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CONTROLLABILITY IN THE MAX-ALGEBRA1 

JEAN-MICHEL PROU AND EDOUARD WAGNEUR 

We are interested here in the reachability and controllability problems for DEDS in 
the max-algebra. Contrary to the situation in linear systems theory, where controllability 
(resp observability) refers to a (linear) subspace, these properties are essentially discrete 
in the max-linear dynamic system. We show that these problems, which consist in solving 
a max-linear equation lead to an eigenvector problem in the min-algebra. More precisely, 
we show that, given a max-linear system, then, for every natural number k > 1, there is 
a matrix T* whose min-eigenspace associated with the eigenvalue 1 (or min-fixed points 
set) contains all the states which are reachable in k steps. This means in particular that 
if a state is not in this eigenspace, then it is not controllable. Also, we give an indirect 
characterization of Tk for the condition to be sufficient. A similar result also holds by 
duality on the observability side. 

1. INTRODUCTION 

An important stream of the literature on Discrete Event Dynamic Systems deals 
with the so-called max-aigebra model. The theory developed so far, aims at the 
derivation of results which parallel those of classical deterministic automatic control 
theory, when the dynamics of the system is given by a set of linear equations, with 
parameters in the idempotent semiring M= (K U {—oo}, max, +) . The aim is the 
development of a theory which, expectedly, will play a role similar to that of module 
theory for classical linear systems. The reader is referred to [2,3,4,6], and [9] for 
basic issues and results. 

We recall that a discrete event dynamic system is usually written in the max-
algebra as: 

x(k+l) = A- x(k) © Bu(k + 1), (1) 

where: 

x(k) £ EP whose ith row X{(k) stands for the time when event i occurred for the 
kth time, 

u(k) G Mm is the Arth input (control) into the system, 

2The authors wish to thank their colleagues J.J. Loiseau, and L. Libeaut for very helpful 
comments and suggestions which greatly helped to improve a first draft of this paper. 



14 J.-M. PROU AND E. WAGNEUR 

J4, and B are matrices of the appropriate sizes, 

© is the max operator, and 

matrix multiplication is meant in the max-algebra sense: 
]C?=i aijxj — maxi<i<n{a*j + xj} in the classical notation. 

Since we are also going to deal with the min operator, we will use a notation 
which conforms more to that of classical lattice theory, than that of linear algebra. 
Thus we rewrite (1) as: 

x(k + l) = A- x(k) V Bu(k + 1), (2) 

where: 
- V stands for the max operator, and 
- A • x is now expended as V?=i aijxj-

The aim of this paper is to show how the reachability problem in the max-algebra 
gives raise to an eigenvector problem in the min-algebra, and also to show how this 
problem may have a simple solution in some cases. 
In section two below, we recall the basic definitions: independence, basis, and also 
some well-known results necessary to the understanding of the paper. In section 
three, we show how, for a given m x n matrix A, the semimodule of those vectors 
z such that A • x = z has a solution is a subset of the set of min-eigenvectors of a 
square matrix of size m which is easily computed from A. In Section 4, these results 
are applied to the controllability of a max-linear system such as (1) above, and, in 
Section 5, to their observability. 

2. NOTATIONS, BASIC DEFINITIONS AND RESULTS 

We assume that the semiring of scalars is the set of real numbers enlarged to R = 
jRU{—oo}U{oo}. The max and min operators, written V, and A respectively define 
a complete lattice structure on JR. The least element —oo is written 0. It is the 
neutral element of V. Similarly, the largest element oo, written 0 is the neutral 
element of A. Usual addition, written multiplicatively, makes (R, V, A, •) a /-group 
(lattice ordered group, [1]). The neutral element of • is written 1 (this corresponds 
to the real number 0) and the cmultiplication, symbol • will usually be omitted. Also 
Va E R, a0 = 0, a0 = 0, and 00 = 0, 00 = 0 by convention. In order to avoid 
any ambiguity, we will write 6 for the number 1. 

The operations V and A are extended componentwise in a natural way to R , 
and, similarly, the external multiplication RxR —> R , (A, a;) •—> Xx. The 
universal bounds ( 0 , . . . , 0), and ( 0 , . . . , 0) will also be written 0 and 0, respectively. 
Ambiguity will generally be eliminated from the context. 
Then (R , V), and (R , A) are semimodules over the *?-group JR. These structures 
are easily extended to more general -?-group semimodules (subsemimodules of R ) . 

