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DETECTION AND ACCOMMODATION OF SECOND 
ORDER DISTRIBUTED PARAMETER SYSTEMS 
WITH ABRUPT CHANGES IN THE INPUT TERM: 
EXISTENCE AND APPROXIMATION 

MICHAEL A. DEMETRIOU, AZMY S. ACKLEH AND SIMEON REICH 

The purpose of this note is to investigate the existence of solutions to a class of second 
order distributed parameter systems with sudden changes in the input term. The class of 
distributed parameter systems under study is often encountered in flexible structures and 
structure-fluid interaction systems that use smart actuators. A failure in the actuator is 
modeled as either an abrupt or an incipient change of the actuator map whose magnitude 
is a function of the measurable output. A Galerkin-based finite approximation for the 
adaptive diagnostic observer and its on-line approximator is proposed in order to facilitate 
the numerical implementation of the aforementioned diagnostic observer. 

1. INTRODUCTION 

In this paper we present a theoretical investigation of the existence of solutions to 
a structural distributed parameter system subject to an abrupt change in the input 
term. The change in the input term models a failure in the actuator which occurs at 
an unknown time instance. This failure term is modeled as an additive perturbation 
of the actuator dynamics that is often encountered in flexible structures utilizing 
smart actuators. The time profile of the actuator failure can be taken either as 
abrupt or incipient. The gain of the actuator failure has magnitude that is modeled 
as a nonlinear function of the measurable output signal. 

In order to detect and diagnose such an actuator failure which will eventually 
be used for accommodating this failure, a model-based fault diagnosis scheme is 
presented. This scheme consists of a detection/diagnostic observer and an on-line 
estimator of the actuator failure term. This failure monitoring scheme, as shown 
via a Lyapunov stability argument, can detect the occurrence of the anticipated 
actuator failure and via the on-line estimator can diagnose the nature of this actua­
tor failure. Since the proposed detection/diagnostic scheme is infinite dimensional, 
its implementation necessitates a finite dimensional approximation and thus an ap­
proximation scheme is presented along with a summary of the convergence results. 
Results from a numerical study are summarized along with a presentation of the 
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corresponding simulation results and a discussion of the findings. 

2. A GALERKIN APPROACH TO EXISTENCE FOR SYSTEMS WITH 
FAILURES 

We consider the nonlinear equation 

wtt + K\WXXXX + K2wxxxxt = \j3(t, x) g(y)]xx + f(t, x), (2.1) 

with boundary and initial conditions given by 

wx(Q,t) = w(0,t) = 0, wx(l,t) = w(l}t) = 0, 

w(.y 0) ^ o G H0
2(0,1), wt(; 0) = fa E L 2(0,1), 

(2.2) 

where the function y denotes the output signal. In equation (2.1) the output function 
y satisfies 

m = ľ 
Jo 

k*X[xl,x2](x)u)xxt(x}t)dx 

with 0 < x\ < X2 < 1. The unknown function w(t,x) and the forcing f(t,x) are 
defined for x G [0,1], t > 0. The constants «i, K2 and ks are positive and #(•) 
is a continuous function. In the context of the flexible structure encountered in 
Demetriou and Polycarpou [6], K\ denotes the stiffness parameter, K2 the damping 
parameter and ks the sensor piezoceramic constant which is a piezoceramic material 
and geometry related quantity, see Banks et al. [4] and Dosch et al. [8]. 

The system given by (2.1) is a general form of the system studied by Demetriou 
and Polycarpou [6, 7]. Indeed, when the actuator (input) failure term P(t,x)g(y) is 
written as 

P(t, x) 9(y) = Pi(t) {kaX[xltx2](x) u(t)) g(y) 

with the time profile (Polycarpou and Helmicki [9]) of the failure given by 

f 0 \it<Tt 
h® = { , vt T ^ -r rr • A > 0 ' ( 2 ' 3) 

