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VARIABLE MEASUREMENT STEP 
IN 2-SLIDING CONTROL 

ARIE LEVANT 

Sliding mode is used in order to retain a dynamic system accurately at a given constraint 
and features theoretically-infinite-frequency switching. Standard sliding modes are known 
to feature finite time convergence, precise keeping of the constraint and robustness with 
respect to internal and external disturbances. Having generalized the notion of sliding 
mode, higher order sliding modes preserve or generalize its main properties, improve its 
precision with discrete measurements and remove the chattering effect. However, in their 
standard form, most of higher order sliding controllers are sensitive to measurement errors. 
A special measurement step feedback is introduced in the present paper, which solves that 
problem without loss of precision. The approach is demonstrated on a so-called twisting 
algorithm. Its asymptotic properties are studied in the presence of vanishing measurement 
errors. A model illustration and simulation results are presented. 

1. INTRODUCTION 

Sliding mode control is well known as one of the most effective ways to overcome 
uncertainty problems. The resulting so-called variable structure systems (VSS) fea­
ture high precision performance, their design is rather simple and clear [16, 17]. Yet, 
sliding mode implementation is restricted by an intrinsic drawback. Providing for 
keeping an uncertain dynamic system accurately within a given constraint, sliding 
modes exist due to theoretically infinite frequency of control switching. In prac­
tice this leads to the so-called chattering effect which is exhibited by potentially 
dangerous high-frequency vibrations of the controlled plant. 

To avoid chattering some approaches were proposed. The main idea is to change 
the dynamics in a small vicinity of the discontinuity surface in order to avoid real 
discontinuity and at the same time to preserve the main properties of the whole 
system [15]. The idea, exploited here, is to hide the discontinuity in higher deriva­
tives of the control. In the simplest case it may be realized by implanting a fast 
stable actuator between the relay and the plant [8]. In the resulting mode the corre­
sponding state and velocity vibration magnitudes both tend to zero when switching 
imperfections vanish, and at the same time the plant behavior is described by the 
sliding mode equations. Corresponding modes are called higher order sliding modes 
[1, 4, 5, 10, 13]. However, such mode is unstable if the implanted dynamics is chosen 
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improperly. In the above case convergence to that special mode is not faster than 
exponential [8] but it may feature a finite time as well if proper controllers are used 
[1, 2, 5, 8, 10, 13]. 

A higher order sliding mode (HOSM) is actually a movement on a discontinuity 
set of a dynamic system, the sliding order characterizing the dynamics smoothness 
degree in the vicinity of the set. If the task is to provide for keeping equality 
of a smooth function cr to zero, the sliding order is a number of continuous total 
derivatives of cr (including the zero one) in the vicinity of the sliding mode. Hence, 
the rth order sliding mode is determined by the equalities 

Cr = cr = c f = . . . = c r ( r - > ) = 0 , (1) 

forming an r-dimensional condition on the state of the dynamic system. The words 
"rth order sliding" are often abridged to "r-sliding". It is also known that with 
discrete measurements r-sliding mode realization may provide for up to the rth 
order of sliding precision with respect to the measurement interval [6, 10, 12]. 

The standard sliding mode has the first order, for & is discontinuous. Trivial cases 
of asymptotically stable HOSM are easily found in many classic VSSs. For example, 
there is an asymptotically stable 2-sliding mode with respect to the constraint x = 0 
at the origin x = x = 0 (at one point only) of a 2-dimensional VSS keeping the 
constraint x + x = 0 in a standard 1-sliding mode. It was mentioned above 
that asymptotically stable or unstable HOSMs inevitably appear in VSSs with fast 
actuators [8], revealing themselves by spontaneous disappearance of the chattering 
effect in the stability case. Thus, examples of asymptotically stable or unstable 
sliding modes of any order are well known [4, 5, 8, 10, 14]. Examples of r-sliding 
modes attracting in finite time are known for r = 1 (which is trivial), for r = 2 
[1, 2, 8, 10, 13] and for r = 3 [8]. Arbitrary order sliding controllers with finite-time 
convergence were also presented [12]. 

Generally speaking, any r-sliding controller needs cr, &,a,..., cr^"1) to be avail­
able. The only known exception is a 2-sliding controller [11, 10] which needs only 
measurements of cr. As a matter of fact, values of some expression like sign(<j(r"1) — 
h(a, c>,... ,cr(r"2))) are needed and not cr^"1) itself. Therefore, in realization the 
expression sign(Acr(r"2) — Atf-/i(cr, &}... , cr(r"2))) is substituted for the previous one, 
only first differences of cr(r"2) being practically used. Nevertheless, those controllers 
are sensitive to measurement errors of cr(r-2). Indeed, let the maximum possible 
error in the measurements of cr(r-2) be 8 > 0. It may be shown that, with At 
fixed and 8 sufficiently small, measurement errors do not interfere with the algo­
rithm performance. But the sliding accuracy deteriorates when At decreases or 8 
increases. It happens, for Icr^"1)] is bounded, and the measurement error influence 
starts to dominate in the above expression. Hence, measurement time step At is to 
be adjusted in accordance with 8 evaluation which may appear to be complicated. 

