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K Y B E R N E T I K A — VOLUME 36 ( 2 0 0 0 ) , NUMBER 2, P A G E S 1 4 9 - 1 6 4 

PLANAR ANISOTROPY REVISITED 

VIKTOR BENEŠ AND ARUN M. GOKHALE 

The paper concerns estimation of anisotropy of planar fibre systems using the relation 
between the rose of directions and the rose of intersections. The discussion about the 
properties of the Steiner compact estimator is based on both theoretical and simulation 
results. The approach based on the distribution of the Prokhorov distance between the 
estimated and true rose of directions is developed. Finally the curved test systems are 
investigated in both Fourier and Steiner compact analysis of anisotropy. 

1. INTRODUCTION 

Several methods have been suggested for the estimation of the rose of directions of 
a planar fibre system. We discuss those of them which are based just on counting 
the number of intersections with a test line system, cf. Hilliard [4], Digabel [2], 
Mecke [8], Kanatani [5], Rataj and Saxl [11]. Some of those papers are written in 
the design-based approach with deterministic structure and random probes, others 
in the model-based approach. We use the latter approach in this paper assuming 
that a stationary random fibre process (Stoyan et al [14]) is investigated by means 
of a linear probe. The results of both approaches are comparable and have the same 
value for practical stereological applications. 

The basic integral equation which relates the rose of directions of a stationary fi­
bre process to its rose of intersections has been used for the estimation of anisotropy 
in basically three ways. First a direct solution of integral equation is available un­
der some assumptions, which requires to estimate the second derivative of the rose 
of intersections from discrete data. Secondly the Fourier analysis may be applied 
which also arises some statistical difficulties of the problem. The most recent is 
the Steiner compact method which makes use of convex geometry and the relation 
between symmetric convex bodies and finite measures on the unit semicircle. How­
ever, very little is known about the statistical properties of this estimator since in 
fact a measure is estimated and a suitable probability metric has to be used for the 
quantification of the properties. The main aim of the present paper is to develop 
the investigation of the Steiner compact method. The consistency with respect to 
HausdorfF metric proved by Rataj and Saxl [11] is a qualitative asymptotic result. 
From practical stereology we have the experience that besides asymptotic theory 
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also the small sample properties of estimators are desired. Since these are gener­
ally hardly tractable, we obtain some quantitative results at least for a special type 
of the fibre process, namely the anisotropic Poisson line process. The approach is 
different, finally the distribution of the Prokhorov distance between the estimator 
and the true rose of directions is obtained by means of computer simulations. The 
procedure moreover contributes to the theory and practice of spatial sampling. 

In the second half of the paper the attention is paid to the question whether the 
curved test systems may have some advantage against straight line test systems. 
This important problem has not yet been investigated in detail. 

2. BACKGROUND 

Consider Z = [0,7r) with addition modulo n. This addition may be interpreted as 
a rotation of straight lines around origin in the plane R2 equipped with the Borel 
cr-algebra B2. Thus for zi, z? G Z corresponding to angles (with a:—axis) of given two 
lines, z\ + Z2 is the sum of angles. Denote by yVf, V the system of finite measures, 
probability measures on the borel cr-algebra B of subsets of Zy respectively. Let $ be 
a stationary fibre process in R2 (Stoyan [14]), LA its length density, TZ G V its rose 
of directions, i.e. the distribution of fibre tangent orientations. Let PL(z), z G Z be 
the rose of intersections, i. e. the mean number of points $ D l(z) per unit length of 
a test straight line l(z) with orientation z. It holds 

PL(Z) = LAQn(z), (1) 

where we denote the sine transform 

Gn(z)= I | s in(z- t i ) | f t (d t i ) . (2) 
Jo 

The aim is to estimate 72. given PL(ZJ)} Zj G Z, j' = 1, . . .n. If a continuous proba­
bility density p of 71 exists we have 

PL(*) + PL(Z) = 2LAp(z), 

which yields an explicit solution. This is in practice hardly tractable since the second 
derivative P£ has to be evaluated from discrete data. The formula helps in the use 
of parametric models of 71, cf. Digabel [2]. 

Several authors showed that for the Fourier images 

£ ( * ) = ^ e2kiz7l(dz) (3) 
Jo 

and PL(k) = / * PL(z)e2kiz dz, k = . . . - 1 ,0 ,1 . . . it holds 

^ ) = ^ - ( l - 4 . t 2 ) P L ( f c ) , A: = . . . , - 1 , 0 , 1 , . . . (4) 
ZLA 

When getting PL(k) from data and using (4) the variances of 7Z(k) may tend to 
infinity. We return to this estimator in Section 5. 
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The third approach to the estimation of the rose of direction is based on the 
notion of a Steiner compact set. Let /Ci be the system of all compact convex sets 
in R2. In convex geometry (Schneider [13]) elements of/Ci are called convex bodies. 
Let S = [0,27r), for s G S let s be the corresponding point (cos s, sin s) on the unit 
circle in .ft2. If K G K\ then for each s G S there is exactly one number PK(S) such 
that the line 

{xeR2 :(X)s)-pK(s) = 0} 

intersects K and (x,s) — PK(S) < 0 for each x G K. This line is called the support 
line and the function PK(S)) S G 5, the support function of K. 

