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K Y B E R N E T I K A — VOLUME 34 ( 1998) , NUMBER 6, PAQES 7 3 9 - 7 4 6 

ESTIMATION OF HIDDEN MARKOV MODELS 
FOR A PARTIALLY OBSERVED RISK SENSITIVE 
CONTROL PROBLEM1 

BERNARD FRANKPITT AND JOHN S. BARAS 

This paper provides a summary of our recent work on the problem of combined estima­
tion and control of systems described by finite state, hidden Markov models. We establish 
the stochastic framework for the problem, formulate a separated control policy with risk-
sensitive cost functional, describe an estimation scheme for the parameters of the hidden 
Markov model that describes the plant, and finally indicate how the combined estimation 
and control problem can be re-formulated in a framework that permits an application of 
stochastic approximation techniques to the proof of asymptotic convergence of the estima­
tor. 

1. INTRODUCTION 

Risk sensitive control of hidden Markov models has become a topic of interest in 
the control community largely in response to a paper by Baras and James [2] which 
shows that, in the small noise limit, risk sensitive control problems on hidden Markov 
models become robust control problems for non-deterministic finite state machines. 
This paper presents results that are part of a program to extend the work of Baras 
and James to cover situations where the plant is unknown. We consider the combined 
estimation and control problem for a class of controllers that implement randomized 
control strategies that approximate optimal risk-sensitive control on a finite horizon. 

Problems of combined estimation and control have a long history, and the LQG 
case is standard material for stochastic control texts. Treatment of controlled hidden 
Markov models is more recent, the work of Fernandez-Gaucherand et al [5] treats 
a situation similar to that treated here with different methods. The methods that 
we use are based on existing work in stochastic approximation. In particular we 
use a recursive estimation scheme based on Krishnamurthy and Moore [6], and an 
approach from Arapostathis and Marcus [1] along with theorems from Benveniste 
et al [3] to prove convergence of the estimation scheme. The difference between this 

1 Research supported in part by the National Science Foundation Engineering Research Centers 
Program, NSFD CDR 8803012, and by the Lockheed Martin Chair in Systems Engineering. 
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work and the preceding work is that by considering randomized strategies we can 
show convergence of the model estimate and the control without recourse to special 
reset conditions that are required in [5]. 

This paper is divided into five sections: the remainder of this section introduces 
the notation that we use, the second section describes the controller architecture, 
the third describes the estimator, the fourth states and discusses the convergence 
results, and the fifth presents some conclusions and directions for future work. 

The Markov chains that are used in this paper are discrete-time finite-valued 
stochastic processes defined on an abstract probability space (Ct^T^V). The finite 
state space is represented by the unit vectors {e i , . . . , e^} of MN and the finite input 
space, U, is represented by the unit vectors in Mp. If the input at time / has the 
value t//, then the state transition matrix for the Markov chain has entries 

Aultij = -P(z/+i = ej I xi = ei, ui). 

The finite set of outputs Y is represented by the unit vectors in JRM, and the 
transition matrix from state to output is given by 

Bij = P(yi = ej I*/ = e,-). 

The combined state, input and output process {ar/,ti/,t//} generates a filtration 
{Fi} C T in the usual way, and the process formed by combining input and output 
only generates a smaller filtration \yi} C {F\} on T. In general, probability distri­
butions on finite sets will be represented as vectors, expectations as inner products 
in Euclidean spaces of the appropriate dimensions, and probability kernels on finite 
spaces will be represented as matrices. 

Let M denote the space of probability distributions on the finite set U, and Mr]) 

0 < *7 < 1/P denote the compact subset of distributions that satisfy //{«} > TJ for 
all u £ U-. A control policy for a finite horizon of length K is a specification of 
a sequence of probability distributions on /io,/^i, • • >1*>K-I EM. A control policy 
is an output feedback policy if each distribution /// is a measurable function on 
the <r-algebra }>/. Each control policy // = /xo,r*i, • • IVK-I induces a probability 
distribution on TK with density 

K - l 

Pu(xo,K,yo,K) = {xK,ByK)(xo,no) Y[ ^2(xiJAuxi+1)(xhByi){ui^). (1) 
i*=o ueu 

where 7To is the probability distribution for the random variable xo. It is convenient 
here to define an additional probability measure on ft 

1 K~l 1 
PHzO,K,yO,K) = T7(*0,7T0) J J Yl —(xhAuXl+1)(ujfil). 

i=o ueu 

Pu is absolutely continuous with respect to P* and has Radon-Nikodym derivative 
dPuX K 

dPt 
= AK = Y[M(x,,By,). 

