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KYBERNETIKA — VOLUME 34 ( 199 8 ) , NUMBER 6, PAQES 6 2 5 - 6 3 4 

THE FINITE INCLUSIONS THEOREM: 
A TOOL FOR ROBUST DESIGN 

THEODORE E. DJAFERIS 

Methods for robust controller design, are an invaluable tool in the hands of the control 
engineer. Several methodologies been developed over the years and have been successfully 
applied for the solution of specific robust design problems. One of these methods, is based 
on the Finite Inclusions Theorem (FIT) and exploits properties of polynomials. This has 
led to the development of FIT-based algorithms for robust stabilization, robust asymptotic 
tracking and robust noise attenuation design. In this paper, we consider SISO systems 
with parameter uncertainty and show how FIT can be used to develop algorithms for 
robust phase margin design. 

1. INTRODUCTION 

Over the last thirty years, a multitude of techniques have been suggested for robust 
controller design. Some the most popular are Hoo, LQG, Parameter Space Methods, 
QFT, each with its own special characteristics and strengths. In recent years, we have 
been promoting a robust control design method [1], which is Nyquist Theorem based 
and employs the Finite Inclusions Theorem. It exploits properties of polynomials and 
has been used to solve problems of robust stabilization, robust asymptotic tracking 
and disturbance rejection, for systems with parameter uncertainty. It has also been 
applied to problems with multi-objective performance specifications (see [1]). FIT 
design, takes a given design problem and formulates it as a simultaneous polynomial 
family stabilization problem. The controller is then computed iteratively, where at 
each iteration (for SISO systems) a set of linear inequalities is solved. In this paper, 
we demonstrate how a design problem with robust phase margin specifications can 
be solved using FIT design. 

For a stable feedback loop, the phase margin is one of the most important sys­
tem parameters. Firstly, it provides information on what it might take in order to 
destabilize the system. Secondly, it characterizes indirectly the transient response 
to external inputs. For this reason it is quite common for design requirements to 
include a specification on phase margin. Its importance has long been recognized by 
control engineers and for SISO systems without uncertainty, any good undergrad­
uate control text (e.g., [4]) will include algorithms for design. Usually, these are 
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frequency domain techniques which are implemented by trial and error. One can 
also find quite elegant results [2, 3], that in certain cases give formulae for achievable 
gain and phase margins and also provide constructive methods for controller design. 

The design for guaranteed phase margin becomes much more complex, when the 
plant description involves uncertainty. The phase margin requirement can be taken 
into account by including additional parameter uncertainty in the plant dynam­
ics. After incorporating this in the plant uncertainty, the overall structure may not 
conform to that required by existing robust design techniques for "tight" results. 
One is then faced with a decision: Either express the design problem in an "exact" 
manner but then have no computationally efficient techniques for solving it, or in­
troduce some type of "overbounding," which destroys "exactness," but makes the 
design problem computationally tractable. It is clear from this discussion, that it 
is best to develop problem formulations that both reduce conservatism and lead to 
computationally attractive controller design methods. 

In this paper, we deal with the SISO problem of controller design for guaranteed 
phase margin, when the plant includes parameter uncertainty. We first formulate 
the problem in terms of polynomial family stabilization. The resulting family of 
polynomials can be thought of as having real parameter uncertainty and complex 
coefficients. Having posed the design as a robust polynomial stabilization problem, 
we then show how the Finite Inclusions Theorem [1] can be used to develop algo­
rithms for robust controller design. These are iterative algorithms, initialized by a 
certain controller that achieves some phase margin, which is less than the desired. At 
each iteration, a new controller is computed that achieves larger phase margin. The 
procedure is terminated when (if) the desired margin is reached, or some "stopping" 
criteria are met. The robust phase margin design problem can certainly be attacked 
using Hoo techniques (in addition to others). This however, will require rather con­
servative overbounding. When no plant uncertainty is present, very precise results 
have been reported in [2] (based on techniques developed in [3]). 