[ l - e - A ( f - T / ) ift>Tf 

and the nominal forcing (actuator) term given by 

/(*, x) = [kaX[xux2](x) u(t)]XX) ka > 0, 
then equation (2.1) has exactly the same form as the beam equation considered in 
Demetriou and Polycarpou [6]. The time Tf denotes the unknown instance of the 
failure occurrence and the signal u denotes the input voltage to the patch. Similarly, 
ka denotes the actuator piezoceramic constant, see Banks et al. [4]. Therefore, the 
above describe the dynamics of a flexible cantilevered beam before (t < Tf) and 
after (t > Tf) the occurrence of an anticipated actuator failure commencing at an 
unknown time Tf. In view of the above, the plant equation (2.1) can now be written 
as 
wtt+Kiwxxxx+K2u)Xxxxt = [kaX[xux2](x)u(t)]xx+Pi(t) [kaX[Xl,x2](x) u(t) g(y(t))]xx . 
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We begin by imposing the following assumptions on the parameters in problem 
(2.1)-(2.2): 

(-4/0 
0eL°°(O,T,L2(O,l)), sup \\f3(t)\\<L. (2.4) 

*e[o,oo) 

(Ag) There are positive constants Cj, j = 1,2, with C\ < KijL, such that 

l f f ( O I < p - K I + O2, for all £ € iff. (2.5) 

(Aj) The forcing term f satisfies 

/ G L ° ° ( 0 , r , H - 2 ) . (2.6) 

Our primary concern is to investigate the existence of a weak solution to (2.1)-
(2.2). Our approach is in the spirit of Banks et a\. [2, 3], To this end, we define the 
notion of a weak solution as follows. 

Definition 2 .1 . We denote by Cr the Banach space of functions defined on the 
rectangle QT = [0,1] x [0, T] and having the following properties: 

1. If w G Cr, then 
w EC ([0,T],H2 (0,1)). (2.7) 

2. For any w € Cr there exists the weak derivative 

wtEC ([0, T], L2 (0,1)) 0 L2 (0, T, H2 (0,1)) . (2.8) 

The norm in this space is given by 

Ww\\cT = max {IMOII + IK«(0l l} + K * . I I L - ( Q T ) . (--9) 
' c 10,-t J 

where || • || denotes the L2(0,1) norm. 

Definition 2.2. A function w G Cr is a weak solution of (2.1)-(2.2) if it satisfies 
the following identity for every t G [0,T]: 

/ (-wTr)T + Kxwxxrjxx + K2wXXTrjxx) dx dT + / wt(x,t) rj(x}t) dx = 
JQt Jo 

/ <pi(x)rj(x)0)dx+ frjdxdT+ /3g(y)rjxx dx d 
Jo JQt JQt 

T 

(2.10) 
for all rj G Cr- Here Qt = [0,1] x [0,£]. In addition, w must also satisfy 

w(x, 0) = <J)Q(X), a. e. x G [0,1]. 

Next we will prove that if a solution exists then it must satisfy a certain a priori 
estimate. 
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Theorem 2.3. The following a priori estimate holds for the problem (2.1)-(2.2): 

IMOII2 + «i |K*(0U2 + e / \\wXXT (r)||2 dr < C, (2.11) 
Jo 

where 
C = C ( | | ^ | | , | | ( ^ O ) - - | | 1 | | / | | L C O ( 0 , T , I / - - ) , T ) . 

Proof. Taking the L2-inner product of (2.1) with wt we get 

(wtt(t),Wt(t)) + KX(wxx(t),Wxxt(t)) +K>2(wxxt(t))Wxxt(t)) 

= (/?(*)ff(y(0). *>**t(t)) + (/('). ™«(0) 

for almost all t £ [0,T]. Hence, 

(2.12) 

ď7 ^IK(0 l l 2 + y l K x ( 0 l l 2 + K2\\wxxt(t)\\2 

= (/(.), ti>«(0) + (0(t)9(v(t)),w**t(t)h 

which gives us 

IK(0l | 2 + «i lkxx(0H2 + 2 «2 /o IK*r (r) | | 2 dr = l^ill2 

+*i IIOo)x*||2 + 2 / (/?(r)3(y(r)) ) U; x r T(r))dr + 2 / (/(r),u;r(r))d7 
Jo Jo 

(213) 

Now, using the assumption (Aj) above, the fourth term on the right hand side of 
(2.13) can be bounded as follows: 

\j\f(r), t-V (r))dr| < i J* \\wXXT (r) | | 2 dr + 1 J* \\f(r)\\2
H.2 dr. 