Due to smaller information requirements, 2-sliding algorithms look promising for 
applications. Indeed, a few recent publications [1, 2, 3] are devoted to their imple­
mentation. As it was marked above, most of those controllers use first differences 
of a. They also provide for the second order sliding precision with respect to the 
measurement time step. Unfortunately, according to the above reasoning any un­
controlled measurement-step reduction inevitably leads to system failure as a result 
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of small measurement inaccuracies. Thus, in solving a real control problem one has 
to check that the measurement step be larger than some critical value. It is shown 
in the present paper that the measurement step may be taken proportional to the 
square root of the maximal error of a measurements. However, that approach needs 
some information on the measurement error which is not always available. 

The problem is solved in the present paper by introducing a measurement step 
feedback ti+\ — ti = r t + i = Q(a(ti)). The idea is that r should be small with 
small |cr| and increase for large |cr|. Certainly, there are upper and lower limits of r: 
TM > r > Tm > 0. 

Only one controller - twisting algorithm [8, 10, 13] - is considered in the paper, 
nevertheless the results may be extended to other higher order sliding controllers. 
The step feedback r = X\a\p is shown to make the algorithm robust with respect 
to measurement errors for certain positive values of p and A. The utmost precision 
a — 0(Tm), a = 0(Tm) is proved to be attained in finite time when 6 = 0 and p > 0.5 
(such controllers are called second order real sliding algorithms [10, 13]). Thus, 
there is no need for 8 evaluation and appropriate r adjustment. The corresponding 
dependence on p is calculated of sliding precision asymptotics with respect to 8. 

Some of these results have long been known to the author qualitatively as a recipe 
and were mentioned as a remark in [10]. Nevertheless, they were not rigorously 
formulated and proved, and the asymptotic dependences on p were not known. In 
particular, it was not known that the best choice is p = 0.5 providing for a = 0(6) 
with T —• 0. A model illustration and simulation results are presented. 

2. GENERALIZED CONSTRAINT FULFILLMENT PROBLEM 

Our intention is to replace the standard relay algorithm u = —sign a by a continuous 
output of some dynamic subsystem. To simplify and detail the constraint fulfillment 
problem, consider the dynamic system given by the equation 

x = f(t,x,u) (2) 

where x E X is a state variable, X is a smooth finite dimensional manifold, t is 
time, u E Si is control, / is a C1-function. Let a(t^x) E M be a C2-function. The 
only available current information consists of the current values of t) u(t) and a(t) 
(a(t) := a(t,x(t))). There is also a number of known constants defined below. The 
goal is to force the constraint function a to vanish in finite time by means of control 
continuously dependent on time. 

Let Km, KM, 0"O, CO be positive constants, Km < KM, and assume the following: 

1. \u\ < K, K = const > 1. Any solution of (2) is well defined for all t, provided 
u(t) is continuous and |ti(J)| < /c for each t. 

2. There exists u\ E (0,1) such that for any continuous function u(t) with \u(t)\ > 
MI, there is *i, such that a(t)u(t) > 0 for each t > t\. Hence, the control 
u(t) = -signcr(^o), where *0 is the initial value of time, provides for hitting 
the manifold a = 0 in finite time. 

Denote Au(-) = &(.) + &(• ) / (« ,* ,*) , a(t)X)u) = Lua(t,x). 
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3. There is positive t/n, VLQ < 1, such that if |<7(tf,#)| < <T0, then 

r\ 

0 < Km < o-o-(f, x, u) < KM ou 

for all w, |rx| < Kj and the inequality \u\ > uo entails &u > 0. 

4. Within the region |cr| < <TQ the inequality \LuLua(t,x)\ < CQ holds for all t, 
x} and u. It means that, calculated with fixed values of control u, the second 
time derivative of constraint function a is uniformly bounded. 

It follows from the theorem on implicit function that there is a function ueq(t, x) 
(equivalent control [16]) satisfying the equation & = 0. Once <r = 0 is achieved, the 
control u = ueq(t, x) would provide for exact constraint fulfillment. Conditions 3 and 
4 mean that \<r\ < <TQ implies |weq| < un < 1, and that the velocity of ueq changing 
is bounded. This provides for a possibility to approximate ueq by a Lipschitzian 
control. Note also that linear dependence on control u is not required. 