If U = [-u,ti] is a line segment in R2, we have pu(s) = |(s,u)\ (the absolute 
value of the scalar product of vectors). For the Minkowski sum K = ©?=i[— tii, U{] 
of line segments (which is a convex polygon) it holds PK(S) = Yli=i \(siui)\- Then 
for a centrally symmetric convex body K C R2 we have the representation 

PK(S)= I |<«, ti>|i|(dti) (5) 

for a finite Borel measure 77 on S. Each convex body K can be considered as a limit 
of convex polygons with respect to Hausdorff metric 

d(K,L) = mf{e > 0 : K C Le, L C A"} , 

where Ke = K © 6(0, £), 6(0, a) is a ball with radius a centred is 0 and K} L G /Ci. 
The Hausdorff metric on /Ci can be expressed equivalently by means of support 

functions as 

d(K, L) = sup{|p/r(«) - PL(s)l s G 5} , K, LeKi. 

In fact if d(K,L) < a then K C La and Px(s) < PL(S) + a, by reversing this 
argument we get the formula. 

Let TK(S) be the intersection point of the support line with K (if the inter­
section is a line segment, TK(S) will be the endpoint with respect to the anti­
clockwise orientation of the boundary OK of K). If x, y are two points of dK 
by IK(X, y) the length of the corresponding arc of dK is denoted. Denote /C = {K G 
/Ci, K is centrally symmetric} and for TZ G M let 11, be a measure on 5 which sat­
isfies H(B) = H(B + TT) = £ft(B) for any 5 G .6. The following result was obtained 
by Matheron [7]) in a more general setting. 

Proposition 1. There is a one-to-one correspondence between the elements 72. G 
M and K G /C given by 

^((*,<]) = ^(rjf(*),rjr(<))> M e s . 

The weak convergence on M is equivalent to d-convergence on /C. 

In the situation of Proposition 1, K is called the Steiner compact set correspond­
ing to 11. For K G /C the support function is uniquelly determined by its values on 
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Z. Stoyan et al [14] call this restriction of PK to Z the modified support function, 
we will denote it again PK- Thus for a stat ionary fibre process $ and the Steiner 
compact K associated to the rose of directions 7£ of <J> it holds 

PK(Z) = \LAQK(Z), Z £ Z. (6) 

i. e. comparing with (1) 2PK(Z) = PL(Z), Z £ Z. In fact the measure rj in (5) is here 
interpreted as an L^—multiple of the rose of directions, rotated by y , cf. (2). 

Rataj and Saxl [11] suggested a graphical method of estimation of the rose of 
directions by means of its related Steiner compact set. Let p, = ^-j-*- be the estima­
tors of support function values at orientations zt- £ Z, i = 1 , . . . , 7i, where n, is the 
number of intersections of the studied fibre system (realization of a fibre process) 
with test segment of length h and orientation zt-. Then the convex polygon 

Kn = {x : (x,Zi) <pi, i = l , . . . , 2 n } (7) 

provides an est imator of the Steiner compact K related to 71. The measure 7Zn 

corresponding to Kn according to Proposition 1 is 

n 

ftn = £ > < 5 * , , (8) 
i= i 

where hi are the lengths of edges of the polygon Kn and 6Z is the Dirac measure 
concentrated at z. The /iz 's have outer normals z,-, in fact Kn may have less edges 
than 2n if hi = 0 for some i. The relation between pi and hi follows (we denote 
a + = max(a, 0)): 

L e m m a 1. It holds 

( . pi cos Pij - pj pi cos Pij -Pj\ . , . 
hi = mm :—+ — max :—j- , i = 1 , . . . , n, (9) 

\-7r<rt t J<o smpij o<Pij<ir smpij / + . 

where Pij are anticlockwise oriented angles between Zi and Zj. 

