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LOCAL A S Y M P T O T I C STABILITY 
FOR N O N L I N E A R STATE F E E D B A C K DELAY SYSTEMS 1 

A L F R E D O G E R M A N I , C O S T A N Z O M A N E S AND P I E R D O M E N I C O P E P E 

This paper considers the problem of output control of nonlinear delay systems by means 
of state delayed feedback. In previous papers, through the use of a suitable formalism, stan­
dard output control problems, such as output regulation, trajectory tracking, disturbance 
decoupling and model matching, have been solved for a class of nonlinear delay systems. 
However, in general an output control scheme does not guarantee internal stability of the 
system. Some results on this issue are presented in this paper. It is proved that if the 
system owns a certain Lipschitz property in a suitable neighborhood of the origin, and the 
initial state is inside such neighborhood, then when the output is driven to zero by means 
of a static state feedback the system state asymptotically goes to zero. Theoretical results 
are supported by computer simulations performed on a nonlinear delay systems that is 
unstable in open loop. 

1. INTRODUCTION 

Although the topic of analysis and control of linear delay systems has been widely 
investigated in the past years (see e.g. [1-3,7,14-16]), only in recent years some 
authors focused their attention to analysis and control of nonlinear delay systems 
[4-7,10-13]. In papers [4-6], thanks to the introduction of a suitable mathematical 
formalism, in which a central role is played by the concept of delay relative degree, 
the problem of output control of nonlinear delay systems was solved for an inter­
esting class of nonlinear delay systems. This is the class of minimum phase delay 
systems, that is the class of delay systems that have delay relative degree and stable 
zero dynamics. The formalism proposed in [4-7] allows to overcome the mathemat­
ical difficulties due to the simultaneous presence of nonlinearity in the differential 
equations and of a state space of infinite dimension, that characterizes delay sys­
tems . The control law presented in [4] forces the input-output mapping to be linear 
and removes the effect of the delay. It is a function of the actual and past values of 
the state and of the past values of the input (delayed feedback). As a consequence, 
the output and its derivatives until order r — 1, where r is the system delay relative 
degree, can be easily controlled. 

1This work is supported by ASI (Agenzia Spaziale Italiana) and by MURST (Ministero 
dell'Universita e della Ricerca Scientifica e Tecnologica). 
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In this paper we consider the problem of the so-called zero-dynamics, that is the 
behavior of the state when the output and its r— 1 derivatives are driven to zero and 
kept to zero by a feedback law. Conditions are presented that guarantee, when the 
output and its derivatives until order r — 1 go to zero, that the state asymptotically 
goes to zero too. Among the conditions, the delay relative degree r must be equal to 
the dimension n of the state variables and the function <$(•), that gives the output 
and its derivatives until order n — 1 from the state variables and their past values, 
must be invertible with respect to the state variables, and the inverse function must 
be Lipschitz, in a suitable neighborhood of the origin, with a coefficient smaller 
than 1. 

This particular Lipschitz condition is locally verified by a large class of nonlinear 
delay systems. For such systems the problem of output control with internal stability 
is solved, provided that the initial state is in a suitable neighborhood of the origin. 
Simulation results are reported on a nonlinear delay system that is unstable in open 
loop. 

The paper is organized as follows. In Section 2 the necessary notations are re­
ported. In Section 3 the main results of the paper are reported: the problem of local 
asymptotic stability is formulated and solved. In Section 4 an example of application 
is presented with simulation results. Conclusions follow in Section 5. 

2. PRELIMINARIES 

In this section notations and definitions presented in [4], extensively used throughout 
this paper, are briefly reported. The control system under investigation is described 
by the following equation 

i(t) = f(x(t),x(t-A)) + g(x(t)1x(t-A))u(t)) (2.1) 

y(t) = h{x(t)), * > 0 , (2.2) 

where x(t) £ Mn, u(t) E M and y(t) £ M, the vector functions / and g are C°° with 
respect to both arguments, and h is a C°° scalar function. The model description is 
completed by the knowledge of the function x(r), r £ [—A,0], which represents the 
initial state in the classical infinite dimensional description of delay systems. Let 
£iAvO = x(t ~~ 2 ^) a n d W»'A(0 = u(t — iA), for i = 0,1,2, Note that Xi& is 
defined for t > (i — 1) A, while I^A is defined for t > iA. In the following we shall 
omit the time dependence, when it does not cause confusion. 

