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EXTRAPOLATIONS IN NON-LINEAR 
AUTOREGRESSIVE PROCESSES 

JIŘÍ ANDĚL AND VÁCLAV DUPAČ 

We derive a formula for m-step least-squares extrapolation in non-linear AR(p) processes 
and compare it with the naive extrapolation. The least-squares extrapolation depends 
on the distribution of white noise. Some bounds for it are derived that depend only on 
the expectation of white noise. An example shows that in general case the difference 
between both types of extrapolation can be very large. Further, a formula for least-squares 
extrapolation in multidimensional non-linear AR(p) process is derived. 

1. INTRODUCTION 

Let ei ,e2, . . . be i.i.d. random variables with finite second moment. Assume that 
et has a density h. Let Ko, .X_i,..., X-p+\ be random variables independent of 
{et)t > 1}. Define j = Eet and 

Xt = \(Xt-u • • •, Xt-P) + et, t > 1 (1.1) 

where A is a Borel measurable (generally a non-linear) function such that EXt < 
< oo. Then {Xt)t > 1} is called non-linear autoregressive process of order p, briefly 
NLAR(p). 

Assume that for a t > 1 the variables {Xt-S} s > 0} are given and Xt+m is to be 
extrapolated. The naive extrapolation Xf. . t is defined as follows. Let X* . t = 
Xt+m for m < 0 and 

Xt+m\t = HXt+m-l\t> • • • > Xt+m-p\t) + T, m > 1. 

Denote z = ( z i , . . . , zp)' and introduce functions 

f -?_m+i for m = 0 , - l , . . . , - p + l , 
Hm(z)={ 1.2 

\ A [ H m _ i ( z ) , . . . , H m . p ( z ) ] + 7 for m > l . 

Then 
xt+m\t = Hm(XtiXt-ii .. .,Xt-p+i). 

Note that Hm(z) = Hi[Hm_i(z),..., Hm-p(z)]. 
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The least-squares (LS) extrapolation Xt+m\t of the variable Xt+m given {Xt-9) 

s > 0} is defined by 

Xt+m\t = E(Xt+m\Xt)Xt-X)... )X-p+\). 

Since the model (1.1) is Markovian of the pth order, we see that 

Xt+m\t = E(Xt+m\Xt)Xt-i).. . .K t _ p + i ) . 

Then the variable Xt+m\t can be written in the form 

Xt+m\t = Kmtt(Xt) Kt-1, • • .Xt-p+\) 

where Kmtt is a function. 

2. PROPERTIES OF EXTRAPOLATIONS 

Calculation of LS extrapolation can be based on the following theorem. 

T h e o r e m 2.1. Functions A'm,t> m > 0, t > 0, are independent of t. They satisfy, 
with subscript t already dropped, the relation 

I\m(zi,...,zp) = / Km-i(w, zi,..., zp-i) h[w - \(zi,..., zp)]dw} m>\. (2.1) 

P r o o f . Introduce p-vectors Xt = (Xt)... )Xt-p+i)f, t > 0, u = (1,0, . . . , 0 ) ' 
and a transformation 

T(z) = (\(z))z1)z2)...)zp„1)') zeRp. 

We have 
Xt+l=T(Xt) + et+lu) ^ > 0 ; 

hence, {Xt} is a discrete parameter p-dimensional Markov process with the initial 
distribution of Xo and with a stationary transition distribution function 

F(z, y) = H(m - X(z)) I(y2 -Zl)...I(yp- Zp_x) 

where H is the distribution function of e\ and 

ПУ) = 
í 1 for y > 0, 

\ 0 for y < 0. 

Denote by F^m)(z)y) the m-step transition distribution function of the process. As 
Km>t(z) = E(X't+mu\Xt = z), the independence of. follows. Further, 

Km(z)= f y'uF^m\z,dy)= f f y'uF(z,dw)F^m-1\w,dy) 
JJRP J]RP JjRP 

= / Km_1(w)F(z)dw)= / Km-1(wifzuz2,...,zp-1)h(w1-\(z))dwu 

proving thus (2). D 
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Theorem 1 for p = 1 and with an unnecessary stationarity assumption of the 
process {Xt} is given in Tong [3]. 

It is clear that Ko(z) = z\- Moreover, it follows immediately from our definitions 
that H\(z) = K\(z) = \(z) + 7 . If m > 2 then Km -̂  Hm generally holds, since 

Hi(z) = A[*(*) + 7.*i»-••»**>--]+ 7. 