P r o o f . Fix i and consider the support line /,- of pi and the unique point x £ U 
with distance p t from origin. On the right hand side of (9) there are two terms. 
The ratio in the first term corresponds to the signed distance between x and the 
intersection point of support lines corresponding to p4 , pj. The ratio in the second 
term has the same interpretation for py's with positive angles Pij between zt- and Zj. 
Clearly the difference between appropriate extremes of these terms in (9) yields the 
edge length which may be zero if the difference is negative . • 

The Hausdorff d-convergence of Kn to K is investigated by Rata j and Saxl [11]. 
Since the weak convergence on M is metrized by the Prokhorov metric, according to 
Proposition 1 this is a convenient metric to describe the convergence of corresponding 
Tln to Tl. The Prokhorov distance between measures Q}T £ M is defined as 

r(Q,T) = mi{e > 0; Q(C) < T(C£) + e, T(C) < Q(C£) + e for all closed C C Z}. 
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This definition is equivalent (Rachev [10]) to restricted condition which we use in 
the form 

r(lZn,lZ) = inf{e > 0; lZn(C) < lZ(Ce)+eioi all closed C C Z}. (10) 

In our case lZn is discrete with finite support supplZn C {z\,..., zn} so we have the 
following reduction to finitely many conditions. 

Lemma 2. It holds 

r(lZn,lZ) = inf{£ > 0; lZn(C) <lZ(Ce) + e for all C C supplZn}. (11) 

P roof . Rewrite (10) as r = miV\ and (11) asp = infX>2. Since V\ C V2 we have 
p < r. If it were p < r, then there is an e > 0, e < r such that lZn(C) < lZ(C£)+e for 
all C C supplZn. Since e < r, there exists a C C Z closed with lZn(C) > lZ(Ce) + e. 
Let C\ = CnsupplZn, then C\CC and lZn(C\) = TZn(C) > lZ(C£)+e > lZ(C\)+e, 
a contradiction. Thus r = p. • 

3. EXPLICIT RESULTS FOR POISSON LINES 

The most tractable model of a fibre process in the plane is a stationary line process 
$ with the line density LA and the rose of directions 1Z. Any straight line l(x) 
can be represented by a point x = (z,y) in the parametric space formed by a set 
C\ = (0,7r] x ( -co, 00). Here z is the orientation of the line and y its oriented 
distance from the origin. We have d positive, negative for lines intersecting the 
positive, negative semiaxis x, respectively. If z = 0, y is positive for lines in the 
upper half plane. We can thus represent a stationary line process $ by means of a 
point process ^ on C\, such that the intensity measure A of the process ^ is (Stoyan 
et al [14]) 

A(d(y,z)) = LAdylZ(dz). (12) 

If the stationary line process <I> is Poisson then the point process ^ is Poisson sta­
tionary with respect to y coordinate. Conversely, a random point process on C\ 
stationary in cf-coordinate defines a stationary line process in R2. 

We will investigate the intersections of a stationary Poisson line process with test 
segments of the same length h and of varying orientations. To each segment s a 
subset A(s) C C\ can be found such that x = (z, y) G A(s) if and only if the line l(x) 
hits s. If the test segment is parametrized by its center (xs,ys), orientation /? G Z 
and length h > 0, and the line (z, y) has slope k = tan z, z - ^ , the hitting condition 
is 

kxs -ys + yyjk2 + 1 Һ Һ 

2 ' 2 
(13) 

sin (3 — k cos /? 

More generally we shall consider n test segments s,- with varying orientations 
/?», i = 1, . . . , n and the same length h. Then for any subset I = {i\,..., im} of 
{1,. . . ,n} denote 

m 

A(sI) = A(sil)...,sim)=f)A(sik)n p | A'(Sj) (14) 
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the subset of C\ corresponding to lines which intersect exactly m given test segments 
and not any other. The corresponding A(si)) A(sj) are disjoint for different I, J. 

When $ is a stationary Poisson line process, then the number of lines N(I) = 
N(i\i..., im) of <E> intersecting exactly m given test segments is a random variable 
with Poisson distribution Po(\) with parameter 

= LA I 
JA Л(»., , . .) 

àyП{àz), (15) 

cf. (12). For different I, J the corresponding N(I),N(J) are independent. From a 
realization of the process <£ we get estimators of support function values 

1 n 

N{Һ,. »), i = -.-
m = l { » l f . . . , i m } = / 

i € t 

Using the transfomation formula (9) we get from here the estimators of edge lengths 
hi of the Steiner compact Kn and from (8) the desired lZn. Given the true 1Z the 
ultimate goal is to evaluate the distribution of the Prokhorov distance r(lZnylZ). 
We use formula (11) and search for e in discrete steps e = jv, j = 1,2,.. . , v > 0, 
where only finitely many conditions have to be verified (over all subsets of supplZn 

in each step). Distribution of the Prokhorov distance is finally obtained by means of 
the Monte-Carlo simulation of intersection counts. The whole procedure is demon­
strated in the following situation. 

Consider the unit semicircle x = cos/?, y = sin/?, /? G [—7r, 7T], Denote an = -^ and 
define the test system T of n segments st- inscribed in the semicircle, see Figure la. 
The segments have centres (xj}yj), Xj = cos/?;-cos a n , t/j = sin(3j cos a n , normal 
orientations /3j = (2j — n — l ) a n , j = 1 , . . . , n. The segments have equal lengths 
h = 2sinc*n. The total length of T converges to -K with n —• oo. Any straight line 
in the plane has at most two intersections with the test system T so we need at 
most two-point subsets I C { l , . . . , m } and denote by A;, Aij the subsets of C\ 
corresponding to lines which intersect exactly one, two segments, respectively. In 
Figure lb these subsets are drawn in the case of n = 3. 