Let X C R . We write M]£ for the max-linear span of X, i.e. M% is the set of 

all finite V-linear combinations x = V!=t ^*x*» ^i 6 ^ > A,- G R. 
A similar definition holds for the min-linear span M£ of X. 
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Also X is V-independent if 

VY C Xy xeX\Y => M$ P | M * V = {°> 

A-independence is defined similarly. A set which is V-independent will generally not 

be A-independent, and conversely. 
If X is V-independent, then X is a basis of M%. 

There are two matrix multiplications, defined as follows: 

n n 

AB=\J aijbjk, and A'B=f\aijbjk. (3) 

7 = 1 J = l 

We will write _4vfc, and _4Afc for the kth power of A in the max and min algebra, 

respectively. Also _4V* = Vjb>o^V*> a n d A** = A*>o^A*> w h e r e -4V° = I ( r e s P> 

_4A0 = 7) the identity matrix in the max(min)-algebra. 
As a linear operator, and w.r. to the • multiplication, an m x n matrix A is a map 

Ft —• J2 . I t s columns generate a V-semimodule Imv_4, whose dimension is given 
by the number of V-independent columns of A. A similar statement holds when A 
operates on x E J__ by (left) •' multiplication (ImA_4 is a A-semimodule). Since 
Imv_4 (ImA_4) is the set of max(min)-linear combinations of the columns of _4, we 
may also write Imv_4 = M\ (ImA_4 = Mjj). 

The free V-semimodule over n generators is generated by (ei)n

=1) with e:- = 
(<$ii, ...,<5in), where 6y is the Kronecker symbol. (ei)n

=l will be referred to as the 
—Vn 

canonical basis of R . 
Given a basis _Y, the V-semimodule M% (in particular Imv_4, for any matrix A) 

is partially ordered by <, where x < y <^=> x V y = y. Also it is well-known that 
a semimodule morphism <p is isotone, i.e. x < y => (f(x) < <p(y). 

There is a duality between V-semimodules, and A-semimodules. For any state­
ment about V-semimodules, there is a similar statement for A-semimodules. 

3. SOLUTION TO EQUATIONS AND EIGENVECTORS 

For a given mxn matrix A = (a^)y let _4~ stand for the matrix (a"-1), and _4~T for 

its transpose. Then _4~T is called the residuated matrix of A. Consider the equation 

A • y = x (4) 

We have: V?=i aijVj = xi, i = 1 , . . . , ni. 
Hence aij2/j < ^ i , i = 1,. . . , m , j = 1,. . . , n, i.e 

. - ! _ . . _ , _ , _ , ^ r - l . 

t = l 

Clearly .4~T -; x is a solution to A • y = x iff A • (-4"T •' x) = ar. Let _4* stand for 
(_4_4~T). We have: 

Vj < a.j1^.-. « = 1, • • •. *»» 3 = 1. • • •. m, or, y, < /\ ajxt, j = 1, . . . , n. 

n m m n 

(A* 'X)І = л (V wïj**)* and И • ( л " т
 •'X))І

 = V(Л aüa г*) 
fc = l j = i * i = i fc = i 



16 J.-M. PROU AND E. WAGNEUR 

= ( A a ' la*iWi) V • • • V ( A ai™ak]mXkm) = A (V aHak]jxti) 
ki = l km = l kitk2...km j = l 

by distributivity. 
We distinguish the case where all the kj take simultaneously the same value. Let 

then Af = {1, 2 , . . . n] and write A m for the diagonal in _rVm, and E m for Mm \ A m . 
When all the kj have the same value, then the vector k £ Afm belongs to A m . 
Otherwise, we have k £ E m . Then, we may write: 

m n m m 

V(A «*<**)=( A (V^<i^))A( A (Va«flS«*i)) 
j=l * = - keAm i=i ik€Em i = i 

B u t Ar6Am(Vr=1a*i%jx^) = An=i(V?=iaiiaIjlxk) = -4* •'*. 
Let (IZ>i(a;))i stand for Ajb"eEm (Vj=i a»;afc j 2 ^ ) - Then we have: 

.4 • (_4~T •' x) = .4* •' x A IiU(x) (5) 

The first part of the following statement is well-known (cf. [2] for instance), the 
proof of the second part is straightforward: 

Proposition 3.1. A • (_4"T •' x) = x => x is a A-eigenvector of _4*. Moreover, if 
-^A(x) > -4* •' z, then we have: 
_4~"T •' x is a solution to A • t/ = x iff x is a A-eigenvector of _4*. 