Definition 2.1. Assume that for system (2.1), (2.2) there exists an integer r such 
that, for every X in an open set fir E jR71^*1), the following conditions are verified 

LGLk

ғH(X) = 0, Jbr-0,1. . . . , r - 2 , (2.3) 

LGLғ-
lH(X) 

0 

. 0 . 

?-o, (2.4) 
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where 

X 

X X 

xA , x = 
xA 

-XrA _ - # ( r - l ) Д -

(2.5) 

F(X) = 

f(x,xA) 
/ ( _ Д , _ 2 д ) 

.f(x(r-l)A,~rA) J 

G(X) = diag {g(x,xA),...,g(x(r_i)A,xrA)} 

H(X) = h(x), 

LFH(X) = H(X), 

Lk

FH(X) = (jLL^HJFiX), 

(2.6) 

(2.7) 

(2.8) 

LGL
k

FH(X) 
dX 

Lk

FH G(X). 

Then, we say that the system has delay relative degree equal to r in Qr. 
If fir = _R n ( r + 1 ), we say that the system has global delay relative degree equal 

to r. 

T 1 

By denoting U = [u uA ••• u ( r _ i ) _ ] , the term LGL
rf H(X)U can be 

expanded in the form 

LGL
rflH(X) U = T(X)u + m(X, uA,..., u(r_1)A), 

where T(X) is defined as 

1' 

T(X) = LGL
rf1H(X) 

0 

0 

(2.9) 

(2.10) 

and m(X, WA,. . . , M(r-i) A) is as a consequence. Note that from condition (2.4) it is 
r ( X ) ^ 0 for _Ye_V 

It is not difficult to check that for systems having delay relative degree equal to 
r in __r it is 

</(*)(*) = Lk

FH(X), fc = 0 , l l . . . > r - l l 

y(0( t ) zz Lr

FH(X) + T(X)u + m(XyuAi...)u(r.1)A). 

From (2.12), it is easily seen that the feedback control law 

-Lr

FH(X) - m(K, uA,..., H(r~i) A) + ^ 

T(X) u = 

(2.11) 

(2.12) 
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imposes the following linear input-output map with respect to the new input v 

ir\t) = v(t). (2.13) 

Note that vector X is defined for t > (r — 1) A, and therefore the control law (2.12) 
can be applied starting from time instant (r — 1) A. The control law (2.12) is a 
function of the actual and past values of the state and of the past values of the 
input, and therefore it is called delayed feedback. 

Defining the vector function 

r H(X) 

Ф ( * , X Д , . . . , X ( r - l ) д ) = 

LFH(X) 

LĽГ1 

(2.14) 

;F

 VH(X)\ 

the output derivatives up to order r — 1 for t > (r — 1) A can be written as 

y(t) 

yO-l)( ť) 
= *(*(*))• (2.15) 

Given the linearized input-output mapping (2.13), output regulation, tracking and 
model matching can be easily performed. For example, by suitably choosing a row 
vector K} the input 

v = K$(X) (2.16) 

drives the output and its r — 1 derivatives to zero with any chosen decay rate. 
For nonlinear systems of the form (2.1), (2.2) having global delay relative degree 

equal to r, the zero dynamics is called to be the state evolution of the feedback 
system 

x(t) = f(x(t), xA(t)) + g(x(t), xA(t)) u(t), 
(2.17) 

* > * o > ( r - l ) A , 

where variable x(t) for t < to is such that the output and its first r — 1 derivatives are 
zero at to (y(to) = y^l\lo) = • • • = j/ r~1)(<o) = 0), a n d u(t) is the feedback input 
that obtains y^r\t) = 0 for t > to (it can be computed setting v = 0 in (2.12)). 

Nonlinear systems of the form (2.1), (2.2) are said to be minimum phase if they 
have stable zero-dynamics, extending in this way the terminology generally adopted 
with reference to nonlinear undelayed systems. 

To conclude this section, let 

z(t) = 
У(t) 

/'-^røj 
= ф ( x ( * ) , . . . , _ ( ť - ( r - l ) Д ) ) . (2.18) 

We say that the system (2.1), (2.2) is globally delay observable if it has global delay 
relative degree r = n and there exists the inverse $""1 of function $ with respect to 
x, that is 

x(t) = * - 1 ( z ( * ) > x ( * - A ) > . . . l a : ( * - ( n - l ) A ) ) . (2.19) 
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3. LOCAL ASYMPTOTIC STABILITY 

From here on we assume that system (2.1), (2.2) has delay relative degree r equal to 
n, so that when control law (2.12) and (2.16) is applied, the dynamics of variable z 
is described by the linear equation 

i(t) = (Ab + BьK)z(t), for t > (n - 1) Д, (3.1) 

where (Ab,Bb) is a Brunowsky controllable pair. It is an easy matter to compute 
K such to assign eigenvalues to matrix Ab + BbK, that has a companion structure. 
We will assume that K is such to assign real eigenvalues A;, i — 1,. . ., n such that 

An < ••• < AÍ < 0, (3.2) 

(—K is the vector of the coefficients of the polynomial that has the chosen eigenvalues 
as roots). 