GK Í=O 
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In addition, the output process y\ is i.i.d. with respect to P* and has uniform 
marginal distributions P^{yi = ej} = 1/M. 

2. CONTROLLER ARCHITECTURE 

A risk sensitive control problem is defined on a hidden Markov model by specifying 
a cost functional with an exponential form. Given a running cost, ^(x, ti), which is a 
function of both the state and the input, and a final cost <£/(#), which is a function 
of the state only, the finite horizon, risk sensitive cost, associated with the control 
policy /i, with risk 7 and horizon K is the functional 

JЦџ) = E 1 / K~1 X 
exp - í <l>f(xK) + ~P <j>(xi, «j) I 

'V /_o / . 
(2) 

Expressed in terms of expectations with respect to the P* measure, the cost is 

J~{џ) = Et Л я e x p - í фf{xк) + 
K-l y 
^ ^ ( X J , « J ) J . 
í=0 / . 

Optimal output feedback controls are computed by defining an information state 
that is a process adapted to the filtration {}>/}, translating the cost to a functional 
on the information state, and then using dynamic programming with respect to the 
information state dynamics to compute the optimal control. An appropriate choice 
of the information state at time / is the expected value of the accrued cost at time 
/, conditioned with respect to the cr-algebra yi. 

(r](x) = E* I{*,_*}Лjexp (-Ę«к**>u*)j \Уi 

The information state dynamics is described by a linear recursion on _R+ 

(7/ =£(t* |_ i ,Jrt )<Tj_i , 

£(u,y) = Mdiag((.,Py))_4T(ti)diag(exp(l/70(.,ti))). 

(3) 

The risk sensitive cost is expressed as a functional on the information state process 
by the formula 

^( / i ) = Et[K(.),exp(^C)/T))]. (4) 

The value function associated with the finite-time, state-feedback control problem 
on the information state recursion (3) with cost function (4) is 

BMo-,/)= min E t [ K ( . ) ) ^ ( . ) ) | í r 7 = <T], 0 < / < K (5) 
(ii.../iK-i€.-M 
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The associated dynamic programming equation is 

F(a, I) = min^M E* [S^(^(u,, yl+l)a, / + 1)] 

5P(v,K) = (*(-),M-))-{ 
An induction argument along the lines of that used by Baras and James [2] proves 
the following theorem. 

Theorem 1. The value function S1 defined by (5) is the unique solution to the 
dynamic programming equation (6). Conversely, assume that S7 is the solution of 
the dynamic programming equation (6) and suppose that fi* is a policy such that for 
each / = 0 , . . . , K — 1, fi* = Jt*(<rJ) G My where JL\(<T) achieves the minimum in (6). 
Then fi* is an optimal output feedback controller for the risk-sensitive stochastic 
control problem with cost functional (2). 

The following structural properties are analogous to those proved by Fernandez-
Gaucherand and Marcus [4]. 

Theorem 2. At every time / the value function 57(cr,/) is convex and piecewise 
linear in the information state a G -R+ . Furthermore, the information state is 
invariant under homothetic transformations of M+ . 

The randomized policies taking values in Mv approximate deterministic policies 
in the following way. 

Theorem 3. Let Sn denote the value function for the optimal control problem 
when the policy is restricted so that fi\ g Mv for all 0 < / < K — 1, then So = S is 
a deterministic policy, 

Sv(<r,l)-So{*,l) 

i + H 
uniformly on ]RN x { 0 , . . . , K}, and the optimal policies converge fi* —• fi*. 

The controller architecture that we propose is based on a moving window. The­
orem 2 is used with the dynamic programming equation (6) to compute the value 
function for the finite horizon problem with horizon K. along with the values of the 
optimal output feedback distributions fi*(<r). At each time / the information state 
recursion (3) is used with a record of the previous A observations and control values, 
and a predetermined initial value CJ-A to compute the current value of the infor­
mation state. The optimal probability distribution fi(<r\) is selected, and a random 
procedure governed by this distribution is used to produce a control value u\. 