The following example shows that the condition RA(X) > _4* •' x is necessary. 

/ i 1 i o \ / ; ; ° \ 
Example 3.2. Let _4 = o l o l . Then _4"T = J * ? • 

\ 2 2 i V \ o 1 i) 

Letx = (2 6 8)T . It is easy to see that _4(_4- T ' x ) = (2 6 6)T < A*'x = x. 

Note that the diagonal entries of _4* are all equal to 1. The following statement is 
well-known (cf. [3], pp. 63-64, for instance). An elementary proof is provided below 
(cf. also [8]). 

Theorem 1. (_4*) •' A = _4, and (_4*)A* = _4*. 

P r o o f . For the first statement, we have to show that (_4* •' A)u = (A)u = an. 
For the second statement, it suffices to show that ((_4*)A2),/ = (A*)u = a*. The 
proofs are similar. We show the first statement, and leave the second to the reader. 

We have: 

(A* •' A)it = A ° * •a" = A (V «•;<) at< 
* 3 
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= \A A a«i ak-i ° M ) = \f(au A A a« ak-j akji) 
j kj j kj?ii 

= o.u A \\J{ A aOa*/jaM)) = ait A (an v\J(f\ a.j%jaM)) = °u- • 
j kj^i i?l kjjti 

From the matrix equality A • B = C, we have, in particular, A/^ = Im v C C 
Imv_4 = M4. A similar interpretation also holds for the matrix equality A •' B = C. 
Then by the definition of _4*, we have Imv_4* C Imv_4. We have the following 
statement. 

Proposi t ion 3.3. Imv_4* C Imv_4 C ImA_4*. 

P r o o f . For the second inclusion, we first note that, by (5) above, we have A • 
(_4~~T •' x) < _4* •' x. Also, _4* •' x < x, since the main diagonal of _4* consists of 
l's. Now x G Imv_4 <=> [3 y s.t. _4 • y = x] => x < A • (.4 •' x) < _4* •' x < x . 
Hence x G Imv_4 => _4 • (A •' x) = _4* -; x = x => x e ImA_4*. • 

It is well-known that, for an irreducible matrix A the set of A-eigenvectors of 
A w.r. to the eigenvalue 1 (or the set of A-fixed points of A) is generated by the 
columns of _4A*. Theorem 1 says more, namely that, since _4* •' _4* = _4*, then 
the set K(_4*) of columns of _4* belongs to the set of A-fixed points of this matrix. 
Moreover, by the first statement, we also have that X(A) belongs to this set. Clearly, 
the equation Ay = x has a solution iff x G Imv_4. In particular, the first inclusion in 
Proposition 3.3 says that this holds true for all x G X(_4*), hence for all x G Imv_4*. 
The second inclusion states that, for every solution to A • y = x, then x G ImA_4*, 
i. e. x is a A-fixed point of _4*. 

Note that the second inclusion in Proposition 3.3 is meant in the set-theoretic 
sense. ImA_4* is an ini-semimodule, while Imv_4 is a sup-semimodule. 

Note also that our results also hold for the system \/f=i(^- ' 2/») — x- Indeed 
let A stand for the concatenation of the matrices _4. : A = [_4_ . . . _4p], and 
2/ = [2/1 • • • 2/p]T) ^ n e n t n e system is exactly the same as in (4). 

Also, all the above statements may be dualized, starting from A •' y = x. 
The interest of the second inclusion in Proposition 3.3 is that it substitutes an 

idenfication problem (here in the max-algebra) which may have a large number of 
parameters, say n > m to a simpler one (here in the min-algebra) with m parameters. 
Of course, what we gain in complexity is lost in accuracy. More precisely, the kind 
of answer expected from the use of Proposition 3.3, is of negative type, e. g. 
x ^ ImA_4* => x ^ Imv_4, i. e. A • y = x has no solution. 

The following examples illustrate the statement in Proposition 3.3. 

Example 3.4. Let xt- = (1, i, i2)', i = 1, 2 , . . . , . It is easy to see that the xt- are 
V-independent. 
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( 1 1 1 1 1 \ / 1 1 l \ 

1 2 3 4 5 . Then dim(Imv_4) = 5, and _4* = 5 l l . 
1 4 6 8 1 0 / \ 1 0 5 1 / 

By Theorem 1 _4* •' A = A, i. e, each of the 5 columns of A is a A-linear combination 
of the 3 columns of _4*. For example, 

Now _Y(_4*) is V-dependent, since 

This illustrates the inclusion Imv_4* C Imv_4. 