Remark 3.1. It is important to stress that, differently from the undelayed case, 
the fact that the relative degree is r = n and z(t) goes to zero in general does not 
imply convergence of x(t) to zero. Extra assumptions are needed to achieve such 
implication, as explained in the following theorem. 

Theorem 3.2. Let system (2.1), (2.2) be globally delay observable, with feedback 
control law (2.12), (2.16), with eigenvalues (3.2). Assume there exists a positive 
constant 7 such that, if ||X»A|| < 7, i = l , . . . , n — 1, then 

||Ф Ҷz, xд, æ2_, • • •, S(n-i)__)|| < OL\\Z\\ + ß 

Xд 

Lя(„_i)д 

(3.3) 

with a > 0 and 0 < /3 < r^hj)-
Then, there exist suitable positive constants 61 and <52 such that, if 

MT)\\<6X, r e [ - A , ( n - l ) A ] , 

| | z ( ( n - l ) A ) | | < < 5 2 ) 

then 
lim x(t) = 0. 

(3.4) 

(3.5) 

P r o o f . Let T be a diagonalizing matrix for Ab + B\,K, so that 

diag(A1 ). ..,An) = T(Ab + BbK)T~1. 

Let M = llriHIT-1!!. From (3.1) it is for t > (n - 1) A 

ll-WII < ||c<-**+-»*-«"K*-C"-->A>||-||ar((» — 1)-.)U 

< M e A » ( « - < n - 1 ) A ) | | - ( ( » - l ) A ) | | . 

(3.6) 

(3.7) 
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Let 
6x = 7 - e, 0 < e < 7- (3.8) 

Take as 62 the following 

^„iJí^^.l^fcíj. (3.9 ) 
I MaeXiA aM ' v y ]• 

(з.п) 

Let the initial state and the input in [0, (n — 1) A] such that (3.4) are satisfied with 
this choice of 6\ and 62. We can prove that ||-c(r)|| < 7 for r G [—A, 00). It is 
||«r(r)|| < 61 < 7 for r G [~A,(n - 1) A]. For r G [(n - 1) A,nA] the following 
inequalities hold 

| |x(r) | | < a | | z ( r ) | | + / ] [ > ( r - i A ) | | 
i = l 

< aMe^^-^-^^H^n- lJAJII+^n- l )^ (3.10) 

- «M'-Kn^-<hp(n-l)(7-e) = r 

Now it is not difficult to prove the following implication for i > n 

\\X(T)\\ < 7 ) | |x(r) | | < 7, 

re[-A,iA], r e [ - A , ( i + l ) A ] . 

This happens because for r G [iA, (i + 1) A] 

| |x(r) | | < a | | z ( r ) | | + / 5 n _ T | K r - i A ) | | 

i = i 

< a M e A l ( r - ( " - ! ) A ) | k ( ( n - 1) A)| | + f3(n - 1)T (3.12) 

< aMeXlA62+(3(n- 1)7 

< y-(3(n- 1)7 + (3(n - 1)7 = 7. 

It follows that ||-c(r)|| < 7 V* > —A, and we can conclude that maxlimt_f0o ||-c(OII _: 7-
Moreover 

maxlim/_oo IkCOII -: amaxlim^oo lk(0ll 

+ /?(n - 1) maxlim^oo ( sup l _ 1 2 > n_1 \\x(t - iA)\\j 

< P(n - 1) maxlim*_>oo ||z(0ll> 
(3.13) 

and, being /?(n — 1) < 1 and maxlimt_oo 11̂ (011 a finite quantity, it follows that it 
must be maxlimt_>oo | |z(0ll = ^> ^ a t ls ^ e thesis. • 

Remark 3.3. As it can be understood through equation (3.9), the bound 62 re­
quired on vector z at time t = (n — 1) A depends on the chosen eigenvalues, through 
the quantity AT = ||_T|| ||_T—1||. 
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Remark 3.4. Boundedness of the variable x(t) in the interval [—A, (n — 1) A] must 
be assumed and can not be obtained by means of the control law of the type (2.12) 
because this law is well defined only for t > (n — 1) A. 