Fig. 1. The test system T for n = 3 (a), the corresponding subsets 
-4., Aij, i,j = l , . . . ,n , i < j , (b). 
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Consider a stationary Poisson line process $ with intensity LA and rose of direc­
tions H. Denote JV,-, 1Vtj the Poisson distributed random variables with parameters 
At-, \ij, respectively, corresponding to numbers of intersections of $ with given one 
or two segments. 

Lemma 3. For the test system T it holds 

f(n-i)an 

cos(y-fa) 11 (dy)~ 
I(2n-i + l)o 

p(n-i)an rn 

Xi = 2LA\sinan\ / cos(T - ßi)TZ(dy) - / cos(7 - ßi)Tl(dy) 
1 LJ0 J(2n-i + l)an 

(16) 
r(n-i + l)an j 

+ sin(2an+ßi-ßn) / cos-(2y-ßn-ßi) 11 (dy) 
J(n-i)an

 Z 

p(2n-i+l)an ^ 
+ sin(ßi - A - 2an) / cos - ( 2 T - ßx - ßi)Tl(dy) [, i = 1 , . . . , n, 

J(2n-i')an
 Z ' 

/ ( П - І ) 

Л

f(2n-i+l)an ţ 

(2n-i)a 

and 

r(2n-г-j-гl)an Г fí- - ß- П*n-l-J + Ч<*n , ß-+ß\ 
Xij = 2LA sin ^ E L / cos ( 7 + an - ^±ňЛ <R (d т) (17) 

L l J(2n-i-j)an

 Ч * ' 

д ^ ,(2n-г^+2)an ^ g / ^ ^ ft+Ą\ ^ ^ г, j = 1, . . . , П, Z < j . 

^ J(2n-г-j + 1)an Ч ^ У 

W = ^ ( t f í + £ З Д > * = li--->n (18) 

it holds 
co v (pi ,Pj) = — var N{j. 

P r o o f . The first part needs the expression for boundaries between Aij,Ai, cf. 
Figure lb, which are essentialy shifted sine curves. The inner integral in (15) 
is evaluated and transformed to (16) using elementary trigonometry. The second 
part follows from the independence properties of IV,-y, jV; : It holds cov(pi,pj) = 

.iM-W + £*-» W*)(-Vi + £ w -Vyi) - £(M + EM«- *«) - W + E W -Vii)] = 
^ ( ^ - (iLWy)3). D 

Instead of theoretical formulas (16), (17) we may use the Monte-Carlo approach 
for evaluation of parameters Az-, Xij. It consists in simulation of a large number m of 
points (d, a) in [—1,1] x [0,7r] C C\ so that the d coordinate is uniform random and 
a coordinate is simulated from distribution 7£. Then A; w 2LA

r^-) Xij « 2LA^-) 

where mt-, rriij are numbers of points in corresponding subsets A;, Ajj. These numbers 
are obtained using the hitting conditions (13). 

From a simulation of Ni, jVtj, where only one-dimensional Poisson random vari­
ables are required, we get a realization of the random variable PD = r(TZn)Tl) 
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using subsequently formulas (18), (9), (11) and the discrete step approximation for 
getting infimum in (11). Repeating this step independently we obtain the desired 
distribution of Prokhorov distance PD = r(1Zn,7Z). A computer program has been 
developed for the test system T to investigate the changes of distribution of PD 
with respect to the following variables: a) the intensity LA) b) the rose of directions 
(corresponding to uniform distribution U} a unimodal and a bimodal distribution), 
c) the number of segments n. It is not the aim of this paper to present many sim­
ulation results, two typical graphs are in Figure 2 (probability densities / obtained 
by smoothing the computed discrete distribution). 

v 

f 

/•ч 

-Л 
. . . . / . ) í\ 

0 
t - n PD 

Fig. 2. Estimated probability densities of PD for 1Z = U, n = 8 and L A — 50 (a), 
LA = 1000 (b). 

Since the distance between a discrete and continuous distribution is measured 
in Figure 2, we observe that the distribution of PD is not concentrated near zero. 
Among the discrete distributions 1Zn on [0,7r) with support r cardinality at most n 
the uniform discrete distribution Un (with exactly n equidistant atoms) is nearest 
to U in the sense of Prokhorov distance. It holds r(Un)U) = 7 ^ 7 since the worst 
case in (10) is 

Inr 
l = u n ( r ) < u ( r £ ) + £ = — + £• 

7T 

For n < 6 we obtain a larger lower bound under a supplementary condition. 

