w— w4 wH2X; w46
Write j = a(w + Aj) and f; = f(w + Aj). The first integral is equal to
1 w—46
[ {17 - 2 - 05803 +1a; P} KO = &y —w)d

|2 Jn |
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and this is bounded in absolute value by

f“l,{ max K(A-,\,-—w)}{ f()\)d)\+|a’l el

—m<ALw-4§

la | w=—4§
+ == -(,\) d,\} / K\ =)j —w)dA
o _r
12d, dy

— J 37 -1\ _ (i1

= 0 (nl+2dl + e nltd: +n ) =0(G™")
using well known propertles of the Fejer’s Kernel (see formulae (4.5) - (4.7) in Arteche
[1]). Similarly

L

The integral over [w — §,w — A;/2] has an absolute value bounded by
_ 5
1] ey {0 / AT (=) = ;) dA
fi \dacs A37% ] /3
L G ’\)l / A5=da g (=X — 2j)d)
loil? | icacs AF™

odeil )y e =] _d’\)l / AE=d K (=) = );) d)
|oj | Micags AITE 4

§
+ /zi K(=A=);)d)

2

= O(]—l)

= 0 (A?dlﬂ—lt\j—l_mh + )\}iln—lAj—l—d; + 'n_lA}_I)

2(d2—d1)
0 (% [?] ) it dy < ds.

Proceeding similarly we get that

= O(]_l)

/w+6
w42X;

Now the integral over [w + 32-’-] is bounded in modulus by

A
3

max  |K(\— A)|{?1j— , J@+nax

_h<A<_L -3
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|os] % _ A
a,2/xla(w+,\)|d,\+ |a;] _|a(w+A)|dA+Aj}
eyl .Y

l loj |2 J_ 24

= 0 (na72 [Nz 4 a4 1)) (4.4)

where i = 1 if d; > d and i = 2 if d; > d;. Thus (4.4) is O(j~!) if d; > d; and
0 (]1-. ] 2(d°'d‘)) if dy > dy.

Finally using the mean value theorem

w425
/w+ﬁ;-

1

|e;]2

2);
/ﬁ la(w + ) — a(w + A)PK(A = A;) d>

1 d 2 2X;
S {3}2\2& oW +A) }/%L A= X2K(X = A;)dA
= 0y y) =07
which concludes the proof. o

Lemma 6. Let 0 <l<r<m. Let A.1, A.2’ and A.3’ hold and d2 > d;. Then

r . a+1
5 (h-vms) = o(Sreiet) mimes @
j=i+1

ra-{-l
0, ( + I) under C.5 and C.6 (4.6)

na

where I; is the periodogram of z; = Ez; + ) 22, ejei—j at (w + Aj), I is the
periodogram of €; at frequency (w + A;j) and g; = C/\]-'Zd‘.

Proof. From Lemma 1 and A.1,

" (I, I r g; I;
B (2-7)|=2 o (-9) (2)
g; 9 fi ; fi) \gj
r S\ Qa . 2(d2-dl)l .
_ J Ja, m 0g j
- o(% <n> (1+(n) + gy ))

ra+1 ra+1 nZ(dg—dl) log r ra+1
O( ne + n®  [142(d2—-di) ) = O( no )
under A.4’ or A.6.

Write u; = \/21r|v7:11}[ and v; = vV27W,; where W; and W,; are discrete Fourier
transforms of z; and €; respectively at frequency w + Aj, and aj = a(w + }j) =
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S pe o akef @A) Then

r L 2 . 2
E < —orl,; =F u;|* — vj|2} =a+b
{;(f )} {Z(l o3

141
where
r
a = Y (Blyl*+ Elv|* - 2EJujv;|)
j=l41
r
b = 2 Z Z (E|ujuk|2 - E|Ujvk|2 - E'|ukvj|2 + E|vjvk|2) .
=l E>j

Since for any zero mean random variables u, v, w, z,
E(uvwz) = E(uwv) E(wz) + E(uw) E(vz) + E(uz) E(vw) + cum(u, v, w, 2)

where cum(u, v, w, z) is the joint cumulant of u, v, w and z; we can decompose a and
b into a; + as and b; + by where

a = ) {2AEI )+ |E@)] - 2|E(ujv;))?
I+1
= 2|B(u;5;)* = 2E|u; | Elv; |* + 2(Elv; *)? + | E(v])|*}

T
a; = Z{cum(u,—, uj, 4j, 4;) — 2cum(uj, vj, 4j, v ) + cum(v;, vj, vj, v;)}
I+1
;
b= 2 ) Y {ElPElurl® + [E(ujur)? + | E(ujir)|® — Eluj|*Elvi[?
J=l+1 k>j

