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STABILITY ANALYSIS AND SYNTHESIS 
OF SYSTEMS SUBJECT TO NORM BOUNDED, 
BOUNDED RATE UNCERTAINTIES 

FRANCESCO AMATO 

In this paper we consider a linear system subject to norm bounded, bounded rate 
time-varying uncertainties. Necessary and sufficient conditions for quadratic stability and 
stabilizability of such class of uncertain systems are well known in the literature. Quadratic 
stability guarantees exponential stability in presence of arbitrary time-varying uncertain­
ties; therefore it becomes a conservative approach when, as it is the case considered in this 
paper, the uncertainties are slowly-varying in time. The first contribution of this paper is 
a sufficient condition for the exponential stability of the zero input system; such condition, 
which takes into account the bound on the rate of variation of the uncertainties, results 
to be a less conservative analysis tool than the quadratic stability approach. Then the 
analysis result is used to provide an algorithm for the synthesis of a controller guaranteeing 
closed loop stability of the uncertain forced system. 

1. INTRODUCTION 

In the past decade a big effort has been spent to study the stability robustness 
problem for linear systems subject to time-varying uncertainties taking values in a 
given compact set. 

The classical quadratic stability test (see the pioneering work [3] and the tu­
torial paper [5]) guarantees, if satisfied, exponential stability of the system under 
consideration for arbitrary time variation of the uncertainties within their value set; 
such test can be reduced to a feasibility problem involvig Linear Matrix Inequalities 
(LMIs) (see [4]) for systems subject to norm bounded uncertainties (that is systems 
in the form x(*) = (A + FA(t) E) x(t) with || A(*)|| < 1) and for systems depending 
affinely on parametric uncertainties (that is systems in the form x(/) = A(p(t)) x(t) 
with A(-) affine). 

When, as often it happens in real situations, the rate of variation of the uncer­
tainties is bounded the quadratic stability approach is clearly conservative. In this 
context and for systems depending on parametric uncertainties, it has been shown 
(see [2] and the bibliography therein) that the use of parameter dependent Lyapunov 
functions, which allows to take into account the rate of variation of parameters, at­
tains less conservative results. 
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The aim of this paper is that of considering the "bounded rate" problem for sys­
tems subject to norm bounded uncertainties. As for systems depending on paramet­
ric uncertainties, to perform the stability analysis we shall use Lyapunov functions 
depending on the uncertainty matrix; this will lead in Section 3 to a sufficient condi­
tion (Theorem 1) for exponential stability in terms of a feasibility problem involving 
LMIs. 

Then the analysis result contained in Theorem 1 will be used in a synthesis context 
in Section 4. However the design problem requires the solution of an optimization 
problem whose constraints are Bilinear Matrix Inequalities (BMIs). BMIs problems 
are guaranteed to converge but not necessarily to the global optimum (like the LMIs 
based problems) and are dependent on the initial data; however there exist efficient 
algorithms which work well in many situations (see [6], [10] and the bibliography 
therein). 

An example to clarify the application and the effectiveness of the proposed tech­
nique will be provided at the end of Section 4. Finally some concluding remarks will 
be given in Section 5. 

This work is an extended version of the conference paper [1]. 

2. PROBLEM STATEMENT 

Let us consider the following linear system subject to norm bounded, bounded rate 
uncertainties 

x(t) = (A + FA(t)E)x(t) (1) 

where A G Rnxn is strictly Hurwitz, F G Rnxm, E G Rrxn and 

A(.) eV:= {A(.) G Cmxr , AT(t)A(t) < I, AT(t)A(t) < D, * G [0, +co)} . (2) 

In (2) Cmxr denotes the set of continuously differentiable matrix-valued functions 
taking values in Rmxr and D is a given positive semidefinite matrix. 

The term "norm bounded" follows from the fact that the uncertainties satisfy the 
normalized bound (the scaling factors are included in the matrices F and E) 

AT(t)A(t)<I; (3) 

the term "bounded rate" followrs from the condition 

AT(t)A(t) < D (4) 

which represents an upper bound on the rate of variation of A(-). 