In Section 2 we show how to formulate the phase margin problem as a robust poly­
nomial stabilization problem. In Section 3 we state the Finite Inclusions Theorem 
which provides the foundation of our design algorithms. In Section 4, a FIT-based 
design algorithm is presented. In Section 5 we apply these algorithms to examples, 
and in Section 6 present some conclusions. 

2. FORMULATION 

Consider the feedback system shown in Figure 1: 

Г + / î)e 
C(s) P(s,а) У 

J 
І 

C(s) P(s,а) 

Fig. 1. Unity feedback configuration, parametric uncertainty. 
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The plant family is strictly proper and given by: 

where dp(sy a) is monic of degree n, and a is a fc-vector of parameters, taking values in 
some given set fia C Rk, (R denotes the set of real numbers). Specifically, let Qa = 
j a £ Rk\ar < a{ < a+, 1 < i < kV aj < 0, af > 0, 1 < i < k. The coefficients of 
np(s, a) , dp(s, a) are in general polynomial expressions of the uncertain parameters. 
The numerator and denominator polynomials are coprime for all values of o G f-fl 
and the plant, when a = 0, will be referred to as "nominal." The controller is given 
by C(*) = 3 $ . ^ d the loop transfer function is: L(s,a) = $ f $ = g g g f c f l . 
The closed loop characteristic polynomial can then be expressed as: 

<j)(s, a) = dj(s, a) + n/(s, a). (2) 

Let 6 be the complex parameter which takes values on the unit circle in the set: 
&b = {e~J*| — 0i < 9 < 0 i} , where 6\ is some given angle in the range 0 < 0i < 7r. 
One can immediately state the following result: 

Proposition 1. The feedback loop in Figure 1 is robustly stable and each plant 
has phase margin greater than 01 if and only if the polynomial family <j>ph(s, a, 6) = 
di(s, a) + 6n/(5, a) is robustly stable for all a £tia and b £ fi&. 

P r o o f . Let us first show that the result is true for the nominal plant and nominal 
characteristic polynomial. The proof for the entire plant family follows directly, as 
we can repeat the "nominal" arguments for each member of the plant family. 
Suppose first that (f)ph(s10ib) = d/(s,0) + 6n/(s,0) is stable for all 6 G fi&. Since 
the set fit includes the value 1 the closed loop will be stable. Let us first assume 
no poles or zeros of the loop transfer function on the imaginary axis. Stability of 
the nominal implies that the image of the Nyquist Path encircles the —1 point an 
appropriate number of times. Suppose then that the phase margin is less than 0\. 
This implies that the image of the Nyquist Path (under L(ju>, 0)) intersects the unit 
circle at a point with phase in the range (n — 0i, 7r + 0\). In particular there exists 
a frequency u>i and a point &i in fi& such that: 

ni(MiO) _ . (o\ 

IT- 7<\ — ~~bl- W 

This implies that ("*" denotes complex conjugate): 

b.nip^ = _1 (4) 
or equivalently that: , 

di((M, 0) + 6 i n i ( ( M , 0) = 0. (5) 
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This means that the polynomial <l>Ph(s,0,b[) has a root on the imaginary axis 
which is a contradiction. A similar argument can be used for the case of imaginary 
axis poles or zeros. 

We now prove the converse. Suppose that di(s,0) +ni(s,0) is stable and the loop 
has phase margin greater than 6\, but assume that <j>Ph(s, 0, b) = d/(s, 0) + bni(s, 0) 
is not stable for all 6 G fi&. Since <j>ph(s, 0,1) = di(s, 0) + n/(s, 0) is stable and the 
coefficients of <j)ph(s, 0, b) depend continuously on 6, there must exist a &i G £2& and 
a frequency u\ such that: 

rf|(M,0) + M i (M,0 ) = °- (6) 

If di(jui,0) = 0 then ni(ju\,0) = 0 and d/,n/ would not be coprime. Therefore, 
di(ju\, 0) ^ 0 and we must have: 

w^)--l,bi- (7) 