Furthermore, the third term on the right hand side of (2.13) satisfies the following 
estimate: 

I c 
\ (P(T) g(y (r)), wXXT (r))dr 

IJo 
< / l | | / ? ( r ) | | k ( y ( r ) ) | | K . T ( r ) | | d r 

JO 

- jf ( I T l y ( r ) l + d 2 ) l l / ? ( r ) " IK*r(r)" dr 

- / (j;k>\\WxxT(TW + d2) L I K * r ( r ) | | dr 
< / LCi | K x r ( r ) | | 2 d r + / LC2 | K * r ( r ) | | dr 

Jo Jo 
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< LCi J |K_r(r)||2 *r+±J (LC2)
2 dr 

+^ t |K..(r) | |2dr. 

Now choose 6*such that 

6 = 1 ( K 2 - LCi). (2.14) 

Then 

| K ( 0 l | 2 + «i \\wxx (0 | | 2 + (2K2 -26- 2LCi) J \\wXXT (r) | |2 dr 

< ll^ill2 + «i ll(^o).-||2 + \{LC2)
2T+ } r | | / | | L o o ( 0 > T . H _ a ) . 

Hence the proof is complete. • 

For the rest of this section we let {\j}JL\ and {ipj}jCL1 be the eigenvalues and 

eigenfunctions of the strictly positive self adjoint operator A = -ĵ -r with the dense 
domain in L2(0,1) given by 

V(A) = {<f>E H\0,1) : *'(0) = # 0 ) = 0, <f>'(l) = <f>(l) = 0}, 

respectively. Note that the eigenvalues \j are simple and that the set of eigenfunc­
tions {V'j} form a complete orthonormal system in L2(0,1). Furthermore, for any 
<t> e L2(0,1) we have 

oo 

i= i 

V(A)=LeL\0A):f2\]\<l>j\
2<oo 

and for <j) e V(A) 
oo 

A<f> = ^2\j<l>jipj. 
i= i 

For more details on the properties of A we refer the reader to [2]. 
We seek to approximate the solution of equation (2.1) via the following Galerkin 

approximation: 

N 

wN(x,t) = J2Ck(t)M*), CN(t) = (wN(t)trpk). (2.15) 
k = l 

According to the Galerkin procedure we seek {C^(t)} such that 

^cFw+KiXucFw+KtX^cFit) = W)9 {yN{t))MkU)Hf(t)Ak) (2.16) 
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for k = 1 , . . . , JV, and 

CN(0) = (4>o,*t), ^O f (0) = Oi.iM. (2.17) 

The above equation is equivalent to 

^(wN(t), ft) + KlXk (wN(t), fc) + K2\k±(w»(t), fc) 

= W)9(yN(t)),m,x) + (f(t),rPk). 

Multiplying (2.18) by ^CN(t) and summing over k = 1 , . . . , N and then integrating 
over [0,<] and using the proof of Theorem 2.3 we arrive at an estimate similar to 
(2.11) for the Galerkin approximates. Namely, we have 

Jo (2.19) 

< C = C (ll^ill, | | (*o)« | | , \\f\\L-{0.T.H-*) . T ) 

for all TV = 1,2,... and t G [0,T]. 

Notice that in the derivation of (2.19) we used the fact that ||(<^o)^:|| < ||(^o)xx|| 
and \\<f>N\\ < \\<t>i\\ and that C is a monotone increasing function of its arguments. 
Using (2.19) and following the arguments in Banks et a/. [2], we can prove that there 
exists a subsequence denoted again by wN(t) that satisfies the following: wN(t) —• 
w(t) weakly in HQ (0,1) uniformly on [0, T], and wN

xi —• wxxt weakly in L2(Qt) for 
all*G [0,7]. 

Lemma 2.4. For any fixed k = 1,2,... the set of functions 

is uniformly bounded in L2 (0, T). 

Proof . From the proof of Lemma 6.6 in Banks et al. [2] it follows that there 



Detection and Accommodation of Second Order Distributed Parameter Systems... 123 

exists a constant C3 > 0 such that 

I |^K(0,V-*> dt < j \ c 3 + \(P(t)g(yN(t)),(rPk)xx)\)
2dt 

T 

= O|T+2O3/ \W)9(yN(t))>m*x)\dt 
Jo 

+ / \(p(t)g(yN(t)),(4>k)x*)\2dt 
Jo 

T 

< C%T + 2LC3mzxx€[0>1]\(rPk)xx(x)\ I \g(yN(t))\dt 
Jo 

T 

+Z 2 (max l 6 [ 0 i l ] | (Vi*Mx) | ) 2 / lff(yN(0)|2df. 
JO 

Now using assumption (Ag) we get 

jfky"(0)fd< < j f fe K(0| + cV) dt 

< jT(ci K^COII+O2)
2d* 

< 2jf (c?|Kt(<)||a + ̂ )d< 

< 2 O 2 / T | | ^ ( 0 | | 2 d < + 2O2T 
Jo 

From the above bound it immediately follows that JQ \g(yN(t))\dt is bounded as 
well. Hence, using the estimate (2.19) we see that there exists a constant C4 > 0 
such that 

rT I d2 2 

1 |a»<- <"•*'> 
and the result is established. 