The proposed controllers depend on few constant parameters. These parameters 
are to be tuned in order to control the whole class of processes and constraint 
functions defined by the concrete values of cr0, KM, Km) CQ. By increasing the 
constants KM, CQ and reducing Km) <TQ at the same time, we enlarge the controlled 
class too . Such algorithms are obviously insensitive to any model perturbations and 
external disturbances which do not stir the dynamic system from the given class. 

The variable structure system theory deals usually with systems of the form 
x = a(t,x) + b(t,x)v, where x G Mn, v is control. Under conventional assumptions 
the task of keeping the constraint <p(t,x) = 0 is reduced to the task stated above. 
A new control u and a constraint function a are to be defined in that case by the 
transformation 

v = k$(x)u, <r = (p(t,x)l^(x), $ ( x ) = \/xDxi + /i, k, h > 0, (3) 

where kyh > 0 are constants, D is a non-negative definite matrix. 
In the simple case when x = A(t)x + b(t)u) (p = c(t)x + £(t) all conditions 

are reduced to the boundedness of c, c, c, £, £, A, A, 6, 6 and to the inequality 
cb > const > 0 (i .e. , the relative degree equals 1). The corresponding constants 
determine the controlled class. 

3. TW IST ING ALGORITHM 

Return to the generalized sliding problem stated above. The algorithm u = —sign <r 
is a standard 1-sliding algorithm. If values of <r are measured at discrete times 
*o> t\, *2, • • •, U — ti-i = r = const > 0, we get a real sliding algorithm u(t) = 
—signcT(^i), t G [ti,ti+i). After some transient process first order real sliding is 
achieved, sup \<r(t)\ = 0(t). 

Remind that 2-sliding mode is characterized by the equality a = & = 0 and 
smoothness of a, a. The simplest way to achieve such a mode is to keep a new 
constraint <r + & = 0 in a 1-sliding mode provided by discontinuity of '&. In that case, 
however, the mode would be attained only in infinite time. One of the controllers, 
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featuring a finite-time transient process, is the so-called "twisting algorithm" [5, 6, 
10, 13] 

- T i , | t i | > 1, 

—aM sign a, a& > 0, \u\ < 1, (4) 

—am signer, a& < 0, |T/| < 1, 

where a M > <*m > 0, am > 4KM/a0, am > C0/Km, KmaM - C0 > KMam + C0 

(these conditions will always be satisfied from now on). Any admissible value of u 
may be taken here as an initial value. Trajectories of algorithm (4) twist around the 
second order sliding manifold and converge to it in finite time (see Appendices). 

In the steady state the process is described by the zero dynamics [9] x = f(t, x, 
tieq(£, x)). That means that 2-sliding mode may be used instead of the standard one 
u = —signer without any change in the ideal behavior of the system. 

The exact value of the derivative is not available in practice. Instead of & a first 
difference Aer8- may be used. 

Let t E [^,*i+i), *,-+i -U = r, Aov = a(t{) - a(U^i) and 

u= < 

-u(U)y \u(U)\ > 1, 

-aM sign a(ti)r a(ti)Aa{ > 0, \u(U)\ < 1, 

-am signa(U), a(U)Aai < 0, \u(U)\ < 1. 

(5) 

Theorem 1. [6, 10] Let r be sufficiently small, then after a finite-time transient 
process algorithm (5) guarantees sliding accuracy \a\ < a\T2, |e>| < a2T for some 
a i , G 2 > 0. 

In compаrison, the stаndаrd 1-sliding аlgorithm guаrаntees only the inequаlities 
of the form |er| < a i r , \&\ < a2. 

Let 6 > 0 be the mаximum of the possible error in the meаsurements of a. It 
mаy be shown thаt, with r fixed аnd 6 sufficiently smаll, meаsurement erroгs do 
not interfere with the аlgorithm performаnce. But the sliding аccurаcy deteriorаtes 
when r decreаses аnd tаkes on vаlues r < ^6/Kм. It hаppens becаuse \&\ < 
Kм\u — iŕЄq| < 2KM, аnd the meаsurement error is certаin to exceed the increment 
of a. The problem is аggrаvаted in cаse 6 cаnnot be estimаted. A typicаl dependence 
of the sliding erroг on 6 is shown quаlitаtively in Figure 1. 

To overcome the problem, introduce the following meаsurement step feedbаck: 

r = U+г -U = { 

r M , *\<r(U)\ P > rMl 

Ak(ť,)r,rm< X\a(U)\p <r M , 
r m , A|er(t t)| p < r m , 

(б) 

where 0 < Tm < TMf X > 0, p > 0. 
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Sliding Accuracy 

2KШM, 

W*) 

0 2K м т °L <*5'°> 

Fig. 1. Sliding accuracy of controller (5) with measurement errors. 

Sliding Accuracy Sliding Accuracy 

Fig. 2. Accuracy of controller (5) (6) with p = 0.5. 