For the second inclusion in Proposition 3.3, let x = V^«x* £ ImV-4, with Ai = 

fe\ 
6, A2 = 5, A3 = 2, A4 = 1, A5 = 6 (the integer 1). Then x = I 7 1. Since x is a 

W 
A-fixed point of _4*, we have _4* •' x = x, i. e. 

A7 I 1 I A l l I 1 

11A7A11 I = 
16A12A11 

From Theorem 1, and Proposition 3.3 we would like to be able to recognize 
when _4* •' x = x = > A • (_4~T •' x) = x. We owe to Max plus [7] the following 
statement (however, since the result was stated without proof, and in a slightly 
different context, the authors assume full responsibility for any error in the proof). 
Let A be an arbitrary matrix. 

Theorem 2. Imv_4* = ImA_4* «=-> Imv_4* is a lattice. 

Proof . Clearly Imv_4* = ImA_4* => Imv_4* is a lattice. 
Conversely, assume Imv_4* is a lattice. We show that ImA_4* C ImV-4*. 
Let x G ImA_4*, then x = _4* -; y for some y G _ftf, i. e. x = Aj=i afvj > w h e r e a* is 
column j of _4*. Let _4* stand for the matrix with column j equal to yj af. Clearly, 
Imv_4* = Imv_4*, and, since this is a lattice, we have x G Imv_4*. 
Since Imv_4* C ImA_4* by Proposition 3.3, this completes the proof. • 

From Proposition 3.3 and Theorem 2, we have the following statements. 
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Corollary 3.5. If Imv_4* is a lattice, then Imv_4 and ImA_4* are lattices. 

Corollary 3.6. Assume Imv_4* is a lattice then A • y = x has a solution iff x is a 
A-fixed point of _4*. 

Theorem 2 gives an interesting property that the matrix _4* has to verify. But 
this property is not immediately recognizable just by looking at _4. However, there 
are two interesting particular cases where this is possible. First recall that A is said 
to be V-invertible iff there exists a matrix B such that B • A = A • B = 7, the V 
identity matrix (i. e. 7 has no entry 0. Note however that 7-0 = 0). 

Proposition 3.7. If A is a V-invertible matrix, then Imv_4 = ImA_4* = M 

Proof . Clearly, if A is invertible, then Imv_4 = R . 
It is well-known that an invertible matrix A has the form A P , where A is a diagonal 
matrix, and P is a permutation matrix. Alternatively, 
Qij ± 0 = > [Vk £ i f ajej = o, and V/ 5-= j , a,/ = 0]. Then ay = 0 ==-> (-4~T)j. = 0, 
and atj ^ 0 = > (_4"T)y,- = a^.1. Hence a* = \ / . flyaj^1 = _>,*, where _>,•* is the 
Kronecker symbol in the i__£algebra, i.e. 

*» = {_; A: = i , 
otherwise. 

It follows that _4* = 7, the A-identity matrix. Since 7 •' 0 = 0, and 7 is the identity 
matrix in the min-algebra, we have ImA_4* = _R . It follows in particular that 
VxelT : _4.(_4-T . 'x) = _4-'x = __. • 

Another case, where Imv_4 = ImA_4* is when n = 2. More precisely, we have the 
following statement. 

Proposition 3.8. (cf. [8]) For A of size 2 x m, we have Imv_4* = ImA_4*. 
^ 2 

Proof . We show that for A as in the statement of the Proposition, and x _ M 
arbitrary, we have 

A*'x = A-(A-T -'x). 

- _ l x r*iA(Vj=iai;aj/*2) A*=(./m ' _, V ľ = i ^ Л а n d A*.,x = 
(Vj=l a2j alj *l) Л X2 

i-т / x = 

r a n xi Лa 2 1 x 2 

а1;. XI Л а2;. а:2 апй (_4 • (.4 Т •' аг)). = \/У_-._ а,, (04/2:1 Л а 2 /х 2 ) . 

Hence A(A"T/x) = 
V ^ _ 1 ( x i A a l j a 2 / x 2 ) j _ [x x A (V7=i ayOj/ara) 

V,m=i(a2iar/«i A x2) J [ (Vj_i asiata?!) A x 2. ' 
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Note that Proposition 3.8 states that, whatever the value of m, we investigate a 
square matrix of size two. 

In the next section, we apply the statements above to the reachability and con­
trollability problems in max-plus systems. 