dť < O4) 

Now using Lemma 2.4, the compact embedding of # 2 ( 0 , T ) C C 1 ^ , ^ , see 
Adams [1], Theorem 5.4, and arguments similar to those presented in Corollary 6.7, 
Lemma 6.8 and Lemma 6.10 of Banks et ai. [2] we can show that the function w 
has a weak derivative wt(t) £ L2 (0,1) for all t G [0,T], and that the subsequence 
wN(t) — wt(t)y weakly in L2 (0,1) uniformly in t G [0,T], and wN(t) -> wt(t) 
strongly in L2(QT). 

Lemma 2.5. The set of functions 

{9(vN(t))}<;=l 
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is bounded and therefore relatively weakly compact in L2 (0,T). 

P r o o f . From the proof of Lemma 2.4 we see that there exists a C5 > 0 such that 
rp 

HjKirv)lli-(oiT) = / \9(yN(t))\2dt<c5 
J 0 

and the result follows. • 

The next result immediately follows from Lemma 2.5. 

Corollary 2.6. There exists a function g G L2(0,T) such that 

9(yN)->9 weakly in L 2(0,T), 

along a subsequence. 

We denote by PM (M = 1,2,...) the class of functions rj(x,t) which can be written 
in the form 

M 

i7(x,t) = 5 > * ( < ) l M * ) . (2.20) 
k=i 

where ak(t) are arbitrary C1 smooth functions on [0,T]. Let 

00 

P= | J PM. (2.21) 
M=l 

Clearly the set P is dense in the class CT-
Now multiply (2.18) by an arbitrary smooth function ak(t), take the sum from 

k = 1 to M and integrate over the rectangle Qt. Integrating by parts with respect 
to t in the first term and with respect to x (twice) in the second and third terms 
and taking into account the initial condition (2.17) and the boundary conditions for 
tpk we get 

,T = t 

/ [-wтr}т + кiwxxr}xx + к2wxxтr]xx] dxdт+ / wтrjdx 
jQt JO 

= / ßg(yN)rìxxdxdт+ / frjdxdт, 
jQt JQI 

т = 0 (2.22) 

which is satisfied for any 77 G PM with M < IV, i. e., 77 has the form (2.20). Now we 
fix 77 G PM with M < IV. Using the above results we can pass to the limit IV —• 00 
in (2.22) and obtain 

xT = t 

I [~wттiт + кiwxxт]xx +к2wxxтт]xx] dxdт+ / tfIr77dæ 
jQt Jo 

= / ßя xx dx dт + / fr]dxdт 
JQІ JQt 

т=0 (2.23) 

for all t G [0,T]. Here (2.23) is satisfied for all 77 G PM, where M is an arbitrary 
positive integer, and hence for any 77 G CT because P is dense in CT> 
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Remark 2.7. The only difference between (2.23) and the Definition 2.2 of the 
weak solution is that in (2.23) we have a g (a certain unknown function in L2 (0, T)) 
instead of g(y) in (2.10). Therefore, the proof of the existence theorem will be 
complete if we prove that g(y(t)) = g(t)a,.e. in (0,T). We hope to discuss this 
result as well as the uniqueness of solutions to problem (2.1)-(2.2)^in a forthcoming 
paper. This may require additional assumptions on the function g, for example, 
monotonicity (cf. [2, 3]). 

3. ESTIMATOR AND FAILURE DETECTION 

In this section we present the diagnostic observer that is used to monitor the plant for 
fault detection. A model-based state observer and an adaptive parameter estimator 
comprises this diagnostic observer which when viewed in a variational weak form 
yields 

(wtt, rj) + <T2(wt,rj) + Grl(w, rj) = (Bu,rj) + (BZT'0u, rj) 

= (Bu^j + b&Zu^rj) 

(6uil>) = b(t/j\ Zu, wt - wt), i>eMq (3.2) 
as was presented in Demetriou and Polycarpou [6], where: 

(i) The input term is given by (/, r)) = (Buy 77), where u denotes the input signal, 
and B .M1 —> H"2(0,1) is the associated input operator. 