But this contradicts the assumption that the phase margin is greater than 0\. • 

3. THE FINITE INCLUSIONS THEOREM 

Consider a polynomial family <f>(s,a) with real parameter uncertainty where the 
coefficients may lie in C, the set of complex numbers. The Finite Inclusions Theorem 
can be used to investigate robust Instability. Specifically, let 

<f>(s, a) = <f)0(s) + ai(a) <f>i(s) + a2(a) <j>2(s) + . . . + au(a) <f>u(s), (8) 

where the <j>i(s), 0 < i < u are given polynomials. Suppose that the parameter 
a takes values in the hypercube Qa . Further assume that a,-(a), 1 < i < u are 
polynomic in a and such that a,(0) = 0. Denote by intr the interior of some set T. 
For such a family the following result (see [1]) holds: 

T h e o r e m 1. (The Finite Inclusions Theorem, FIT) Let <j>(s,a) = J2]=o aj(a)s*> 
a G £2a n > 0, and a;- : fla -+ C. Further, let T C C be a closed Jordan curve such 
that int T is convex. Then for all a G fia, <t>(s, a) is of degree n and has all its roots 
in int T if there exists m > 1 intervals (ck, dk) C R and a counterclockwise sequence 
of points Sk G T, 1 < k < m, such that 

VI < k < mmax{djfc+i — Ck,dk — Ck+i} < 7r 

max{dm — (ci + 2nn), (di + 2nn) — cm} < TT 

VI < k < m <j>(sk,na) CSk = {re?e\r > 0,6 G (ck,dk)}. 

As stated, the Finite Inclusions Theorem is much broader than what is needed 
for robust phase margin design. Here we are just interested in Hurwitz stability. 
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Furthermore, one can immediately see that it can be used to express conditions for 
simultaneous stability of a finite number of polynomial families. 

It is evident from the above discussion, that FIT leads to conditions for robust 
stability that are expressed in terms of fitting polynomial value sets in sectors. There 
are no restrictions as to what should be the shape of these value sets. However, check­
ing whether a value set with a "curved" boundary lies in a sector would in general 
involve a fair amount of computation and would certainly complicate the design. If, 
on the other hand, the value set is a polygon checking whether it lies in a sector can 
be done by examining just the value set vertices. This fact introduces significant 
simplification and will be exploited in the development of design algorithms. 

4. AN ALGORITHM FOR ROBUST DESIGN 

We are now in a position to state a FIT based algorithm for robust phase margin 
controller design. Let the controller in the feedback loop of Figure 1 be given by: 

C(s) - " c ^ = s-g+i*9 + x*i8Í 1 + • • • + xi+i 
W ~ de(s) ~ Si + XqSl-1 + X?_l*«-2 + . . . + Xl ' 

(9) 

Let the controller parameters be grouped in the vector x = (a?i,Z2> • • .,#2g+i) 
£ Rd where d = 2q+l. Now, polynomial family <t>ph(s, a, b) will have degree n = n+q 
and one can immediately see that it has coefficients that are affine expressions in x. 
This fact is crucial in our development, as it will allow us to use FIT and carry out 
an iterative controller design by solving linear inequalities. 

As mentioned above, FIT does not place any restrictions on the structure of the 
parameter uncertainty in the plant. However, if we desire to use FIT as the basis 
of a controller design procedure, it becomes advantageous to make some assump­
tions. Specifically, we will assume that the parameter uncertainty a, appears in 
the numerator and denominator of the plant family in a multiaffine manner. We 
also overbound the set Qj, by some polygon Qj,p (the simplest and most conservative 
being a single rectangle). This will ensure that the corresponding value sets can 
be easily overbounded by convex polygons, and the polynomial <rV/i(s,o,&), can be 
thought as having real parameter uncertainty and complex coefficients. In view of 
these two assumptions, locations of value sets can be deduced from the location of 
their extreme points (a finite set). This dramatically reduces the computational 
burden of the controller design procedure. However, this comes at the expense of 
introducing conservatism in the solution. Let Qab = Qa x Qip. Let us now pose the 
following robust controller design problem for the system in Figure 1: 