K2(z) = I A[y + A(z), z\,..., zp.\] h(y) dy + 7. 

In special cases, Km = Hm holds even for some m > 2. A typical situation is 
described in the following theorem. 

Theorem 2.2. Let p > 2 and let 

Xt = bXt-\ + <p(Xt-2. • • •, Xt-P) + et (2.2) 

where (p is a Borel measurable function. Then K2(z) = H2(z) holds for all : . 

P r o o f . In our model (2.2) we have 

K\(z) = H\(z) = bz\ +<p(z2,...,zp)+y. 

Using (2.1) we get 

K2(z) = [by + (p(z\,..., zp_\) + j]h[y - bz\ - <p(z2,..., zp)] dy 

= [bu + b2z\ + b(p(z2,..., zp) + (p(z\,..., zp-\) + 7] h(u) du 

= 67 + 62zi + b(p(z2,.. ., zp) + (p(z\,..., Zp-1) + 7. 

Since 
Xt+2 = bXt+\ + (p(Xt,..., Xt-p+2) + et+2 

and the naive extrapolation of Xt+\ is 

xt+i\t ~ bX* + (p(Xt-\)...yXt-p+1) + j 

we get 

Xt+2\t = bXt+i\t + (p(xt>--,Xt-p+\)+'y 

= 67 + 62Xt + 6vp(X t_!,..., Xt-p+\) + (p(Xt,..., X t _ p + i ) + 7 . 

From this formula for -Yt*+2.( it is clear that K2(z) = H2(z). • 

Consider again the general model (1.1). It is clear that the naive extrapolation 
depends on the white noise {e^} only through its expectation 7 whereas the LS 
extrapolation depends on the complete distribution of et. It can be of some use to 
have some bounds for LS extrapolation such that they depend also only on 7. We 
derive such results for a class of functions X(z). First of all, we introduce auxiliary 
assertions. 
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Lemma 2.3. Assume that f(z) is a concave function such that it is non-decreasing 
in each variable. Let g\(z),... ,gp(z) be concave functions. Then the function 
f[gi(z), • •. >gv(z)] is concave. 

P r o o f . The assertion can be proved directly. D 

L e m m a 2.4. Let £ be a random variable such that a < £ < 6 where - c o < a < 
b < oo. Define p = (E£ — a)/(6 — a), q = 1 - p. If ̂  is a convex function on [a, b] 
then 

^(0<#)+M»)- (2-3) 

P r o o f . See Kail and Wallace [2], p. 168. D 

The inequality (2.3) is called Edmundson-Madansky upper bound. 

L e m m a 2.5. Let X(z) be a concave function. Then the functions Hm(z), m > 
—p + 1, are concave and non-decreasing in each variable. 

P r o o f . Theorem can be proved by complete induction using Lemma 2.3. D 

Lemma 2.6. Let 

U\(z) = Hi(z), 

Um(z) = Um-i[y + \(z),zi,...,zp-1]i m > 2 . 

If X(z) is a concave function non-decreasing in each variable then the functions 
Um(z), m > 1, are concave. 

P r o o f . The assertion follows from Lemma 2.3 using complete induction. D 

By the way, it is easy to see that U2(z) = H2(z). 

T h e o r e m 2.7. Let X(z) be a concave function non-decreasing in each variable. 
Then Km(z) < Um(z), m>\. 

P r o o f . We use complete induction. We know already that K\(z) = H\(z) = 
U\(z). Let m = 2. Our assumptions ensure that the function r(y) = X[y + 
X(z), z i , . . . , zp-i] is concave for arbitrary fixed z. Jensen inequality gives 

K2(z) = J+ f X[y + X(z),zu...,zp-l]h(y)dy 

< 7 + Afy +A(z) , s i , . . . ,zp_i] 

= H2(z) = U2(z). 
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For m > 2 it follows from the induction assumption, Lemma 2.6 and Jensen inequal­
ity that 

Km(z) = / Km-1[y+X(z),zli...,zp-1]h(y)dy 

< I Um-1[y + X(z),zli...fzp-1]h(y)dy 

< Um-1[y + X(z),z1,...9zp-1] = Um(z). Q 

Theorem 2.8. Let a < et < b where —oo < a < b < oo. Define p = (7 — o)/(b — a)) 

q = 1 — p and 

Ji(z) = A(*)f 

Jm(z) = qJm-i[a + X(z),zli...,zp-1]+pJm-i[a + X(z),zli...izp-1], m > 2, 

Lm(z) = 7 + Jm(z), rn > 1. 