Definition 1. [3] System (1) is said to be quadratically stable if there exists a 
positive definite symmetric matrix P such that for all A with AT A < I 

(A + FAE)TP + P(A + FAE) < 0. (5) 

It is readily seen that quadratic stability guarantees exponential stability of sys­
tem (1) for arbitrary time-varying uncertainties satisfying the bound (3). The fol­
lowing result is well known in the literature (see [5] and the bibliography therein). 
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Theorem 1. System (1) is quadratically stable if and only if there exists a sym­
metric matrix P which satisfies 

P > 0 (6a) 

( A T p +
f ? P

+ E T E z) < ° <»> 
Therefore the quadratic stability test can be reduced to a feasibility problem in­

volving the Linear Matrix Inequalities (LMIs) constraints (6); such feasibility prob­
lem can be easily solved by one of the algorithms proposed in [4]. 

The simplicity of the quadratic stability test, rendered this approach quite popu­
lar in the control community in the last years. At the same time it is clear that such 
approach is conservative when the rate of variation of the uncertainties is bounded 
as in the case of this paper. 

The first goal of this paper is stated in the following problem 

Problem 1. (Analysis) Find a sufficient condition for the exponential stability of 
system (1) for all A(-) eV 

Now consider the forced system 

k(t) = (A + FA(t) E) x(t) + Bu(t). (7) 

Problem 2. (Synthesis) Find a state feedback controller 

u = Kx (8) 

such that the closed loop system (7)-(8) is exponentially stable for all A(-) G V. 

3. MAIN RESULT: ANALYSIS 

The stability analysis will be performed with the aid of parameter dependent Lya-
punov functions in the form 

v(x)A) = xTP(A)x (9) 

where P(-) is required to be a continuously differentiable matrix-valued function. 
We consider the following structure for the matrix-valued function P(-) in (9) 

P(A) = P0 + NAE. (10) 

In (10) P0 E Rnxn and N e Rnxm are left free for optimization purposes. P0 

is required to be a symmetric matrix; note, however, that P(A) is not symmetric. 
Moreover note that, in some sense, the Lyapunov function (9)-(10) extends the 
structure of the Lur'e-Postnikov Lyapunov function (see [9]) to the full matrix case. 

The following theorem is the first main result of the paper. 
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Theorem 2. System (1) is exponentially stable for all A(-) EV if there exist 

i) A symmetric matrix P0 £ lRnxn\ 

ii) A matrix N €Mnxm] 

iii) Nonnegative scalars r0, T\, r2, T^) T$ 

such that 
rPo-T0ETE %Ny /Po-r0E

TE iJV\ „ , , 
( INT r o í j > 0 (lla> 

/ Lo + тiE т B + т 2 Л т E г EЛ + nEтDE \ATN + Р 0 Ғ 
f ÍNTA + FTP0 Li - n I + т3F

тE' 
| N | N | N \ 

§NT 

§NT 

where 

Li - T I І + T З F T J E T E F o o o 
0 - т 2 I o o <o 
o O - т 3 I o 
o 0 o -T4I/ 

(11b) 

Ьo = A T P 0 + P0A (12a) 

Ьi = ІFTN+1-NT 

2 2 
F. (12b) 

P r o o f . First we note that system (1) can be rewritten as follows 

x = Ax + Fu (13a) 

y = Ex (13b) 

u = Ay. (13c) 

Positive definiteness of v. Now we show that (11a) implies that for all A with 

Hail < i 
v(x,A) = xT(Po + NAE)x>0. (14) 

We have, using the fact that u = AEx, 

v(x, A) = xTP0x + xTNu (15) 

therefore v(x, A) > 0 for all A with ||<4|| < 1 if 

(xT uT)(k

P^T o)(X

u)>0> f o r a l l x ^ O a n d u = AEx, \\A\\ < 1. (16) 

We have that (16) is satisfied if and only if 

<*T » T > 0 * o

N ) ( 0 > 0 (17) 
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for all pair (x, u) satisfying 

( x т u т ) 
ҐEГE 0 

l 0 -l)\u)>~ 
> 0 . (18) 

In [4], p. 24 it is shown that (17) and (18) are equivalent to the existence of a 
nonnegative scalar ro satisfying condition (11a). 