Theorem 2. Let constant parameters TA/, A be sufficiently small, A > 1/2. Then, 
after a finite-time transient process, algorithm (5), (6) guarantees, for 6 < 6o < 0o, 
and Tm sufficiently small, the following: 

M < m a x ( a i r * , M 2 / ( 2 ' + 1 ) ) , |* | < max(a 2 r m ,6 2 ^/( 2 "+ 1 ) ) , (7) 

where a\, a^, 61, 62 are some positive constants dependent on p, A. 

Theorem 2 means that algorithm (5), (6) is a second order real sliding algorithm 
[10] which is robust with respect to measurements errors. The new typical depen­
dence of the sliding error on 6 is shown qualitatively in Figure 2. Note that this 
algorithm does not need any evaluation of the measurement errors. 

Having substituted rm = 0 into (7), receive some ideal dependence on 6y which 
is shown qualitatively for different p in Figure 3. With p < 1/2 algorithm (5), (6) 
does not guarantee sup \a\ —• 0 with rm —*• 0 even when 6 —» 0. Whereas the best 
choice of p is obviously p = 0.5, the proper choice of A is certainly a subject for some 
optimization problem. Naturally, the algorithm may be simplified when 6 is given a 
priori. In that case r may be chosen as a function of 6. 
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Sliding Accuracy 
'p>0.5 

Fig. 3. Accuracy of controller (5), (6) for different p > 0. 

Theorem 3. Let r = Arj^1!2, A0 > 0, and aMl&m be sufficiently large, then 
algorithm (5) guarantees after a finite-time transient process that \a\ < ai<5, \a\ < 
a,2&ll2 for some positive constants ai , a2. 

Twist ing a lgor i thm in systems wi th relat ive degree 2. There are two 
ways to provide for a = 0 by means of the twisting algorithm when the system has 
relative degree 2 with respect to a. The latter means that au = au = 0, and au > 0 
for definiteness. One way is to keep some auxiliary constraint like a + a = 0 in the 
second order sliding, providing, thus, for keeping a = 0 in an asymptotically stable 
3-sliding mode. The other is to form a discontinuous control signal by means of a 
modified twisting algorithm 

I - « 
-aM sign a(U), a(U)Aai > 0; 

- a m s i g n a i ) , a(U)Aai < 0; 

where <*M > otm > 0. The corresponding ideal sliding algorithm using values of or is 
formed in an obvious way, also some formal statement of the problem similar to the 
one in Section 2 may be easily developed. 

Weakening t h e smoothness condi t ions. The smoothness conditions on the 
functions / and a may be significantly weakened [6]: only Lipschitzian property is 
required for / and partial derivatives of a. It may be shown that in case a system 
is linearly dependent on control, $ = (at*|^i| + h)y ai > 0, h > 0 may be used in (3) 
instead of a smooth $ described in Section 2. 

4. ILLUSTRATIVE EXAMPLE 

Consider a simple example of robot manipulator control (Figure 4). Let a light 
hard rod be suspended by its end O and assume that it rotates around this end 
without any friction. All motions are restricted to some vertical plane. A load of 
known mass m is moving along the rod. Its distance from O equals R(t) and is not 
measured. An engine is connected to the rod and transmits a torque v to it. Torque 
v is considered as control. The task is to track function xc given in real time by the 
angular coordinate x of the rod. 
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Fig. 4. Illustrative example. 

It is easy to see that the system is described by the equation 

nR. 1 . 1 
x = —l--x — q—smx H —-v 

R * R mR? 
where g = 9.81 is the gravitational constant. Suppose that 0 < Rm < R < RM, R, 
R, xc and xc are bounded, x — xc is available. In the following x - xc is supposed 
to be measured, otherwise some special robust differentiators may be implemented 
[3, 11]. The corresponding constants determine a class of objects to be controlled 
by the algorithm under design. 

All parameters of the algorithm may be evaluated in accordance with the above-
mentioned constants restricting unknown functions R(t) and xc(t) and their deriva­
tives. Experience shows that the parameter values are usually excessively large in 
this case. The easiest way to find the parameters is to tune the parameters during 
simulation. Of course, the controlled class may occur to be some-what smaller in 
that case, but it will still allow significant disturbances of the considered realizations 
of R and xc. It was taken for simulation that m = 1, and 

R = 1 + 0.25 sin At + 0.5 cos*, xc = 0.08 sin* + 0.12cos0.3*. 

A new control u is introduced 

v = 30(1 + |z| + li |) u, a = [(x - xc) + 2(x - xc)]/(l + \x\ + | i | ) , 

- t i ( * i ) , K « i ) | > l , 

ii(t) = I - 7signo-(*i),cr(*i)A(7i > 0, K*i) | < 1, 

k -sign(7(*i),r/(*i)AcTi < 0, |ti(ti)| < 1. 