4. REACHABILITY AND CONTROLLABILITY IN DEDS 

Consider a system (At Bt C) given by: 

x(k + l) = A-x(k) V B-u(k + l)t 
(6) 

y(k + l) = C-x(k+l)t 

where X{(k) is the date when the Hh occurrence of event i begins, i = 1,. . . , m, and 
u(k) that of the kth control (input) vector applied to the system. 
The first equation means that, the (k + l)th occurrence of event i begins when all 
the Arth occurrences of the events have been completed (Vj=i aijxi{k), with a,j the 
duration of an event j which immediately precedes i) and the input sequence which 
affects i, V?=i ^uut have been completed (where ut is the date of the release of input 
£t and 6,7 is the time delay it takes before i can be affected, also, bu = 0 if £ does not 
immediately precede i). When the system is represented by a timed event graph, 
the state refers to the internal transitions, whereas the control refers to the input 
transitions. In both cases, the delays stand for the time of the transition firings 

In condensed notation, the first equation may be written as: 

-(- + i)-[^]-(t (J )
1 )) (7) 

and expended as: 

x(k + i) = [rk^A^-i)].(u
x
k-<) (7i) 

In particular, for i = 1: 

( " ( - ) ) 
x(k + l) = [Tk^Myk]'[x\^) , (8) 

where rfc_t- = [B\A - B\... |i4.v(*-0 • B]t and uk-i = (u(k + 1) u(k)... u(i + 1))*. 
Assume that (7i) has a solution, i.e. given x = x(k + 1), there is an admissible 

initial condition x(i) (the "initial condition" at which the sequence of events occurred 
for the zth time) and an input sequence u(i + 1), u(i + 2 ) , . . . u(k + 1), such that 
(7i) holds. This means in particular that, starting from x(i) we can reach x(k + 1) 
in k + 1 — i steps. But then, starting from x(i + 1) = Ax(i) V Bu(i + 1), we can 
reach x(k + 1) in A: — i steps, a.s.o. i.e x(i)t x(i + 1 ) , . . . , x(k) are all admissible 
initial conditions. Clearly, x(i) < x(i + 1), hence the set AIC of admissible initial 
conditions is a poset. Also the set of input control vectors ICV is a poset. 
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Following [5], (and with a slight modification), we state the reachability problem 
as: 
Given x G M. > c a n w e find a set AIC(x) -^0 of admissible initial conditions, and a 
set ICV(x) ^ 0 of input control vectors such that (7i) holds for some i (0 < i < Jb)? 

Note that, for i = 0, (7i) yields an initial condition x(0) and a sequence of control 
vectors uk) with first control u(l). The interpretation for x(0) is the date at which 
no transition has been fired. Since t = 0 (the real number 0) may be the date of the 
first firing of the transitions, it is reasonable to assume x(0) = 0. In this case, since 
-4V*+1(Q) = 4(0) = fli t h e system becomes 

x(k + l) = Tk uk. (9) 

In classical linear system theory, controllability and reachability coincide. Clearly, in 
the max algebra setting, the controllability problem as it is usually stated in linear 
system theory does not make sense. Indeed A • x = 0 --> dijXj = 0, Vi, j . 

Definition 4.1. 1. We say that the state x is reachable if AIC(x) \ {x} -^0. 

2. We say that the state x is controllable if 0 G AIC(x). 

Note that every controllable state is reachable, whereas the converse doesn't hold. 
Also, the chains in AIC(x) need not all have the same length. The properties of 
this set are not known, and a systematic study would be appropriate. 

R e m a r k 4.2. Note that, in classical system theory, controllability is meant as 
system controllability, wereas here we can only talk about state controllability, since 
controllability is a discrete property of max-linear systems, while it is a property of 
a subspace in classical linear systems theory. 

From Proposition 3.3 above, we have the following. 

T h e o r e m 3. A necessary condition for x to be controllable is that it is a fixed 
point of 

Гř^UГ^.xн.Гt!; 

, 4 * Moreover, if Im T* is a lattice, then this condition is also sufficient. 

P r o o f , x controllable =» 0 G AICU) => AIC(x) \ {x} ^ 0 = » 3 uk = u s.t. 
x = r t • u => x e Im£fc => i e WTJf => 3 y s.t. i = rf •' y z>Tf •' x = 
r f ' ( r f . ' y ) = ( r f . ' r f ) . ; y = r*. 'y = x. 
The sufficient condition is given by Corollary 3.6. n 

The following example illustrates our discussion on initial conditions. 
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Example 4.3. A = ( 3 f ) , B = ( 3 ) , C = (0 6), where 6 stands for the real 

number 1. We want to know if x = I J is reachable. 