Negative definiteness of v. We have that 

i) = xT(P0 + NAE) x + xT(P0 + NAE)x + xTNAEx 

= (Ax + Fu)T(P0x + Nu) + (xTP0 + xTNAE)(Ax + Fu) + xTNAEx 

= xT (ATP0 + P0A) x + xTP0Fu + uTFTP0x + xTATNu + uTFTNu 

+xT Nv + xT Nw + xT Nz (19) 

where we have used the fact that u = AEx and let 

V = ЛЕАх 

и? = ЛЕРи 

г = ЛЕх. 

(20a) 

(20b) 

(20c) 

Therefore we have that i) < 0 if 

íx
u\ 

ví/ 

/ A T P 0 + PoA ÍATiY + P 0 F \N 
\NTA + FTP0 \FTN + \NTF O 

\NT O O 
| iVT o o 
INr 0 0 

ÌJV 
o 
o 
o 
o 

\N 
O 
o 
o 
o ) 

íx\ 

Vz) 
< 0 , (21) 

for all x ^ 0 and u = AEx, v = AEAx, w = AEFu with \\A\\ < 1 and v = AEx 
with ATA < D. 

Again we have that v is negative definite for all A(-) E V if (21) holds for all 
five-tuple (x, u, v, w,z) satisfying 

( x т uт vт wт zт) 

/-FFE O O O 0\ / X \ 

' O I O O O] u * 
O O O O O v 
O O O O O w 

\ o o o o o) \z) 

< 0 (22a) 

(x? 

í-ATETEA O O O 0\ 

wл zт) 
O 
O 
o 
o 

o o o o 
O I o o 
o o o o 
0 0 0 0/ 

íx\ 
u 
v 
w 

\ z ) 

< 0 (22b) 
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( * э 

w* гт) 

/O O 0 0 0 
O -FTETEF O O O 
O O O O O 
O O O I O 

\0 O O O o) 

wn 

\ ' ) 

< 0 (22c) 

( x т uт vт wт zт) 

Z-FPDE O O O 0\ 
I n n n n n 

\ 

O 0 0 0 0 
O 0 0 0 0 
O 0 0 0 0 
O O O O l) 

íx\ 
u 
v 
w 

\z) 

< 0.(22d) 

Again in [4] it is shown that (21) and (22) are implied by the existence of non-
negative scalars ri , r2, T3 and T4 satisfying condition ( l ib) . • 

By virtue of Theorem 2, Problem 1 is solvable if the following LMIs based [4] 
feasibility problem admits a solution. 

Problem 3. Find a symmetric matrix P0 G Rnxn, a matrix N e Rnxm and 
nonnegative scalars ro, r i , r2, T3 and T4 which satisfy (11). 

Remark 1. (Recover of the Quadratic Stability Approach) Note that when ||D|| —> 
00, the application of Theorem 2 will automatically find, if existing, an uncertainty 
independent Lyapunov function with negative definite derivative. Indeed letting 
N = 0, ro, T2) r3, r.4 sufficiently small and rx = 1 we obtain that conditions (11a) 
and ( l ib) are equivalent to the existence of a positive definite P0 satisfying the 
condition 

(ATPo + PoA + ETE PoF\^n 

{ FTP0 -I ) < 0 ( 2 3 ) 

which is necessary and sufficient for quadratic stability for ||A|| < 1 of system (1) 
(see Theorem 1). 

Therefore in the limit case of arbitrary time-varying uncertainties Theorem 2 
recovers the quadratic stability approach; conversely, for slowly-varying uncertain­
ties, the approach of this paper, by optimizing over the matrix N, can lead to less 
conservative results than quadratic stability based methods. 

Remark 2. (Robust stability for time-invariant uncertainties) When D = O 
Theorem 2 allows us to study robust stability versus time-invariant uncertainties 
which is still an open problem in the field of stability analysis of uncertain systems 
subject to norm bounded uncertainties. In this case condition ( l ib) relaxes as follows 

< 0 . 

+ nEтE + т2 A
TETEA ЏTN + P0F W ÌJV 

ÍNTA + FTP0 Lг - nï + т3F
тEтEF 0 0 

ÌІVT O 
ţNт O 

-т2I 0 ÌІVT O 
ţNт O 0 -т3I 
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4. T H E SYNTHESIS PROBLEM 

From Theorem 2 we can derive the following result. 