(ii) The failure function g(y) is assumed to satisfy g(y) = Yli=i ®iZ%(y) = 9TZ(y), 
where the weights 0t- are unknown parameters and the Zi(y) are assumed to 
be known nonlinear functions of the output signal y that satisfy assumption 

(-4,). 
(iii) The 0-parametrized bilinear form 6(0; ̂ , rj) is given by 

b(6\Zu)r}) = / (kaX[xux2](x)u(t))0TZ(y)rixxdx 
Jo 

= °T (kaX[xltx2](*) Z(y)u(t)) rjxxdx. 
Jo 

(iv) The sesquilinear forms (Ti(-, •) : Ho(0,1) x HQ(Q, 1) —»-K1, i = 1,2, are given by 

ai(w,r]) = Ki / wxx(x,t)r)xx(x)dx) 
Jo 

^(w*. V) = *2 / u>txx(x, t)r)xx(x) dx. 
Jo 

(v) The function w(x,t) denotes the estimate of the plant state w(x,t) and 9(t) 
is the on-line (adaptive) parameter estimate of the unknown vector of coeffi­
cients 0. 
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We assume that we have the following bounds on the bilinear forms 

r),4>eH%(o,i), 
«'2NI2<^(i?,»7), <T2(TIA) < ^NHHI 

K1>\Zw)<P\1>\h\l r)eH2(o,i), ^eM". 
We expect that existence of solutions to the proposed estimator (3.1) - (3.2) can be 

derived in a similar fashion as in the case of the plant (2.1) - (2.2). We hope to discuss 
the details leading to existence-uniqueness of the solution to (3.1)-(3.2) in a future 
paper. The stability of the monitoring scheme is summarized below. A Lyapunov 
functional is used in order to derive the adaptation laws for the parameter updates. 
BeforeJ,hat, we write the system in terms of the state error e = w — w and parameter 
error 0 = 0 - 0 by combining (2.1), (3.1) and (3.2): 

(etuf]) + <T2(et)r]) + al(eir}) = (BZT(M - 0) u, IJ) 
^ r 7 0

2 ( 0 , l ) (3.3) 
= -(B^ZT0u)rf)-(BZT0u)r1) 

(pxA)=v(BZT^,et), iPeRq
} (3.4) 

where <£, defined by <£ = 1 — /?i, satisfies $ = — A3> and /i > 0 denotes the adaptive 
gain. The Lyapunov functional is now given by 

no = ^M2 + \°i{t, e)+±\e\2 + \\m\2-
The derivative of V evaluated along the trajectories of the error equations (3.3) and 
(3.4), produces 

V = -<T2(et,et)-(B^ZT6u,et)-\\<Jf\2 

< - C l | e ( | 2 - c 2 | $ ( 0 | 2 , 

for some ci, c2 > 0, where we used the fact that $ = — A<I>. The above yields V < 0 
and thus we have stability. Furthermore, by integrating the above expression over a 
finite interval [T,T + £], we have 

V(T + t)+ f {ci |e r(r) |2 + c2 |$(r) |2} dr < V(T) 
JT 

which, via an application of Barbalat's lemma [5] for infinite dimensional systems, 
yields 

lim |e(*)|= lim \et(t)\ = 0, 
t—»-oo t—•CO 

and 0 £ Loo(0,oo;iR?). Parameter convergence can be established by imposing 
persistence of excitation [5]. From the above, it can be observed that for t < Tj, 
both the state error e — w — w and the output error y — y remain zero, attain a 
nonzero value after the failure and converge to zero as t —• oo. Therefore, by simply 
monitoring the output error, the failure occurrence can be detected. Furthermore, 
by imposing the additional condition of persistence of excitation, failure diagnosis 
can be established via the convergence of 0 — 0. 
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4. APPROXIMATION THEORY 

In this section we summarize the finite dimensional approximation scheme necessary 
for the implementation of the diagnostic observer (3.1) -(3.2). 