3. ESTIMATOR ARCHITECTURE 

The estimator architecture is a maximum likelihood estimator. The recursive algo­
rithm is derived by following the formal derivation that Krishnamurthy and Moore 
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[6] give for a stochastic gradient scheme that approximates a maximum likelihood 
estimator for a hidden Markov model. The resulting algorithm is well described as 
a recursive version of the expectation maximization algorithm of Baum and Welch. 
Let 0/ denote an estimate for the parameters that determine the probabilistic struc­
ture of the hidden Markov chain. The components of 0, which are the entries of the 
transition matrices, are constrained to lie in a linear submanifold 0 by the require­
ment that the estimates Au and B be stochastic matrices. Gradients and Hessians 
taken with respect to 0 will be thought of as linear and bilinear forms on the tangent 
space to 0 . 

A maximum likelihood estimator for a hidden Markov model with parameteriza­
tion 0* minimizes the Kullback-Leibler measure 

J(0) = E[log/(yo,/|^)in. 

Here f(yofi 10) is used to denote the distribution function induced by the parameter 
9 on the sequence of random variables yo,h It turns out that J(0) is not an easy 
quantity to calculate, however an equivalent condition can be stated in terms of the 
functions 

Qi(0\0) = E[\ogf(xOti,yo,i\O)\yo}i,0'] (7) 

Q,(0',0) = E[Qt(0',0)\0*] 

Krishnamurthy and Moore show that <2,(0',0) > Qi(0',0') implies that J(0) > 
J(0'), and proceed to write down the stochastic gradient algorithm2 

0/+1 = 0/ + -?i+i(0/) -QQ 

Where I\ is the Fisher information matrix for the combined state and output process 
lx(0x) = -d2Qi+i/d02\e=en and <3/+i(0/,0) is the empirical estimate for Q(0/,0) 
based on the first / observations. 

The central part of the estimator is a finite buffer containing the last A values of 
the input and output processes (the length is chosen to be the same as the length 
of the controller buffer in order to simplify the presentation). This buffer is used to 
update smoothed recursive estimates of the various densities from which the function 
Q and its derivatives are calculated. These densities are a/ •= / ( # / - A \ yo,/-A) which 
is calculated with the recursion 

a / ' \ - Yli(eji Byi-^Aui-A-iriai-iW /8 \ 
E ^ j ( e i ^ y / - A ) I u ^ A _ i ; l - j a / . - i ( i ) ' 

A = /(2//-A+1J I # / - A ) is computed with the backwards recursion 

2 The 91 are actually constrained to lie on 0 . 
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The finite recursion is recalculated for each time / starting with k = /, and finishing 
with k = / — A and /?/ takes the value /?/ = / ? / _ A . Estimates of the conditional 
densities £ = /(^/-A,^/-A-i|yoJ) and 7/ = /(#/-_, 12/oJ) are given in terms of 
a/_i, a/, /?/_i and/?/ by 

0(«\i) = 
a.-i(0Au,_A_1;,jA-i(j) 

£ťja.-i(«'A.-A-i;.iA-i(Í) 

7,(2) = --; 
Y^ij0iti)Aui-An<*i(iy 

and the empirical estimates of the joint state-next state pair frequency and state-
output pair frequency are given by the recursive estimators 

zr = z^+ii-^^.oto-^i) 
T\ = r/_i + (i~p)(T/y/"_A-r/_i) 

with 0 < p < 1. 
The result of the formal derivation is an algorithm that (after some work) can be 

written inthe form of a standard stochastic approximation problem: 

e,+1 = e, + -lH(xue,). (9) 

where X = {#/,t//_A}/,y/_AJ,a/f/_i,Z\,Y\} is a Markov chain, and the parts of If 
that correspond to the updates of Au and B are given by 

Al-M (^N AJiir (Ci(i,j) Mi,r)X\ z^h ̂ «i z^) [t~ - -t~j) 
6u(u\-A) f " -

v^N Aliir L<r=l ZjTfi 

and 
в 

г.( 

Ì L ^ / V " - 4 - 4 t7lW<-.jt(lft-i.? _ 7.(»)^(V.-A)^ 
V") ^--т-l Г,(,,r) V в . т е B,r jУ 

z-т=i щí~~ 

respectively. 