Propos i t ion 2. For the test system T, an isotropic fibre process and the Steiner 
compact estimator lZn oilZ—U it holds that the Prokhorov distance 

r(Jln,K)> 4an 
тг + 2 

under the condition A = [hi = 0 for some i]. 

P r o o f . Let i be the index which satisfies A, assume that r(1ZniU) < j ^ . Then 

there is a 6 > 0 such that r(TZn)U) = — ^ - 6. We use the opposite equivalent 

definition of Prokhorov distance 

r(1Zn,U) = inf{e > 0; U(C) < 1Zn(C
£) + e, C closed}. 
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Q _ \ o 2lTan o , 2?rC*n 
ßi rk> ßi + 7T + 2 ' " 7T + 2J ' 

then U(C) = %ft and for e = ^ - 6 we have C* = [A - 2t*n + 6, # + 2an - 6] 
and ftn(C

e) = 0. Altogether 1Zn(C
£) + £ = ^ - 5 < 2/(C), which leads to a 

contradiction. D 

A lower bound for Pr(A) is £ . Pr(B{) - J^^j Pr(Bi n .By). w h e r e Bi = [Pi-i + 
Pi+i -2/>iCos^ < 0 ] . 

4. CURVED TEST SYSTEMS 

In stereology the curved test systems became popular, e. g. the cycloidal arcs for the 
estimation of surface area (Baddeley [1]). We shall investigate the role of curved test 
systems in the estimation of the rose of directions of a planar fibre process. Consider 
a test system t of arcs with finite total length h and t(B), B G Z?2, the corresponding 
length measure oft in B. Assume that almost surely (w.r.t. the length measure) the 
tangent orientation w(x) of t at x is defined. Then the orientation distribution Q of 
t on Z is given by 

J f(a)Q(da) = I J f(w(x))t(dx) 

valid for any / > 0 measurable on Z. Denote by t(z) the rotation of t = 2(0) by an 
angle z G Z. 

Mecke [8] points out that if the test system is formed by curved lines with tangent 
orientation distribution Q G V, then 

P?(z) = LAgn*Q_(z), (19) 

where PL(z) is the rose of intersections <I> f) t(z). Further Q_ is the reflection of 
Q, i. e. f f(z) Q_ (dz) = f f(ir — z)Q (dz) for any nonnegative measurable function 
/ on Z, and 1Z * Q_ is convolution of measures defined by f f(x) 1Z * Q_ (dx) = 
f f f(x + y)1Z(dx) Q_(dy). In particular fovQ — U uniform it follows from (19) 
that Pj_*(z) = \LA. Z e Z, is a constant denoted P%(z) = PL. 

Generally, comparing (1) and (19) we see that if there is a statistical method for 
estimating 1Z from (1), the same method estimates 1Z * Q_ from (19) when using a 
curved test system. Unfortunately, the system V with convolution operation does 
not posses natural inverse element to solve equation 1Z * Q = Q\ for an unknown 7£, 
cf. Heyer [3]. For the Dirac measure <5n concentrated in 0 G Z it holds Q * OYj = Q 
for any Q G V. Using the complex Fourier transform Q(k), cf. (3), we get from 
Q * Q " 1 = 60 that Q(k)Q-l(k) = 1 for all k = . . . - 1, 0 , 1 , . . . Thus a necessary 
condition for the existence of Q"1 would be that there does not exist an integer k 
such that f* cos 2kzQ (dz) = 0 and f* sin 2kzQ (dz) = 0, which is obviously not 
fulfilled by many elements of V, e. g. by uniform U and discrete symmetric measures 
Q = - Y^? - c5fc-r , , n G N, z G Z. Moreover, for an absolutely continuous measure 

n * -f K — L ~\~z ' 

Q G V with density q with finite expectation, the Fourier coefficients tend to zero 
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with k —* oo (Kufner and Kadlec [6]) so that the Fourier coefficients of Q"1 should 
tend to infinity. 

Elements 6Z G V, z G Z provide rotation Q(z) = Q * 6Z of a given measure 
Q G V. The effect of the convolution operation of measures on Steiner compact sets 
(corresponding by Proposition 1) may be observed most easily when both measures 
are discrete: 1Z = ]C"=1 a ,-^, Q = Z ^ L i M " ; ' zC ai = I2bj = *> ai>6i > ° 
UijVj G Z. Then the convolution TZ * Q is again a discrete measure with support 
{z = Ui + Vj] i = 1,. . . , n, j = 1 , . . . , m}. The atom in Ui + tjj has size ciibj. Now the 
Steiner compact associated with a discrete measure is Minkowski sum of centrally 
symmetric segments in R? corresponding to atoms. These segments are [—c-j, c,-j], 
where ci;- are vectors in R? with orientations w,- + fj.and lengths a2-6j. 