T h e o r e m 3 . Problem 2 is solvable if there exist 

i) A symmetric matr ix Po G J R n x n ; 

ii) Matrices N G Mnxm and K G J R m x n ; 

iii) Nonnegative scalars To, r i , r2, r3, T± 

such that 

fPo-r0E
TE Í N \ „ 

( INT 2
ToI)>° W 

(UCL + TIETE + TIETDE AT
LET ±AT

LN + PQF ±N ±N | N \ 
1 EACL -r2I O O O O l 

| N T A C L + FTP0 O Li - n 7 + T3F
TETEF O O O 

| N T O O - T 2 7 O O 
iVNT O O O - T 3 7 O 

Nт O O O O - т 4 7 / 

< 0 

(24b) 

where 

i o c i = A ^ P o + P O A C L (25a) 

ACL = A + BK. (25b) 

P r o o f . From Theorem 2 we have t h a t the closed loop system ( 7 ) - ( 8 ) is expo­
nentially stable if there exists a symmetric matr ix Po G i R n x n , a matr ix N G J R n x m 

and nonnegative scalars TQ, r i , r 2 , T3, T± such t h a t 

• P o - т 0 E т E §N 
j ) > 0 (26a) 

/ LOCL + тiEтE + т2A
тEтEA + т 4 E т DE 

ÍNтACL+FтPo 
ŁN T 

Ì N T 

§NT 

| A T
L N + P0F 

- T ! 7 + т з F т E т E F 
§N 
o 

Ì N 
0 0 

0 - т 2 7 o o 
o O - т 3 7 o 
o O O - т 4 7 / 

<o 

(26b) 

By applying the Schur Complements L e m m a [4] to the 1 — 1 block in (26b) the 

proof follows. • 

By virtue of Theorem 3, Problem 2 is solvable if the following feasibility problem 

admits a solution. 
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Problem 4. Find a symmetric matrix P0 G Rnxn
y matrices N e RnXm, K e 

Rmxn and nonnegative scalars r0, Ti, T2, T3 and r4 which satisfy (24). 

Unfortunately, Problem 4 is not based on LMIs constraints because of the product 
between the optimization variables. Indeed condition (24b) is a Bilinear Matrix 
Inequality [10]. To solve this problem we propose a procedure which consists in 
alternating the optimization over P0 and N, with fixed K, with the optimization 
over K, with fixed P0 and JV (see also [6]). In this way each optimization becomes 
an LMI problem; this procedure is guaranteed to converge but not necessarily to 
the global minimum and the solution is dependent on the initial data. With this 
procedure we solved the following example. 

Example 1, Consider system (7) with 

A = U J , ) : - = ( ! M ^ ) - = ( J ! ) - - ( S ! ) -
(27) 

We solved Problem 4 by using the LMI toolbox; a stabilizing K is given by 

K = (-35.46 -22 .74) . (28) 

5. CONCLUDING REMARKS 

In this paper we have considered an unforced linear system subject to norm bounded, 
bounded rate time-varying uncertainties. For such a system we have provided a suf­
ficient condition for exponential stability in terms of a feasibility problem based on 
LMIs constraints. Our approach, which makes use of uncertainty dependent Lya-
punov functions, has been shown to be less conservative than the classical quadratic 
stability approach. 

Then the analysis result has been used in a synthesis context. Unfortunately 
the design problem cannot be formulated as an LMIs feasibility problem; therefore 
we propose a procedure based on the alternation of analysis and synthesis LMIs 
optimization problems. 

Concerning future work, we note that by using Lyapunov functions in the form (9) 
we have two degrees of freedom in the optimization process, namely P0 and TV. 
Better results could be obtained by considering more general classes of uncertainty 
dependent Lyapunov functions; however such Lyapunov functions should possess a 
structure leading to convex optimization problems. For instance with 

v(x, A) = xT(P0 + NAG) x (29) 

we introduce a new degree of freedom, namely the matrix G E Rrxn\ unfortunately 
the derivative of the Lyapunov function (29) along the solutions of system (1) does 
not lead, as in Theorem 2, to an LMIs optimization problem. It seems to the 
author that the problem of finding an uncertainty dependent Lyapunov function 
more general than (9)-(10) and leading to a convex feasibility problem is not a 
trivial one. 

(Received December 11, 1998.) 
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