Wehave:[r 0 |A ] = [ f i | A ] = ( * | § ) , \T.\A}* = ( 3 3 § ) ( ^ J l ! ) = (i5 V ) -

W e h a v e l l ( J ) A l 4 ( 2 " 1 ) = ( } * ) , hence x e Im A [T 0 |A ]* . 

But for m = 2, by Proposition 3.8, we have Im v [ r o |A] = ImA[T 0 |yl]*. Thus x is 

reachable, and ( ^ U ) = I 5 - 1 3 _ 1 J •' ( 1 4 ) = I 10 I, i. e. x is reachable from 

x(l) = ( j in one step with control u(2) = 10. 

Now B~T •' x(l) = 9, and with Ui = ( g J, we have: 

r1-. = w>.-m-. = (J ?)•(?) = ( » ) . 
and x is reachable in two steps from 0, with controls u(0) = 9, u(l) = 10, i.e. x is 
controllable. 

Our last example shows that existence of a solution to (8) does not imply that of 
a solution to (9). 

Example 4.4. We consider the same problem except that now B = ( 2 ) • We get 

the same reachability result with initial condition x(l) = ( J, and u\ = ( g J. 

However B • u(\) = ( n J ^ #(1), and T\ • u\ = ( 1 3 J. 

5. OBSERVABILITY 

The observability problem for DEDS may be stated just dually to the reachabil­
ity problem. That is, given a sequence of observed states y(0), t/(l), •• •, y(k) is 
it possible to recover the initial state x(0) together with the sequence of controls 
t/( l ) , . . . u(k) G R , such that, as in (6) above, we have: y(0) = C • x(0) , y(l) = 
C • x(l) = C-A- x(0) V C • B • ti(l), . . . y(k) = C • Ax(k - I) V C - B • ti(fc) 
In matrix form: 

У(0) 

y(i) 

y(*)J 

O 
Oл 

OA*-1 

x(0)V 

0 0 
CB 0 . . . 0 

,OA*- 2 B Oлfc-Зß . . . cв, 

- ( ! ) • 

«(2) 

L«(*)J 

(10) 
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Let 

Yk = 

Kk = 

l °-
cв 

У(0) 
У(2) 

Ык) 

0 

г c 
CA 

Oк = 

ICA 

cвl 

k-\ 

uk = 
\CAk~2B CAk~3B 

then (10) may be rewritten as: 

Yk=Okx(0)VKkUk 

U ( l ) 
u(2) 

u(k) 

oг 

Yk = [Ok\Kk] 
*(0) 

uk 

(11) 

Following the general ideas of controllability (see also [5]), a system will be said 
to be observable if, for any given observed sequence of outputs, and knowing the 
associated sequence of inputs, we can find the state (initial condition) which, for this 
sequence of inputs yields the observed sequence of outputs. 

Definition 5.1. We say that the system (A, B,C) is observable in k steps if, for 
given input and output sequences Uk , Yk respectively, equation (11) above has a 
solution. 

Reinterpreting the results of Section 3 above, we may state our necessary condi­
tion for observability. 

Theorem 4. In order that Yk be observable, it is necessary that it is a fixed point 
of 

[Ok) £*]* :Wk — 1™*, Yk ~ [Okl Kk]+ 'Yk , 

Moreover if Imv[C?fc, /Cjb]* is a lattice, then this conditon is also sufficient. 

6. CONCLUSION 

In this paper we have shown that the reachability problem in max-linear systems 
may be stated either as a problem of finding Imvrjfe in the max-algebra, with Tk an 
m x n matrix with n ^> rn, or as an eigenvector problem in the min-algebra, like in 
[5], where the authors have to check, for each k if n ^> m equations hold. Here, we 
reduce this problem to an eigenvector problem of size m for each k} as long as we 
get a negative answer. 
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Note that the reachability/controllability problem is a discrete problem in the max-
(or min-)algebra, since from two given states, only one may be reachable (or con­
trollable). Also, we state a necessary and sufficient condition for a matrix A , in 
order that: 

Vx, A(A-T).'x = A.(A-T'x), 
which in turns yields a necessary and sufficient condition for the system A • y — x 
to have a solution in terms of the columns of the matrix A*. 

All our reachability/controllability results are dually interpreted on the observ­
ability side with small changes. 

(Received April 8, 1998.) 
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