Remark 3.5. Thanks to relation (2.18) the condition on the boundedness of 
z((n — 1) A) can be transformed in a suitable condition on the boundedness of x in 
time instants 0, A, 2A , . . . , (n — 1) A. 

Remark 3.6. Assumptions (3.4) of Theorem 3.2 can be replaced by the following: 
there exist positive constants <5i and 82 such that 

l l*0-) | |<«i , r e [ - A , ( n - 2 ) A ] , 

\\z{r)\\<62, r G [ ( n - 2 ) A , ( n - l ) A ] . 

In this case, the boundedness condition on the variable x must be satisfied in a 
narrower interval, while the one on variable z needs to be verified in a delay interval 
rather than only in instant (n — 1) A. 

Results similar to those reported in Theorem 3.2 can be achieved by using the 
hypothesis of bounded gradient, and are presented in the next theorem. In the proof 
the mean vaiue theorem is used, that states that if A(£) : Mm —+ M is a, C1 function, 
then for any pair £1, £2 € Mm there exists a £ on the segment from £1 to £2 such 
that 

A(6) - A(fc) = ̂ | { = f ( 6 - « - ) • ( 3 1 5 ) 

The mean value theorem is applied to the j-th component of the map $ - 1 , de-
4 - 1 1S Xi = noted simply as $,• , in which vector z is intended as a parameter. It 

$Jl(z, XA, . . . , -E(n-i) A) . and using the mean value theorem between vectors (xA,... 
. . . , -C(n-i) A) and ( 0 , . . . , 0), one has 

*jHz,z*,...,xin-1)t)-9j\z,0t...i0)=Y-^*i*> ( 3 1 6 ) . ., dxiA 

and therefore n - 1 o^- i 

xi = ^J1(z,0,...,0) + ^2-^-xiA, (3.17) 
1 = 1 

dxiA 

where the derivatives are computed in a point of coordinates (qxA)..., g-C(n-i) A) . 
with q G [0,1]. In the following let xifjA(t) = Xi(t — jA) , i = 1,2,..., j = 0,1, 

Theorem 3.7. Let system (2.1), (2.2) be globally delay observable, with feedback 
control law (2.12), (2.16), with eigenvalues (3.2). Let the following hypotheses be 
satisfied: 

HI) There exists a positive a such that 

\\*-\z(t), 0 ,0 , . . . , 0)||oo < oll-WIIco, (3.18) 

for * > (n - 1) A; 
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H2) there exists a positive constant 7 such that if for t > (n —1) A it is ||XJ^||OO < 7> 
i = 1 , . . . , n — 1, then for j = 1 , . . . , n, it is 

ðФJ - 1 дфj1 

< / ? < ! , 

for t > ( n - 1)A. 

Then, there exist suitable positive constants 8\ and 82 such that, if 

N r ) | | o o < « i , r e [ - A , ( n - l ) A ] , 

| K ( n - l ) A ) | | o o < « 2 , 

it is 
lim x(t) = 0. 

t—00 v ' 

(3.19) 

(3.20) 

(3.21) 

P r o o f . Let M be such that, for t > (n — 1) A, it is 

Nt)| |oo<M e

A l ' | |z((n-l)A)| |oo. 

As in the proof of Theorem 3.2 let 

5i = 7 - e, 0 < e < 7 

c _ ; „ / 7 ~ /?7 7 ~ /?(T - Q\ 
e>2 = m m < - = — — — - , = > . 

l M a e A - A otM J 
Let the initial state and the input in [0, (n — 1) A] such that (3.20) are satisfied with 
this choice of b\ and 62. 

It can be proved that ||z(T)||oo < 7, for T E [—A, 00). It is ||^(T)||oo < 8\ < 7 for 
r e [-A, (n - 1) A]. In [(n - 1) A, nA] it is, exploiting equation (3.17), 

and 

(3.22) 

(3.23) 

(3-24) 

n — ì n дФ - 1 

\xj(T)\<\*jHz(T),o,...M + EY,\7rJ-h(T-iAK 
,=1 .=1 l o ^ i A l 

From this, for r e [(n — 1) A, nA] the oo-norm of X(T) satisfies 

IWr)||oo < ||*-1(*(r),0,...,0)||oo 

(3.25) 

дФ - i дФ - i 

+ s u P = 1 

II L oxA O X ( „ _ 1 ) A 

< a M e A l ( T - ( " - 1 ) A ) | | 2 ( ( n - 1) A)||oo +/?T 

< a M e A ' ( T - ( " - 1 ) A ) 6 2 + / ? 7 < 7 . 