• Robust Phase Margin Problem: Find (if possible) a controller of order q that 
robustly stabilizes <l>ph(s, a, &)> for (a, b) € Qab-

This can be attacked directly using FIT, as it is a robust polynomial stabiliza­
tion problem. We do this, using an algorithm suggested in [1]- O n e needs to first 
choose an initial controller a^1), which robustly stabilizes <l>ph(syMab , x ), where 
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Qab' = Qa ' x Qb' C Qab- The controller can be designed by employing any design 
technique. This controller is then iteratively improved upon using FIT. At each 
iteration, frequencies ur£' are found which place the value sets <t>ph(j^k\^abix^\ 
in their corresponding sectors S^\ By FIT, this guarantees the robust stability of 
<f>ph(s}Q^bix^). At each iteration the uncertainty set Qab is enlarged. Initially, 
only the 6 parameters are affected until (if possible) for some j , the desired phase 
margin is attained Qb = Qbp. .Once this is accomplished the procedure continues 
this time with an enlargement of Qab where the a parameters are affected and the 
6 parameters remain unchanged. The algorithm terminates when (if) Qab D Qab, 
with ak') being the desired controller. In what follows, ExtS} denotes the extreme 
points of the set S. 

Robust Phase Margin Design Algorithm 

1. Let ajM G Rd and Q$ C Qab be such that fafaQ^^xW) is stable and set 
3 := 1. 

2. Determine ml*) > 1 sectors S^ , 1 < k < mV\ and frequencies a;̂  along the 

ju> axis such that 4ph(u>%\ ExtQa{\x^) C S(
k
j\ By FIT, <j>ph(s,Qa{\x^) is 

stable. Each u^' should roughly center (angularly) the set </>ph(^\ ExtQab\ 

x™) in S(J\ 

3. Choose a slightly larger set Qab ' D Qa . First this should affect the b pa­
rameters. When (if) Qb D Qb, the enlargement in the fr-direction terminates 
and the enlargement in the a-direction commences. 

4. Compute new vector of controller parameters x^*1) such that <f>ph(j^k\ 
ExtI2^+ 1 \a5^ , + 1)) C Sk for all k. Note, this is equivalent to solving a sys­
tem of linear inequalities in SB^'*1). If no solutions exist to this system of 
inequalities, return to Step 3 and choose a smaller Qab \ 

5. Let j := j + 1, and if Qab D Qab, stop; otherwise, go to Step 2. 

This is one of several FIT-based algorithms that can be suggested. Clearly, as 
stated, the algorithm may never terminate but appropriate "stopping" conditions 
can be added. We should also note, that several possibilities exist for the choice 
of the polygon that overbounds Qb. Some choices do allow for a design procedure 
that guarantees a robust phase margin as well as some robust gain margin. This 
is immediately true if one uses a rectangular overbound of Qb (see Example 1, in 
Section 5). 

Very frequently in control design, one is faced with having to satisfy a number 
of requirements (including one on phase margin) simultaneously. The FIT-based 
approach, would formulate each as a robust polynomial stabilization problem and 
then employ the Simultaneous Stability Finite Inclusions Theorem (see [1]). 
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5. EXAMPLES 

Example 1. In our first example, the plant does not include any uncertainty. It 
is given by the transfer function: 

dp(s) 

s-1 
s2-s-2 

(10) 

which is unstable and nonminimum phase (see [2]). Our objective is to design 
(if possible) a first order controller that has phase margin of at least 25° (either 
positive or negative as required for stability). This implies that the set Q& = 
[e-j0\ - 25° < 9 < 25°}. The problem will be solved, if a first order controller 
can be found, that robustly stabilizes the polynomial family: 

ФPh{s,Ь) = cf.(s) + bщ(s) ( И ) 

for all b 6 ft&. In order to apply the FIT-based algorithm suggested earlier, we need 
to overbound the set fi& by some polygon. The simplest, but most conservative way, 
is to overbound it by a single rectangle, as shown in Figure 2. 