4. CONVERGENCE OF ESTIMATES 

Let Pn:x,a denote the distribution of (Xn+k,0n+k) when Xn = x, and 0n = a then 
the convergence of the estimation algorithm (9) is governed by the following theorem. 

Theorem 4. If the matrices A and B are primitive, and the policies fi satisfy 

A«(2/ib-__,fc, u*-A-i,*-i){ti} > 0 for all u e U. 
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Then, there exists a neighborhood system Af of 0° such that for any F G -A/\ and for 
any compact set Q C 0 there exists a constants B > 0 and A G [1/2,1] such that 
for all a G Q and all X G <* 

oo 

-Pn,x,a{^ converges to F} > 1 - B £ 1/&1+7 

fc=n+l 

where 0*, is the sequence that is computed by the recursion (9) 

The p r o o f of the theorem is a non-trivial application of the results from part II, 
chapters 1 and 2 of Benveniste et al [3] in which the authors present an analysis of 
the ODE method for proving convergence of stochastic approximation algorithms. 
Results similar to Theorem 4 are proved for a related problem by Arapostathis and 
Marcus in [1] who use stochastic approximation results of Kushner, and then, in 
greater generality, by Le Gland and Mevel [7] who also use the theory from [3]. The 
major difference between the problems treated in the works cited and the problem 
treated here is the introduction of control to give a combined control-estimation 
problem. From the point of view of the stochastic approximation analysis the control 
policy affects the transition kernels of the underlying Markov chain, by introducing 
a dependency on the current estimates. The restriction made in the premise of the 
theorem on the space of randomized control policies allows the control policy to be 
incorporated into the Markov chain X\ in a way that ensures good ergodic properties 
for the transition kernel of X\. 

The ODE method relies on the use of a martingale convergence argument to 
prove convergence of the iterates of the stochastic approximation algorithm to the 
trajectories of an associated ODE. The central feature of the treatment of Benveniste 
et al [3] is the use of regular solutions i/$ to the Poisson equation 

(I-U,)v$=H(;0)-ht (10) 

to provide the necessary martingale. The kernel II0 in (10) is the transition kernel 
[for the chain X/, and the function h$ is the generator for the associated ODE. When 
applying the theory, i/$ does not have to be calculated explicitly, its existence and 
regularity can be inferred from ergodic properties of the transition kernel II0 for 
chain Xk. Most of the effort in the proof is expended in establishing that bounds of 
the form 

\Un
9g(Xl)-U

ng(X2)\ < IULgp
n 

\Ung(X)-nn,g(X)\ < K2Lg\0-0'\ 

hold for any Lipschitz function g and for all 0, 0', X\ and -K2, where K\ and K2 are 
constants, and 0 < p < 1. The condition on the admissible control strategies in the 
premise of Theorem 4 is key to establishing the second bound. 

The other important task in the proof of Theorem 4 is establishing that the ODE 
converges asymptotically to the maximum likelihood estimate. To accomplish this a 
Lyapunov function argument is used. An appropriate choice of Lyapunov function 
in this case is the function U{0) = Q(0°}0). 
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5. CONCLUSIONS AND F U T U R E W O R K 

This paper presented an overview of the work tha t we are doing on the problem of 
combined est imation and control for systems tha t can be described by finite state 
hidden Markov models. We see the results tha t we present here as preliminary. 
Techniques which are based on the minimization of a relative entropy function, such 
as the est imation technique described here, do not perform well when the number 
of parameters being est imated increases and the domains of a t t ract ion shrink. The 
implication of this observation is tha t without additional a-priori assumptions our 
proposed control architecture is only practical for systems tha t can be modeled with 
a small state-space. Acknowledging this constraint, we see our work proceeding in 
three ways. We are looking at applications to systems tha t are likely to benefit from 
controllers which assume small state-spaces, we are considering how to incorporate 
a-priori s t ructural assumptions about the plant into the frame-work tha t this paper 
presents, and finally we are looking for approaches tha t bypass the model estima­
tion stage entirely and work directly with the est imation of the information state 
recursion for the separated controller. 

(Received April 8, 1998.) 
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