Now the following implication can be proved for i > n 

IKr)lloo<7 IWr)||oo<7 

re[-A,iA] re[-A,(t + l)A] 

sup 1=1,...,n \x\(т — г'Д)| 
1 t = l , . . . , П — 1 

(3.26) 

(3.27) 
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This is true because for r G [iA, (i + 1) A] 

ll*0-)||oo < a | K r ) | | o o + / ? 7 < 

< a M e ^ T - ( n - " A)\H(n - 1) A)||oo + /?7 < T . 
(3.28) 

Until now we have proved that ||-c(r)l|oo < 7 for all r > —A. This implies that there 
exists finite maxlimt—oo ||z(*)lloo. Moreover it is 

maxlim^oo ||x(*)l|oo < /Jmaxlim^oo sup l = 1 jU_1 \\x(t - iA)||c 
(3.29) 

= /?maxlimt_oo lk (0 IU, 

and, being /? < 1, it follows that maxlimt—oo ||x(^)||00 = 0, that is the thesis. • 

Remark 3.8. We want to stress that by the same hypotheses of Theorems 3.2 
and 3.7, the boundedness of the state can be proved in asymptotic output tracking 
problems, provided that the reference output and its n — 1 derivatives are bounded. 

4. EXAMPLE 

Let us consider the following nonlinear delay system 

xi(t) = x2(t) + xi(* - A) x\(t - A), 

i2(t) = x3
l(t-A) + u(t)) 

y(t) = Xl(t), 

(4.1) 

with A = 0.1. For this system the delay relative degree is r = 2. The quantities in 
Definition 2.1 are in this case 

ғ = 

Г x2 + xXAx\A -0 0-
X3 

1,д 
X2A + Яl,2ДZ2 2Д 

X3 

L ^i.гд J 

, G = 
1 0 
0 0 

.0 1. 

(4.2) 

H = xi, LFH = x2 + xiAx\A) 

L\H = [0 1 x3

A3x1AxlA]F = 

= X1A + X2A(x2A + -CI,2A^2,2A) + 3X1^^2,A^1,2A) 

LGH = [ 1 0 0 0]G = [0 0] 

LGLFH = [0 1 x3

A ZxlAx\A]G=[l 3x1Ax*A], 

m = 3xiAx2Au&, T = 1. 

The following control law brings the output to zero with a prescribed exponential 
rate imposed by the choice of a gain vector A" 

u = -LFH -m+ K Xi 
x2 + xiAxlA 

(4.3) 
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In the simulations presented the gain vector K has been chosen such to assign 
eigenvalues —1, —2 to the closed loop input/output map. 

Maps <S> and fc"1 are given by 

z = 
XI 

Я2 + Я 1 , Д Я 2 , д ] 
and x = z\ 

z2 - X\AX2A 
and so 

WI<IWI + ll*дl 
Hypothesis (3.3) of Theorem 3.2 is satisfied with any 7 < 1. In this case we have 

a = l , / ? = 7

3 . 
In simulations the initial state has been chosen constant 

x(r) = rЄ[-A,0]. 

Control law (4.3) can be applied starting from instant t = A. The free evolution of 
the system in the interval [0, A] gets 

sup ||æ(r)|| = 6y/(l + Д 2 ) 
тЄ[-A.Д] 

and 
sup | |г(r)| | = M l + Д2)-

тЄ[-Д,Д] 

All simulations worked out using values of 6 smaller than 2.5 have shown stable 
internal dynamics for the simulated system. In Figures 1,2 the two components of 
the state and the control input are plotted in the case 6 = 2. 

* 7 

Fig. 1. Plot of state variables x\ and X2. 

5. CONCLUSIONS 

In this work the issue of internal stability for nonlinear delay systems, whose output 
is driven to zero by a delayed state feedback law, is investigated. The output control 
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Fig. 2. Plot of control input u. 

law was proposed by the authors in previous papers, in which the problem of the 
system zero dynamics was mentioned but not studied. In this paper local condi­
tions on the system structure and on the initial state that guarantee the asymptotic 
stability of the closed loop system are given. 

(Received December 11, 1998.) 
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