For each N = 1,2,..., let HN be a finite dimensional subspace of L2(0,1) with 
HN C Ho(0,1). The Galerkin equations for wN and 6N in HN <mdMq corresponding 
to (3.1) and (3.2) are given by 

(wN,r1
N) + a2(w

N,V
N) + (Tl(w

N,r1
N) = (Bu,r,N) + (BZT6Nu,r,N) 

= (Bu,r1
N) + b(0N;Zu,rjN), 

(9N,^N) = (wt-w
N,BuZrPN) 

= b(iPN;Zu,wt-w
N), 

wN(0)eHN, wN(0)GHN, 9N(0)eRq. (4.3) 

We make the following standard Galerkin approximation assumptions. First de­
fine orthogonal projections PN : L2(0,1) -> HN of L2(0,1) onto HN and Pf : 
Rq -^Rq. 

(Al) The finite dimensional subspaces satisfy HN C H%(0,1). 

(A2) The functions PNw and EJ^with PNwE L2(0, T, HN) and PN6e L2(0, T,Rq) 
are such that 

(i) PNw-+w in C([0,T],H2(0,1)), 

(ii) PNwt -i. wt in C([0,T],L2(0,1)) and L2(0,T,H2(0,1)), 

(iii) P ^ - ^ ^ i n C ( [ 0 , T ] ; ^ ) . 

Using the above assumptions, we can prove the following convergence result. 

Theorem 4 .1 . Assume that (A l) and (-<42) hold. Let (w, 6) be the solution to 
the initial value problem (3.1) — (3.2) and for each n = 1,2,.. . , let (wN,6N) be the 
solution to the initial value problem (4.1)-(4.2) with 

Then 

wN(0) = PNw(0), wN(0) = Pwt(0), 6N(0) = PN6(0). 

(i) ^ - . t H n O a O . n / I ^ O . l ) ) , 

(ii) wN - wt in C([0,r],L2(0,1)) and L2(0,T,H2(0,1)), 

(iii) 0N ->0inC([O,T],Rq). 

P r o o f . Define AN = wN - PNw and 6N = 0N - PN0. Since 

\wN -w\ = \wN - PNw + PNw -w\< \wn - PNw\ + \PNw - w\. 
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It suffices, by (-42), to show that 

A^OinOaO.nIIo'CO.l)), 

AN — 0 in O([0,T](L
2) and L2(0,T^0

2(0,1)). 

Similarly, for 0", it suffices to show 

6N -+0inC([0,T\,lR*). 

We use t] = AN in (3.1) and r)N = AN in (4.1) as the test functions. When 
equation (4.1) is subtracted from equation (3.1) we obtain 

( { D t t - £ # , A " ) + (72(uvt--^^^ (4.4) 

Similarly, use tj> = 6N in (3.2) and ipN = 6N in (4.2) and subtract equation (4.2) 
from equation (3.2) to obtain 

(9t -6N,6N) = b(6N
]Zu,wN - wt). (4.5) 

We now consider for 7 > 0 the positive functional 

7*1 ( A " , A " ) + 7|Af/|2 + 2(A", AN) + a2(A
N, AN) + 7 | « T 

which can be shown to be bounded below by AC^S, where 

E(A" , AN, 6N) = (\\ANf + |Af/|2 + | S " | 2 ) , 

and KL is a positive constant which is a function of the parameter 7. When the 
above is used in the equations above, we obtain the identity 

±(Vr1(A
N,AN) + 1\A

Nf + 2(AN,AN)) 
át 

+ 1 (C2(A
N,AN) + 7 | ő " | 2 ) + тMДf, Дf) + *i(ДN, Д") d. 

= 21al(AN,AN) + 2j(wN

t - w„,AN) + 27(wtt - PNwtt,A
N) 

+2|AJ V | 2 + 2(wN

t - wtt,A
N) + 2(wtt - PNwtt, AN) + 2cr2(AN,AN) 

+2y(9N - 0t,6
N) + 27(6t - PN6t,6

N) + 2JCT2(AN, AN) + 2<7 :(A", A " ) . 