If A(z) is a concave function non-decreasing in each variable then Jm, m > 1, are 
concave functions and Lm(z) < Km(z) for m > 2. 

P r o o f . It is clear that Jm(z) are concave functions. From Lemma 2.4 we have 

K2(z) = y+ I X[y + X(z),zu...,zp-1]h(y)dy>i + J2(z) = L2(z). 
J a 

Similarly, by complete induction we obtain for m > 3 that 

Km(z) = / Km-1[y+X(z)iz1,...,zp-1]h(y)dy 
J a 

> 7 + / Jm-\[y+X(z),zu...,zp-1]h(y)dy 
J a 

> 7 + Jm(z) = Lm(z). Q 

3. AN EXAMPLE 

Let v > 0. Assume that et ~ I2(0, v) and define 

X* = y/X^Xt^ + eu t>l 

where Xp and X1 are non-negative random variables. Then 7 = v/2. From X t + 1 = 
>/K tK t_i + e t + i , X t + 2 = y/Xt+1Xt + e t + 2 we get 

#1(21, z2) = v^i22 + 7, H2(z1}z2) = \J(y/z^ + 7) zx + 7 . 

It was already mentioned that I-Ti(zi,z2) = H1(z1)z2). From (2.1) we obtain 

I<2(zi, z2) = 7 + | - ^ [(« + ^ / ^ ) 3 / 2 " ( W / 4 ] • 
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For v = 10 the functions Hi, H2, K2i and D2 = K2-H2 are plotted in Figures 1, 2,3, 
and 4, respectively. 

Fig. 1. Fig. 2. 

Fig. 3. Fig. 4. 

Consider the difference 

S(v) = K2(l, 1) - H2(l, 1) = yjl + l - - | [(» + 1 ) 3 / 2 " 1 

It is clear that <5(t>) —* 00 as v —> 00. This is an elementary example that the 
difference between the least-squares and the naive extrapolations can be arbitrary 
large. A similar example for an NLAR(l) process is introduced in Andel [1]. 

4. MULTIDIMENSIONAL NLAR(p) PROCESSES 

Now, let e i , e 2 , . . . be i.i.d. random g-vectors with finite second-order moments. 
Assume that et has a density h. Define 7 -= Eet. Let .Xo,-X'_i,..., X _ p + i be 
random g-vectors, independent of {et)t > 1}. Let A be a Borel measurable function 
from Mpq into Rq. For g-vectors z\%..., zp,\(z\,..., zp) or X(Z) will denote the 
function value of A at point Z = vec(z\)..., zp). Define 

Xt = A(Xi_i,...,.X. t_p) + e t , t > 1, 



Extrapolations in Non-linear Autoregressive Processes 389 

and assume that the second order moments of Xt are finite for all t > 1. Thus 
{Xt,t > 1} is a (/-dimensional NLAR(P) process. 

Introduce functions Hm : Rpq -> Rq by 

{ z-m+i for m = 0 , - 1 , ...,-P+ 1, 

\[Hrn-1(Z),...,Hrn-P(Z)]+<1 for ro>L 
Then X*t+m\t = Hm(Xtl..., Xt-p+\) is the naive extrapolation of Xt+m given 
Xt, Xt-\,.... 

T h e o r e m 4 . 1 . Define functions Km ' Rpq - • Rq by 

A'o(*i, • • • ,zp) = _ i , 

A ' m ( z i , . . . , z p ) = / A m _ i ( i y , z i , . . . , z p _ i ) / i [ i i ; - A ( z i , . . . , z p ) ] d i u , m > 1. 

Then 
X t + m | t = Km(Xt,.. . , X t - p + l ) 

is the least-squares extrapolation of Xt+m given Xt, Xt~\,.... 

P r o o f . Introduce Xt = vec(Xt,. • • , - ^ t - p + i ) and 

• - ( • : 

where I is the q x q identity matrix and 0 the (p — l)g x q zero matrix. With 
T(Z) = v e c [ A ( Z ) , z i , . . . , z p _ i ] , Z 6 ^ p ^ , we have Xt+\ = T ( ^ t ) + i i e t + i . The rest 
of the proof is quite the same as that of Theorem 2.1. D 
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