0.02, 0.015 K * i ) | 0 5 > 0.02, 

<i+i -U={ 0.015 K*i)|°'5 > rm < 0.015 K*i)|0'5 < 0.02, 

rm, 0.015 K*i)|
0 5<r m, 

where rm is 2 1 0 " 4 and less. The initial conditions x(0) = 0, xc(0) = 3, u(0) = 0 
were taken. 



Variable Measurement Step in 2-sliding Control 85 

Measurement error = 0 

F i g . 5 . Algorithm performance with 8 = 0 and 8 = 0.01. 

The tracking precision \x — xc\ < 5.7-10 5 and the sliding accuracy |cr| < 5.7-10 5 

were achieved with rm = 2 • 10~4. rm having been changing from 2 • 10~4 to 2 • 10~5 

and 2-10~6, the sliding accuracy changed from 7.08-10"6 to 7.52-10~8 and 7.51-10~10 

respectively. 
It follows from the simulation data that in the steady state sup |cr| is proportional 

to 8 with a coefficient close to 2 — 2.5. For example, for 8 = 0.05: sup |cr| = 0.12, 
for 8 = 0.01: sup \a\ = 0.024, for 8 = 0.001: sup |<r| = 0.0025, for 8 = 0.0005: 
sup |cr| = 0.00088. Functions u(t), ueq(t) and x(t), xc(t) for the measurement errors 
6 = 0,6 = 0.01 are shown in Figure 5. It has to be mentioned that with r = const = 
2 • 10~4 a system failure happens already with 8 = 0.003. The smaller constant r, 
the smaller critical 8 in that case (Figure 1). 

The algorithm considered is a second order real sliding algorithm with respect to 
the constraint function cr. It also provides for the second order precision of tracking 
in the steady mode, but it does not satisfy the definition of a second order real sliding 
algorithm with respect to the constraint function cr' = x—xC) for its convergence time 
tends to infinity when algorithm parameter rm —+ 0 (its convergence is exponential­
like). 

5. CONCLUSIONS AND REMARKS 

The measurement step feedback principle was proposed and was shown to make the 
twisting algorithm insensitive with respect to measurement errors. That method may 
be applied to any real-time sliding controllers using first differences [1, 2, 5, 6, 10,12], 
providing the necessary basis for their practical applications. 

Like its predecessor, the achieved modified twisting algorithm provides under 
uncertainty conditions, the second order of sliding accuracy with respect to the 
measurement step in the absence of measurement errors. Asymptotic estimations 
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of the sliding accuracy having been obtained, the best choice of a key parameter is 
found. 

The proposed algorithm may be successfully used in solving various tracking prob­
lems and problems of VSS theory. It features the main advantages of the standard 
sliding mode control and at the same time precludes discontinuity of control. It also 
provides for higher accuracy of constraint fulfillment with small measurement errors. 
However, with significant measurement errors that new sliding algorithm may prove 
to be less precise than the standard 1-sliding mode. 

6. APPENDICES 

6.1. Auxiliary notions 

Introduce some notions and reasoning useful for further consideration. Let T be a 
segment of a piece-wise smooth curve lying in the plane a} &} its ends being the 
only intersections with the axis a = 0. We call it a majorant curve for differential 
inclusion 37(0", &) e F(a}&)} if no phase trajectory of the inclusion may leave the 
compact part of the plane bounded by T and the axis without intersecting the axis. 

Assume now that the half-plane a > 0 is partitioned into open sets Oi by a finite 
number of smooth curves jj, including the ray & = 0, a > 0 and the line a = 0. Let 
the constants RMi > 0, Rmi < RMi be juxtaposed with every 08 , K > 0. Consider 
a differential inclusion 

—(<J, &) e F(a} &) = (K&} [minj:((7j(>)Goi Rmj> max i : ( (T)^Go i RMJ\) • (8) 

In all cases of further consideration phase trajectories of the vector field 

{ -Rmi j & > 0} 
(a}&)eOi (9) 

RMi,<? < 0, 
constitute majorants of the differential inclusion (8) in the half-plane a > 0. That 
reasoning may obviously be transferred to the case a < 0. 

Let GTJ be an operator constituted by a combination of the linear coordinate 
transformation gn : (a} &) 1—• (r]2s} rj&)} 77 > 0 and the time transformation t \—• rjt. 
Operator Gn performs transformation of any inclusion of the form a £ Q(a} &) into 
the inclusion a G Q('H~2<T)ri~l&). 