The following result comes from Mecke [8]. 

Propos i t ion 3. For the Fourier images R(k)) Q(k) defined by (3) and for P^(k) = 
f* P2(z)e2ki2dz it holds 

lZ(k)Q(-k) = J - ( l - Ak2)??(*), A = . . . , - 1 , 0 , 1 , . . . (20) 
2LA 

P r o o f . Let / be a ^-periodic twice continuously differentiate function then 
f* f(z)lZ(dz) = \ f$ Gn(z)[f(z) + fn(z)]dz using two-fold integration by parts. 
Then putting f(z) = e2kzi we get formula (4). Using the same idea to TZ * Q_ 
and using the fact that the Fourier transform of convolution is a product of Fourier 
transforms we get (20). • 

Alternatively we may use the real Fourier series on Z = [0, IT) in the form 
P 00 

P%(z) = 22- + Y_. (ak cos 2Jbz + 6f sin 2Jbz) , (21) 
2 fc=i 

where 

af = - / P?(z)cos2ifezdz, fcf = - / Pf(z)sin2Jbzdz, Jb = 0 , l , . . . 
T JO ^ jO 

Lemma 4. It holds a f = 2PL for any Q EV. 

P r o o f . Using (19) we have a0 = % fo* PL (z)dz = 7 Jo* LA?n*Q_(z)dz = 
±LA = 2PL. • 

For any (signed) measure X on Z denote 

a% = - [ cos2kzX(dz), 6f = - / sin2ifczX(dz). 
T Jo "" jO 

Then analogously to (20) we have two equations for real coefficients 

a" = r^{a^+b^ and b* = r^{a^ ~a^- (22) 
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5. FOURIER ANALYSIS OF THE ROSE OF DIRECTIONS 

Curved test systems appeared first in Philofsky and Hilliard [9], who aimed to esti­
mate Fourier coefficients a^, b^ in (22). They tried to find for each fixed n £ N a 
test system with orientation distribution Qn such that a^ = 0 for all k not equal 
to n, and o^n = 0 for all k. Then the density (with respect to uniform distribution 
U) qn of Qn is qn(z) = a^n cos2nz} and each Qn is a signed measure. Finally for 
n — 0 it holds I^ n(0) = ajf and for nonzero n it is 

It is observed that the number of intersections yields directly the n—th Fourier 
coefficient of the rose of directions. Here the test system is not rotated but we have 
for each coefficient a different test curve, analogously for 6^. The test system is 
constructed by means of parametric equations in the plane 

x(z) = / qn(u) cosudu, y(z) = / qn(u) s'mu du. 
Jo Jo 

Since qn correspond to signed measures the number of intersections on arcs where 
qn are negative has to be subtracted from the number of intersections on arcs where 
the qn are positive to obtain the desired P^n(0). 

We can formulate a variant of this idea in which the Fourier coefficients of the rose 
of intersections PL(Z) are obtained from intersection counts on curved test systems. 
The use of signed measures is avoided, instead of subtraction of intersection counts 
on test lines we subtract after counting, see (24). 

Proposition 4. Let specially Q = <50 in (21), i.e. P^(z) = PL(Z). Then it holds 

am = 2 ( i £ ™ - PL) and bm = 2(P?™> - PL), ro = 1,2,... (24) 

where Pj?m" = ± /* (1 + cos2mz)PL(2) dz and p f m b = i /* (1 +sin2roz)PL(z) dz. 
Here Qma, Qmb are orientation distributions of test lines given parametrically as 

L PZ 

xm(z) = x0 + ~ cos 9(1 + cos(2m0)) d9 (25) 
7T JO 

h fz 

ym(z) = yo + ~ l sin6(1 + cos(2m9)) i 
n Jo 

idø 

fc>Г Qma and 

h fz 

xm(z) = Xo + -^ cos6>(l + sin(2ro6l))dÖ 
v Jo 

ym(z) - -VÖ + - 2 - / sinö(l + sin(2roÖ))dö 
"" jo 

for Qmhy 0 < z < 7r, where (-̂ o, 2/o) is an arbitrary point in R2
) hm is the total 

length of the test line. 
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Remark . Here we write Pj? instead of PL(0) for Q = Qma, Qmb> The test systems 
are not rotated, there is a different test curve shape for estimation of each coefficient 
am, bm, m = 1,2 . . . 