— |E(ujvr)|® = |E(ujve)|® — Elug|*Elv; |* = | E(ugv;)|* — | E(ur ;)]
+ Elv; PE|ve|* + | E(vjur) 1> + | E(v; oe) |}
2 Z Z{cum(uj,uk,ﬂj,ﬁk) - cum(uj,vk,ﬂj,t_)k)

i=I+1 k>
— cum(ug, vj, U, v;) + cum(v;, vk, U5, Uk ) }-

by

I

Now because E|vj|? =1 and Lemma 1,

> A2ABly® = 1)° + 2Bl [* = 1) + | E(u)|? — 21 E(ujvy)
1+1
— 2|B(u; ;) — 11° — 2(E(u; 5 — 1) = 2(E(4v;) — 1) + |E(v])[*}

r n2(dz—d1) lOgJ nz(dg—dl)
o (Z j1+2(da—dy) =0 (lz(d,_d;)‘ log 7'>
I

+1

ai
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b

23" S (Blul? ~ D(Elus = 1)+ B+ 1w 70) — [Euso0)]
14+1 k>j
—|E(ujor)|* — | E(urv;) 1> — |E(ui;)]? + |E(vjvr)|* + | E(vi5r)|*}

ni(d2— d‘)(log k)z nA(d2—di)
( Z Z p1+2(da—d) j1+2(da—d1) | — 0 (Md,—d)(logr) )

i=l41 k>

and under A.4’ or A.6, a; is O(l) and b, is O(I?). Now applying formula (2.6.3) in
Brillinger [3],

cum(u;, vg, 4j, Uk) = // Jujwea;,o0 (A, 1, €¢) dAdpd

where fu; vy,a,,5. is the fourth order cumulant spectrum, and by formula (2.10.3) in
Brillinger [3], we have that

cum(ug ve,85,56) = [ 55 Ay (=0 = 1= O O, (1) A0 (O A

where « is the fourth cumulant of €;, kK = pg — 3, and Ay, Ay, A, As, are transfer
functions of the filters implied in the definition of u; and v;,

1 1 n [ee]
Ui = e eit(w+/\j) Qk€r—k
! laj] v/ ; E

k=0
1 n
Vs — Il eit(w+Aj)6t
SR PD
so that if () = Y pe o ake’*?,

Au,-()\) ( /\)Z it(w+Aj;+A)

|a |\/_
Aaj(A) = Ia |\/__a( /\)Z it(A—w=—2Aj)

A () = ﬁzeff(w“h“)
t=1

1 . “(A—w—/\k)
—_— € .
Vi

Since K = 0 under A.5, then a; = by = 0, and (4.6) follows. In any other case
cum(uj, vk, @j, Ux) is equal to

k1 [1[" e+ p+Qa(=p)
T ///_ = Eji(A 1, ¢) dAdpd( (4.7)

|ej|?

Al'lk (’\)
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where Ejx(A, p,¢) = D(w+Xj —=A—p =) D(w+ A +2) D(p—w —Xj) D({ —w — Ag)
and D(A) = Y7, e'** is Dirichlet’s kernel. Doing the same with the other cumulants
in by we see that the summand of (27)3b, is

niz///_:{ o #|;:|Cz)a(_”) - 1} {% - 1} Ejk(A, 1, €) dAdpd(.
(4.8)

Since
(c1c2 —1)(cacs — 1) = H(C: -1+ EH(CJ -1+ ZZ(Q = 1(cj42—1)
i=1j#i i=1j-1
then (4.8) has components of three types. The first one is

R e P

(4.9)
Proceeding as in Robinson [18] we have that because of the Schwarz inequality and
by periodicity, (4.8) is bounded in absolute value by «(27)3P; P, where

sz/

and K(A) = IJ_H_ is Fejer’s kernel. The second component is

S0 262 s

(4.10)

As before, (4.10) is bounded in absolute value by x(27)3P; Pk%. An example of the
third type component is

%///_{M _ 1}{“_(;1) _ 1} Ejx(\ py ¢) dAdpd¢
o e )

xD(w + Aj — 0) D(w + A + A)D(0 — 2w — A — Aj — M) dAd6 (4.11)

2

@) ] k(= w - w;)da

a;j

because .
/ D(u+A)D(v — A)dA = 27D(u + v).