(4-6) 
Using the fact that (wtt - PNwtt,r)) = 0 for all TJ £ HN and (0. - PN0t,xp) = 0 for 
all if) £JR?, using the bounds on the sesquilinear forms and assumptions (Al) and 
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(A2), we have 

1 ( w ( A f f , AN) + 7\A
N\2 + 2<A", Aff)) 

+ 1 (cr2(A
N, AN) + 7\6

N\2) + 7cr2(A
N,AN) + cr1(A

N, AN) 

< 7a
u

2e\\PNwt - wt\\
2 + ^-\\AN\\2 + ia?c\\PNw - w\\2 

+^-\\AN\\2 + au
2e\\PNwt - m\\2 + ^\\AN\\2 + au

re\\PNw - w\\2 

+^\\AN\\2 + 7f3e\\PN0- 6\\2 + ^ | | A f ||2 + 2|Af |2 + Pe\\6N\\2 

+t\\AN\\2 + /3e\\PN9- 6\\2 + £ | |A" | | 2 + 7i3e\\6N\\2 + ^\\PNwt - wt\\
2. 

Integrating the above inequality from 0 to t) and using the triangle inequality we 
obtain the following inequality 

E(AN,AN,6N)+ f (\\AN\\2 + \\AN\\2) ds 
Jo 

< Cl / E(AN,AN,6N)ds + c2 feN(s)ds, 
JO Jo 

(4.8) 

where 
0 " ( O = \\PNw - w\\2 + \\PNwt - wt\\

2 + \\PN9- 0\\2 

and ci,C2 are some positive constants. Assumption (-42) implies tha t 

lim sup [ eN(s)ds= Mm GN(s)ds = 0, (4.9) 
n—°°te[o,T]Jo n-*°° 

which together with GronwalPs lemma yields 

lim sup (| |A JV | |2 + | A f | 2 + | ( 5 i V | 2 ) = 0 . (4.10) 
n^°°t6[0,T] 

which proves most of the assertions of the theorem. Finally, the L2 convergence of 
wN to w is shown using (4 .8) - (4 .10) . 0 

5. NUMERICAL RESULTS 

In this section we consider the model studied by Demetriou and Polycarpou [6, 7], 
the details of which are given in Section 2. This is a special case of our general 
model (2.1). For our set of simulations, we assume tha t the coordinates of the patch 
are x\ = 0.45 m and x<i = 0.55 m. The stiffness K\ = 0.491 IV • m 2 with the damping 



130 M.A. DEMETRIOU, A.S.ACKLEH AND S.REICH 

Evolution of p^y) - g(yê) 

Fig. 5.1. Evolution of the difference Pi(t) g(y) — g(y, @(i)) for an incipient failure time 
profile. 

K2 = 0.1623 x 10 3 Kg • m3 /s . Cubic splines were used to discretize the spatial 
domain and in this case N = 16. The failure term 

Wi(t)g(v) = Ш(t)-
y = Z(y) 

1 + J/2 

and the adaptive gain /» = 2. The time profile of the failure (2.3) is given by 

" 0 if t < 2 

1 _ e -o.5(«-2) i n > 2 . ßx(t) = 

The patch voltage is taken as u(t) = 10.0sin(1507rt). Zero initial conditions of both 
the plant state and the estimator state were considered for simplicity. In addition, 
the initial guess for 0(0) was also set to zero. The evolution of the difference of the 
failure term 9(t)g(y) — g(y,0) is depicted in Figure 5.1. 

The unknown parameter 0 = (3\(t)10 and its estimate 0(t) are depicted in Fig­
ure 5.2a and their difference (parameter error) is presented in Figure 5.2b. From 
both sets of plots, it can be observed that the time of failure (Tj = 2) is identified. 

Furthermore, the evolution of the output error y — y is depicted in Figure 5.3, 
where it is observed that for t < Tj the output error remains at zero, attains a 
nonzero value at t = 2 (detection) and then converges to zero as t —• oo. 
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Evolution of ß.O andfyt): incipient time profile 

L 

—i i 1 1 1 1 1 i — г 

L ^ ^ T - " " " ~ • 
/ / / / / / ' 

/ / / / " 
ł s 

1 s 
-JL «- - Г 1̂ 1̂ 1̂ 1 l | l _ , 

2 4 6 8 10 12 14 16 18 20 

Evolution of $ft)0 - e(t): incipient time profile 

8 10 12 
Time (sec) 

Fig. 5.2. Evolution of (a) lO0i(t) and failure terms 0(t) (dashed), and (b) their 

difference 10/?i(/) — 0(t) for an incipient failure time profile. 

Evolution of y(t)-y(t): incipient time profile 

10 12 
Time (sec) 

Fig. 5.3. Evolution of the output error y(t) — y(t). 
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