P r o o f . It holds PL = £• J* PL(z) dz) therefore we can write the coefficients 
(21) as 

am = 2[- f (l + cos2mz)PL(z)dz-PL], (26) 
*" Jo 

6m = 2[- [ (l + s'm2mz)P£(z)dz-PL] 
* Jo 

to get (24) if the integrals in (26) are interpreted in terms of intersection counts 
pertaining to the test lines of specific shapes given by equations (25). • 

Once the Fourier coefficients a^, 6f are estimated, the Fourier coefficients for the 
rose of directions are obtained from (22) as 

a? = Dk(a
paQ + bPbQ), b? = Dk(a

pbQ - aQbP), (27) 

where 

1 - 4ib2 

nLA[(aQ)i + (bQyY 

In the case of P r o p o s i t i o n 4 it is Q = 60 so t h a t ajj; = |-, 6jj; = 0 for all A:, so we 
have specialy 

n 1 — Ak p n 1 — 4k p 
ak = -777 ak > bk = 7Tr 6* • v2 8^ 

ZLA ZLA 

The structure of the coefficients is similar to (4) and to that of Philofski and 
Hilliard [9] obtained by an alternative method. If the density p of H exists its 
Fourier series is 

JR. 
p(z) = Ц- + ү^af cos2kz + bf sin2kz (29) 

ЈЬ = 1 

1 1 °° 
= - + — V ( l - 4Јfc2)[a£ cos 2kz - б f sin2Ärz], z Є [0, тг). 

7г 2 L / -̂—̂  
j A k = i 

We observe a phenomenon typical for some stereological problems, namely the sum 
(29) with random coefficients af, b% may have infinite variance caused by 1 — Ak2 

term. By using only first few coefficients of the series we can have a finite variance 
of the estimator but this may lead to an unsatisfactorily biased estimator in the case 
of bimodal or other complex anistropies. 
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6. THE ARC TEST SYSTEM CURVES 

In this section we consider rotating arc test systems, where arc is a differentiate 
curve in the plane. Since the fibre processes studied are stationary we may shift a 
given arc arbitrarily. Assume that x G R2, x = (rcos/?, rsin/?), r > 0. Let Sr>p be 
the system of arcs s in R2 with endpoints _c, — x such that the union s U [—ar, x] is a 
boundary of a convex body A',. Since A", is not centrally symmetric, we consider its 
support function PK, on [0,27r] modulo 27r. The intersections sC\l will be studied of 
s G STtp and lines / in R2. Typically there are at most two intersections s C\ I for any 
given line. Any line is again represented by the point (z,y) in the parametric space 
C\ = (0,7r] x ( -co, oo). The set C C C\ of all lines in R2 which hit s is expressed as 

C = {(z,d);-pK.(z-l)<y<pK.(z+j)}. 

Let C = C\ UC2, where £1, £2 are disjoint and correspond to lines which have one, 
two intersections with 5, respectively. 

Consider again the stationary anisotropic Poisson line process <£ characterized 
by the line density LA and the rose of directions TZ and represent <J> by means of a 
Poisson point process * on C\. Denote N(Ci) the number of points of *n£ t- , i = 1,2. 

Lemma 5. Let s G «Sr,/3 has the length h and orientation distribution Q((3). The 
number of intersections <$ C\ s is a random variable N(C) = N(C\) + 27V(£2), where 
N(d) are independent Poisson distributed with parameter A* = LA fc dyR, (dz), i = 
1,2. It holds 

EN(C) = hPg(0) = LA (J dyK(dx) + 2 J dyU(dx)\ , (30) 

•N(C) = LA (J dyll(dx) + 4 / dyTl(dx)) . varl 

Proo f . Follows immediately from (12) and the fact that EN = varN = A for a 
Poisson distributed random variable N with parameter A. • 

Rataj and Saxl [11] developed the Steiner compact estimators of % presented 
in Section 2 by means of the following smoothing. For n G N and orientations 
0 < z\ < Z2 < . . . < zn < 7r, for r G 1V and weights {CJ : j = —r,.. . , 0 , . . . , r } , c_j = 
cj > 0> J = 0> • • • , r . Yj cj = 1 ^ e y construct polygons 

r 

Kn = {x : (*, Zi) < p^ i = 1 , . . . , n}, where pt- = ] P CjPi+j, i = 1 , . . . , n (31) 
i=-r 

and pi are estimates of \PL,(zi)- Let /i» be the lengths of edges of Kny then the 
estimator of 11 is Tln(B) = J ^L j M.B(*i)> ^ G /S. 

In Figure 3 the distribution of the Prokhorov distance r(R,n, It) is presented for 
exactly the same test system and Poisson line process as in Figure 2, with additional 
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smoothing in (31). Comparing both figures we observe a smaller variance of PD 
after smoothing but the effect described in Proposition 2 remains apparent. 

I I I ' г — > I 1 ^ 1 I 

0 a n PD 

Fig. 3. Estimated probability densities of PD for 7Z = U, n = 8, LA = 50 (a), 
LA = 1000 (b), smoothing with r = 2, c3 = ^ T - J J — —*", • • •,T-

Further we observe that the local smoothing in (31) can be expressed in terms of 
convolution with a discrete measure Q representing the orientation distribution of a 
test system. 