Fig. 2. Rectangular overbound of the set Qbp-

Note, that in robustly stabilizing <t>ph(s,Qbp), we will not only be achieving the 
desired phase margin, but impacting the gain margin as well. The FIT-based algo­
rithm suggested in Section 4, can certainly be used. A number of possibilities exist 
for implementing the suggested algorithm and the one used here, takes a "reduced" 
set Qbp, and iteratively expands it. In addition, we employ software written for im­
plementing a version of this algorithm (see [1]). To initiate the process, the algorithm 
requires an initial controller. Using pole placement, we designed the controller: 

C0(s) 
50.25s + 45.25 

s - 37.25 
(12) 

that places the closed loop poles at: —1.5 ± j l , —9. With this controller the phase 
margin (using MATLAB) is: —13.25°. With this initial controller, the software 
computed the controller: 

51.75^ + 68.22 
C ( S ) ~ . - 40.11 • ( 1 3 ) 
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One can determine that this controller guarantees —23.6° of phase margin. How­
ever, overbounding has been introduced and the actual phase margin is larger: 
—25.31° at u = 1.293, which achieves our design goal. The Nyquist plot of the 
loop transfer function is given in Figure 3. 

Fig. 3. Nyquist plot of loop transfer function. 

Some remarks are in order: First, there is no guarantee that a first order controller 
exists that provides the required phase margin. Second, even if one did exist, there 
is no guarantee that our iterative algorithm would have computed it. It is clear 
that we have introduced conservatism in the solution using the single rectangular 
overbound. Other, arbitrarily less conservative overbounds can also be used, which 
will however lead to additional computations. Third, suppose that a higher order 
controller was allowed, would it improve the phase margin? Examining Figure 3, 
we can speculate that this could be possible. In fact, one can show [2], that 0sup = 
—2sin~1(l/3) = —38.94°. A word of caution should be stated at this point. Indeed, 
one can envision a controller design that "stretches" the Nyquist plot in order to 
achieve a larger phase margin. Since phase margin is the only requirement, this 
"stretching" could reduce the gain margin to unreasonable levels. Therefore, the 
overall robustness properties of the loop could be compromised. Care must be taken 
so that this does not happen. 

Example 2. In this example we introduce plant uncertainty in the transfer func­
tion of Example 1, and solve the following problem. Let 

- ì P(s aЛ = ^EÍfl^l = 
к ' 1J dp(s,ai) S - + ( - l + a 1 ) s - 2 - 2 a 1 

(14) 

be an unstable and nonminimum phase plant family, where - .2 < a\ < .2. Our 
design objective is to design (if possible) a first order controller that provides a robust 
phase margin of at least 15° (either positive or negative as required for stability). 
This implies that the set Qb = {e"^\ - 15° < 0 < 15°}. This problem will be solved, 
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if a first order controller can be found, that robustly stabilizes the polynomial family: 

Фph(s,ai,Ь) z=dt(s,ai) + bni(s) (15) 

for all b G £2& and all a\. To apply the FIT-based algorithm we overbound the set 
Q& by a rectangle as in Figure 2. As an initial controller we use the one computed 
in Example 1, (13). Running the FIT software algorithm generates the controller: 

C(s) = 
49.76s + 60.83 

« - 40.28 
(16) 

which guarantees a robust phase margin of —14.48°. Again because of the over-
bounding introduced, the actual robust phase margin is: —15.5°, which meets the 
robust phase margin objective set. Figure 4, displays the loop transfer function 
Nyquist Plots for a number of a\ parameter values. 

Fig. 4. Nyquist plots of loop transfer functions. 

6. CONCLUSIONS 

In this paper we formulated and solved the robust phase margin design problem. 
The formulation exploited the fact that this problem can be posed as robust poly­
nomial stabilization problem. Once that was done, a robust design algorithm was 
suggested which is based on the Finite Inclusions Theorem. The algorithm was 
demonstrated on academic examples. Other design objectives could also have been 
included and the interested reader is directed to [1] for more details on how this can 
be accomplished. 

(Received April 8, 1998.) 
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