6.2. Trajectories of t h e twisting algorithm 

It is easy to demonstrate that, with r sufficiently small, every trajectory of system 
(2), (5) reaches the constraint a = 0 in finite time with \u\ < 1 + OLMT. After that 
the system state will stay in the region |cr| < crn, |ti| < 1 + OLMT forever. For the 
ideal twisting algorithm (4) the region |cr| < <7o, \u\ < 1 will be attractive. 

Consider the performance of the ideal twisting algorithm (4) in the region |cr| < 
^o, \u\ < 1. Calculate, according to Section 3, 

& e [-Co, Co] + [KmJ<M]u. (10) 
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Fig. 6. Twisting algorithm trajectories. 

The operations on the sets are understood here in a natural way. Assume now tha t 
at the initial t ime a = 0, \u\ < 1. It is easy to see tha t with cr £̂ 0, |cr| < cr0, the 
equality u = 1 may be reached only with & signer < — Km(\ — Uo). Therefore 

- [ A m a M - Co, KM<*M #+ Co] sign cr, crc> > 0, 

<r € I ~[Kmam- C0, KM<Xm + Co] signer, - Km(l - u0) < cosigner < 0, (11) 

-[Km - Co, I<M<Xm + Co] sign cr, crsigncr < -Km(l - u0). 

According to the reasonings of 6.1., the majorant of inclusion (11) may be de­
termined as a continuous curve consisting of the curves |cr| + 0.5&2/(KmaM — 
Co sign a) = const. Continuing the majorant from one half-plane to another a twist­
ing curve, shown in Figure 6, is achieved. Any real trajectory of the system will 
inevitably twist "inside" such a majorant curve. Designate by c>o, <Ti, c>2, . . . t h e 
points of the majorant intersections with the axis cr = 0. It is easy to see tha t 

cг t +i 

ai 

I<M<^m + Cp 

KmaM — Co 
< i . 

The convergence t ime is estimated by the sum ^\&i\/(Kmam — Co), which is 
bounded. Details may be found in [6, 13]. 

Now consider algorithm (5) of real sliding. The movement is now described by 
inclusion (10), where 

- a M s i g n c / ( ^ ) , a(U) Aa( > 0, 

u = < - a m s i g n c r ( ^ ) , a(ti) Acr, < 0, crsigncr > - A " m ( l - u0 - aMTM), 

k -[1-tfMT-M, a m ] s i g n c r ( ^ ) , a(U) Acr2- < 0 , &signa<-Km(l-uo-aMTM). 

Here TM > 0 is some sufficiently small upper bound of r . For sufficiently small r 

all the trajectories after a finite t ime stay in the region |cr| < ao, \&\ < Km(l — uo — 

<*MTM)- This may be shown by the majorant technique. After t h a t \u\ < 1 and 

-û f м s i g n c r ( ^ ) , a(U)Aai > 0, 

-amsigna(U)y <T(U)A<ГІ < 0. 
(12) 
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The motion is now described by the differential inclusion (10), (12). Fix a concrete 
small value r = To. There is a bounded set QTo such that all trajectories of inclusion 
(10), (12) within finite time penetrate into QTQ to stay there. The corresponding 
sliding accuracy is given by sup{<7|(<7,or) G fiTo} and sup{<7|(<7,&) G fir0}-

6.3. Plan of the proofs 

All the Theorems are proved in the same way. Consider the proof of Theorem 3, 
which is the most difficult. Examine the trajectories of the controlled differential 
inclusion (10), (5), (6), p > 0.5. It is easy to show that with 8 -f KM(K + 1)TM + 
0.5(KM<*M + Co)TM < <7n no trajectory leaves the region \a\ < <70 once the manifold 
<7 = 0 has been reached. 

Let us say that there is a switching error at the time t G [U,U+i)> where U, ti+i are 
the measurement times, if sign(_r(tf{) — <7(/,_i)) ^ sign<7(t), or sign<r(^) ^ signcr(tf). 
Here a(ti), £.(^t._i) are the measurement results, U+i —U = T(<L(U))- Denote by Ea 

and Ea some sets lying in the plane <7, <7, and including all the points of possible 
error in sign<7 and sign<7 correspondingly, Or = {(<7, <7)|<72 + &2 < r}. 

+ 
Here are the main stages of the proof of Theorem 2. 

Lemma 4. For any k > 1 with A, rm sufficiently small there exists r = r(<5, r m ) , 
such that r —» 0 when 8 —• 0, rm —• 0, and the sets Eay Ea may be taken in the 
form 

Ea = {(<7,<7)|<72/k| > k}uOriEa = {(<7,<T)|<72/kl t [k~\k]}UOr. (13) 

Lemma 5. Let Ea, Ea be given by (13). Then with k sufficiently large any 
trajectory of (13), (5), (6) accesses Or in finite time, which does not depend on r 
and after that it stays inside the ball Ori, where r\ = r\(r) > r, r\ —• 0 when r —> 0. 