Propos i t ion 5. Let Q = __^_i Mv., b% > 0, ~Z b( — 1, v% € Z, i = 1 , . . . , n. Then 

m 

P?{z) = "£biPL{z-7T + Vi)} ZEZ. 
i = l 

P r o o f . We have Q_ = ~2i bi6--Vt and Gn*Q„{z) = f£ |sin(u-z)\7Z*Q_{du) = 

Er_1 *.' fo I s i n(" + ^ - vi ~ z)\n (du) = TJLi bMz - 7T + v.-). Then Pg(z) = 
LAGn*Q_{z) = ^ _3i_i biGn{z - ~ + vt-) = £™ x 6,PL(z - TT + t;,-). • 

Naturally it is not necessary to restrict to discrete measures Q for local smoothing. 
Continuous measures correspond to curved test systems. 

Example 1. Let 71 = OTJ and Q_ has probability density q{z) = £ for z G [0,a) 
and g(z) = 0 elsewhere for some a, 0 < a < | . Then Gn{z) = sinz and Gn*Q_{z) = 
cosz-cos^+a). 2 G [0,7T —a), the smoothing effect can be observed on graphs of these 
functions for a > 0 small. 

We conclude that curved test systems may be useful to provide local smoothing 
when estimating the Steiner compact. It should be kept in mind that using the rose 
of intersections PL{z) (i.e. using local smoothing) we get estimators oiTZ*Q_ which 
is not exactly 71. 

In Rataj and Saxl [11] the properties of Steiner compact estimator (31) were 
justified by the following result: For any e > 0, a G (0,1) there exist n, {z t}, r, {CJ} 
such that probability 

Pr{d(KniK)<eLA}>a, 
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assuming that pi — ^PL(Z{), i = l , . . . , n are independent centred normally dis­
tributed random variables with uniformly bounded variances. We access an estima­
tor of Steiner compact based on curved test lines and try to get quantitative results 
in a special case. 

Consider rotations of the test arc s with orientation distribution Q around uniform 
angles Zj = ^ , j = 0 , , . . , n — 1. Principially one could generalize Lemma 5 to this 
system of test arcs and use the exact approach from Section 3 to get the distribution 
of PD = r(7ln)lZ). We restrict ourselves to an example of approximation of the 
Hausdorff distance d(Kn, K)y even if it seems to be from the statistical point of view 
less convincing. 

Let qj = \PL(ZJ) be the theoretical values at Zj of the support function of 
Steiner compact set K corresponding to TZ * Q_ and pj their empirical counterparts 
estimated from numbers of intersections on test lines. We construct convex polygons 
Kn = {x G R2\ (%>Zj) < Pj, j = l , . . . , n } . According to Rataj and Saxl [11] it 
holds Y 1 A 

d(Kn, Kn) < 2-, and d(Kn, K) < -LA tan - , (32) 
COS y Z Z 

where Y = max/ \qj — py|, Kn = {x £ R2\ (x, Zj) < qj, j = 1 , . . . , n} and A = ^ 
is the discretization step. To evaluate the first bound in (32) we need to know the 
dependence structure of pi, i = 1 , . . . , n. It depends on many factors such that the 
mutual location and shape of test lines. In practice it is usually not possible to get 
pt-'s from n independent realizations, very frequently we have just one observation 
window of the structure. Then the p t 's become observations of positively dependent 
random variables, cf. Lemma 3. The general sharp bounds for Y are 

(J>2 Fj(t~) - (n - 1)) < Pr(Y <t)< mm Fj(t~), (33) 
3 

where Fj are distribution functions of \qj — pj|, j = l , . . . , n . See Rychlik [12] for 
further results on such bounds. While the lower bound in (33) is not much useful 
here, in the situation with strong positive dependence Pr(Y < t) is close to the 
upper bound. 

Example 2. Let s be a circular arc with radius r and length h = m , where a is the 
central angle of the arc. The minimum on the right hand side of (33) is realized by 
the pj with largest variance. Consider the extremal case H = 60, Zj = | , when $ are 
parallel lines. Then N(C) = 1V(£i), N(Ci) is Poisson distributed with parameter 
2LAPKS(0) and varN(C) = 2LAPK8(0) ^ hLA, assuming that r is large. Then we 
get that 

I I 
var(p j - Qj) = —varN(C) w ^ ~ 

depends on length intensity of $ and the length of test probes. We can fix say h = 
2500L^1 and estimate Pr(Y < 0.02L^) « 0,95 using the Gaussian approximation. 
Put n = 18, ZJ = y | , we obtain Pr(d(Ki8l K18) < 0.021FA) « 0.95. Together with 
d(Kig,K) < 0.04L.4 according to the second inequality in (32) we obtain that the 
distance d(Ki8) K) will not exceed 6.1 % of LA with probability 0.95 in the case of 
strongly positively dependent data. 
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