Thus the absolute value of (4.11) is bounded by %EXPJ-%PE.
Now since the summand of a, is that of b with j = k, applying Lemma 5 we
have when d; < ds,

r n4(d2—di1) n3(da—d1) n2(da—di) _ 1
a; = [0) Z 2
j2+4(d2—d1) ],+3(d, d,) jl+2(da=d1)

1+1
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n4(da—dy) n3(da=di) n2(da—di) _ %
O\ imm@a * praea tpamam | =00

r r n4(da—di)
b2 = 0 '%1 kzl-:{—l {j1+2(d,-d,)k1+2(dg—d1)
J= =
na(dg—dl) 1 n2(dq-d1)
J2(da—dy) g3 +(da—d1) + Vi &= d) 5 +(da=di)
n4(dg—d1) n3(d;—d1) logr ns(dz—dl)
= (14(da—dx) + 12(da—d1)p=3+(d2—d1) * |—3+3(da—d1)
1 nz(d;—d,) 1 n2(d2-dl) 3 1
+ ﬁ—————l-l'*'z(d’_d‘) + ﬁr"l"'z(d"dl)logr) =0 (121'2)
under A.4’ which completes the proof of the lemma. ' a

(Received November 25, 1998.)

REFERENCES

[1] J. Arteche: Log—periodogram regression in seasonal/cyclical long memory time series.
Working Paper, Biltoki 98.17, University of the Basque Country, 1998.

[2] J. Arteche and P. M. Robinson: Seasonal and cyclical long memory. In: Asymptotics,
Nonparametrics and Time Series (S. Ghosh, ed.), Marcel Dekker Inc., New York 1999,
pp- 115-148.

[3] D.R. Brillinger: Time Series: Data Analysis and Theory. Holden-Day, San Francisco
1975.

[4] J.B. Carlin and A.P. Dempster: Sensitivity analysis of seasonal adjustments: empir-
ical case studies. J. Amer. Statist. Assoc. 84 (1989), 6-20.

[5] R. Dahlhaus: Efficient parameter estimation for self-similar processes. Ann. Statist.
17 (1989), 1749-1766.

[6] R. Fox and M.S. Taqqu: Large sample properties of parameter estimates for strongly
dependent stationary Gaussian time series. Ann. Statist. 14 (1986), 517-532.

[7] J. Geweke and S. Porter-Hudak: The estimation and application of long-memory time
series models. J. Time Ser. Anal. 4 (1983), 221-238.

[8] L. Giraitis and D. Surgailis: A central limit theorem for quadratic forms in strongly
dependent linear variables and its application to asymptotic normality of Whittle’s
estimate. Probab. Theory Related Fields 86 (1990), 87-104.

[9] H.L. Gray, N.F. Zhang and W. A. Woorward: On generalized fractional processes. J.
Time Ser. Anal. 10 (1989), 233-257.

[10] P. Hall and C.C. Heyde: Martingale Limit Theory and its Application in Probability
and Mathematical Statistics. Academic Press, New York 1980.

[11] U. Hassler: (Mis)specification of long-memory in seasonal time series. J. Time Ser.
Anal. 15 (1994), 19-30.

[12] C.C. Heyde and R. Gay: Smoothed periodogram asymptotics and estimation for
processes and fields with possible long-range dependence. Stoch. Process. Appl. 45
(1993), 169-182.

[13] C.C. Heyde and E. Seneta: Estimation theory for growth and immigration rates in
multiplicative process. J. Appl. Probab. 9 (1972), 235-256.



310

(14]

(15]

(16]
(17]
(18]
(19]

(20]

J. ARTECHE

A.J. Jonas: Persistent Memory Random Processes. Ph.D. Thesis. Department of
Statistics, Harvard University, 1983.

H.R. Kunsch: Statistical aspects of self-similar processes. In: Proc. First World
Congress Bernoulli Soc. (Yu. Prohorov and V.V. Sazanov, eds.), VNU Science Press,
Utrecht, 1 (1987), 67-74. :
P.M. Robinson: Efficient tests of non-stationary hypothesis. J. Amer. Statist. Assoc.
89 (1994), 1420-1437.

P.M. Robinson: Log-periodogram regression of time series with long-range depen-
dence. Ann. Statist. 23 (1995), 3, 1048-1072.

P. M. Robinson: Gaussian semiparametric estimation of long-range dependence. Ann.
Statist. 23 (1995), 1630-1661.

P. Whittle: Estimation and information in stationary time series. Ark. Mat. 2 (1953),
423-434. N

A.Zygmund: Trigonometric Series. Cambridge University Press, Cambridge, UK 1977.

Dr. Josu Arteche, Dpto. Economia Aplicada III (Econometria y Estadistica), Facultad de
Ciencias Econdmicas y Empresariales, University of the Basque Country (UPV-EHU),
Avda. Lehendakari Aguirre, 83, 48015 Bilbao. Spain.

e-mail: ja@alcib.bs.ehu.es



		webmaster@dml.cz
	2015-03-27T08:02:46+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document