Choose some 77 = 77(6, r m ) so that Grj(Or) be bounded and the diameter of Gr?(Or) 
not tend to 0 when 8 —> 0, rm —» 0. Apply operator G-q and consider the movement 
on the image plane. Any set of the form <72/|<7| G fi, fi C -R, is invariant with respect 
to the operator G^ for any rj. According to Lemma 5 there is a ball OR attracting 
the trajectories in finite time. Then after the inverse transformation G^-i achieve 
that the sliding accuracy is given by the inequalities |cr| < rj~2R, \&\ < r)~1R. 

6.4. Proof of Lemma 5 

Instead of the differential inclusion (10), (5), (6) consider a differential equation 

(KMOLM + Co) sign <7, (<7, &) G Ea) 

-(Kmam - Co) sign<7, <7<7 > 0, (<7,<T) G Ea\Ea) 

<7=< -(KM<XM +C0)sign<7, <7<7 < 0, (<7,<7) G Ea \Ea, (14) 

-(KmaM - Co) sign <7, <7<7 > 0, (<7, &) g Eal)Ea, 

-(KM<*m + Co) Signer, <7<7 < 0, (<7,<7) £ EaUEay 
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It is easy to see that the phase trajectories of (14) constitute majorant curves for 
inclusion (10), (5), (6) in the half-planes cr > 0, & < 0. 

The trajectory of (14) has successive intersections or, &2, ... with the axis a = 0. 
The region <x2/|cr| G [fc""1,^] is invariant with respect to G^. This means that the 
linear operator G^ transforms trajectories of (14) into trajectories of (14) for points 
of image and preimage being outside of Or. Hence, the value of |cr,-+i/(7t-| is constant 
outside the ball Or. Obviously, for k sufficiently large, \&i+i/&{\ < 1, and that proves 
the Lemma. • 

6.5. Proof of Lemma 4 

Lemma 6. Lemma 4 is true with respect to Ea. 

Any error in signer may occur in the area \a\ < 6 and at the points which may be 
accessed from this area with not more than one measurement in the area (the point 
is accessed without measurement if the last measurement was performed before the 
trajectory entered the area). 

Lemma 6 follows from a number of simple propositions. Consider a differential 
inclusion 

&e[Am)AM), (15) 

and assume that the region of admissible points is bounded: |cr| < aM) \&\ < &M. 
Let (a(t),&(t)) be a trajectory of (15), (UiViy&i), i — 1,2,3 be the times and the 
coordinates of the switching points, rz- = tf_+i — U > 0. 

Proposition 7. Let T\ = A(|oT| + 6)p, Am > 0, or > 0, or < 0, then 

1. with p > 1, A sufficiently small: sup{cr2|cri < 0} < 6] 

2. with 0.5 < p < 1, A sufficiently small, or < 0: cr2 > <5, 
&2>(l-p)l-p(2p)p\-l(a2-6y-p. 

Proposition 8. Let ri=r(cL1), \ax — or| < <5, r be given by (11), \6P < rM, 
Am > 0, <ri > 0, or E [-6, 6). Then a2 < 6 + &2r(26) + 0.5AM(r(26))2. 

Proposi t ion 9. Let r i= r2=r m , &i > 0. Then 

|cr3 - CTI| < 2&irm + 2AMrm) \&3 - &x\ < 2AMrm. 

The Propositions are proved by successive use of the trivial inequalities 

c>iri + 0 . 5 ^ ^ < a2 - or < &lTl + 0.5AMrf, (16) 

Amri <&2-&i< AMri. (17) 

In the second statement of Proposition 7 AM is excluded by the simple reasoning 
that with A sufficiently small, p > 0.5 and a bounded |cr| + <5 > AMA2(|cr| + 6)2p. • 
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Lemma 10. Lemma 4 is true with respect to E^. 

It is easy to see that any error in the sign of &\ may occur only within the area 
\&i\ < 26/min{r(C)|C £ [<r — 6,<r + 6]} and at the points which may be accessed 
from that area with not more than two measurements. The following Propositions 
are needed here. 

Proposi t ion 11 . Let \<TI\ > <5, r,- = A(|cr,| + 6)p, i = 1,2, then for any k > 0 the 
increments of <r and & satisfy 

Ws-<n\<>*i{k)\&1\
2'*1, \&3 - &i\ < ̂ h(k) \&i\2p with p-{ > k, 

OГ 

2 
|c-3 -cr,.! < A<i (k) K P + 1 ) / 2 , |<73 - &! | < AC2(Ar) \<n \p with f L < k -1 

Ы 
Here fi, &> Ci> C2 are some decreasing positive functions of k. 

This Proposition is a result of routine successive calculation with usage of (16), 
(17). The next Proposition is a direct consequence of the previous one. 

Propos i t ion 12. With sufficiently small A under the conditions of Proposition 11 
the following inequalities are satisfied: 

- . w i t h - g ^ f t X ) ^>min(ki^^,i^§f), 

2. w i t h j g ^ f c - i . g ^ m a x ^ - ' ^ , ^ - ) . 

Here Dx = fc^"1, D2 = h*%-\ Ex = C i ^ " 1 . 

The same propositions are true with increments 0*2 — <TI, &i — &\. It follows from 
Propositions 9,12 that for any region Q = {(<r, &)\&2/\<r\ E [k~x, k]} U Or the region 
of the points accessible from CI with not more than 2 measurements is included into 
another set Qi = {(<T,&)\&2/\a\[k^[\ fci]} U Ori where ki —• 00, and ri —• 0 while 
k —• 00, r —• 0, A —• 0, Tm —• 0, 6 —• 0. Lemma 10 follows now from Propositions 7 
to 9 and from the remark at the beginning of Lemma 10 proof. • 

6.6. Comple t ion of T h e o r e m 2 proof 

Substantiate the last stage of the plan 6.3.. According to Lemma 4, the error region 
consists of the set &2/\<r\ ^ [fc-1,A;] which is invariant with respect to operator G,-, 
and of a bounded set included into O r . In agreement with 6.4, the latter set may 
be represented as a union of specific sets. Calculate the images of these sets after 
the transformation G^. Operator G^ transforms any set given by an inequality 
P(<r,&) < 0 into the set P{rr2^VT1^) < 0. 

The sets are the intersections of the set &2/\<r\ G [A:"1, k] with the following sets. 
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1. |<T |<<5 , 

2. \&\ < 26/\/(\<T\ - 6)pk\<r\ ><5, 

3. the set corresponding to Proposition 7: 
I cr | > (1 - p)1-^(2/>)pA-1(|<r| - 6)1~p

i |<r| > 6 with p < 1, 

4. the set |<r| < <5 + |<r|r(2<5) + 0.5AMT(26)2 corresponding to Proposition 8; 

5. the set family of the points accessible from the measurement point (<7i, <TI) with 
not more than one measurement on the way (Propositions 9,11 in accordance 
with formula for r) where (<7I,CTI) takes on values in the sets l ) - 4 ) . The set 
corresponding to Proposition 11 is 

5a. I c r - ^ I ^ A ^ - 1 ) ! ^ ! 2 ^ 1 , \& - &x\ < A6(*- 1 ) \&i\7p. 

The set corresponding to Proposition 9 is 

5b. |<T-<TI| < 2<7irm + 2,4Mrm, |<T-<TI| < 2AMTm. 

After the transformation G-q the set <r2/|cr| G [fc""1,^] does not change. Set 1) 
transfers to |<r| < r)26. Set 2) transfers to 

H < 2 J ?
2 " - 1 V A / ( H - rjHy, H > VH. 

Set 3) transfers to 

H > n2p~l(l - PY"P(^P)P^1(W\ - r)26)l~p
y \<T\ > r)26 with 0.5 < p < 1. 

Set 4) transfers to 

M < ^ + r)\&\T(26) + 0.hr)2AMT(26)2. 

Set 5a) transfers to 

k - * i | < A^CAr-1)^1-2" \&i\2p+1 , \cr - &,\ < A^*- 1 )*/ 1 - 2 " \&x\2p , 

set 5b) transfers to 

| < T - <7i| < 277<rirm + 2r)2AMTm, \& - &i\ < 2r)AMTmi 

where (<TI,<TI) belongs now to the images of sets 1) and 2). 
Consider two cases: a) 6 < rm '+ 1 , r) = r " 1 ; and b) rm < 61^2p+1\ r) = 

£-i/(2p+i) it j s e a Sy to see that in both cases the image of the set Q is bounded 
with p > 0.5. Apply Lemma 5 with images of Ea) Ea substituted for Ea, Ea, and 
receive that there is a bounded set attracting in finite time. After the inverse trans­
formation the desired evaluation of sliding accuracy is achieved in both cases. To 
get the general estimation, it is sufficient now to utilize the fact that the values of 
sup |<r| and sup |<r| in the steady mode are monotonously increasing functions of 6. 

D 
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6.7. On t h e o the r proofs 

Theorem 1 may be considered as a particular case of Theorem 2. Theorem 3 is 
proved in a very similar way by the transformation G^ with r\ — 8~1/2. 

Remark . As follows from (16), (17) and the description of set 5a), with 0 < p < 
0.5 the error domain obtained according to the above reasoning, fills all the plane 
after transformation G^, rj —» oo. Hence, the applied method does not work here. 
Simulation shows that in that case sliding accuracy does not tend to zero when 
5 -+0 , r m - > 0 . 

(Received December 11, 1998.) 
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