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A REDUCTION PRINCIPLE FOR GLOBAL 
STABILIZATION OF NONLINEAR SYSTEMS 

RACHID OUTBIB AND GAUTHIER SALLET 

The goal of this paper is to propose new sufficient conditions for dynamic stabilization 
of nonlinear systems. More precisely, we present a reduction principle for the stabilization 
of systems that are obtained by adding integrators. This represents a generalization of the 
well-known lemma on integrators (see for instance [3] or [16]). 

1. INTRODUCTION 

In this paper we address the following problem: Consider a smooth system on IRn 

i = /(x,ix) (1) 

with an equilibrium point /(0,0) = 0, which is globally stabilizable by a smooth 
feedback u(x) at the origin. 

The problem is to determine a class of functions g : ] R m + n —• IRm and h : 
jpm+n _^ -ĵ + j o r ^ 1 ^ jt i s t r u e th-^ thg extended system: 

{ . : 
i = Л(æ,y)/(s,ø(z,t/)) 

(2) 
У = u 

is smoothly stabilizable. 
Our goal is to provide some answers to this problem. We stress that the feed­

backs we consider are smooth or analytic. Throughout the paper we use asymptotic 
stability to refer to global asymptotic stability. 

When the function h,g satisfy h(x,y) = 1 and g(xyy) = y we have the very 
well-known classical lemma on integrators [3, 5, 6, 10, 11, 15, 16, 17] which says that 
if (1) is globally asymptotically stabilizable by a smooth feedback control then the 
system 

( 

Ѓ " Л ' , Й (3) 
= u 

is also globally asymptotically stabilizable by a smooth feedback control. 
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Answers to our problem will provide conditions for which a system (3) is asymp­
totically stabilizable, or equivalently conditions for which a system (1) is stabilizable 
by a dynamic feedback. To be more precise if we have a system 

( i = F(z,y) ( 4 ) 

we shall try to rewrite F(x,y) = h(x,y) f(x,g(x,y)) for some functions / , g} h. 
Then we shall deduce the stabilizability of (4) from the stabilizability of the reduced 
system x = f(x,u). This reduced system is different from the system x = F(x}u) 
obtained by the classical lemma on integrators. 

Our method is designed to prove stabilizability of system with integrators. We 
illustrate the effectiveness of our technique by considering the Coron and Praly 
example (see [4]). They give an example of a system x = F(x,u) which is not 
stabilizable even by a continuous feedback. We prove by our "different reducing" 
technique that the corresponding system with integrator is globally stabilizable by 
a polynomial feedback. This is an improvement of the result of Coron-Praly which 
provide an almost analytic feedback. 

We show further the relevance of our method by considering a class of planar 
systems studied by Hermes (see [7]). By taking advantage of more possibilities for 
reduction we exhibit polynomial stabilizing feedback instead of only Cl as obtained 
by Hermes. 

The paper is organized as follows: In Section 2 we give two main results. The first 
result pertains to the case h(x,y) = 1. The Coron-Praly's example is of this kind. 
We demonstrate the advantage of this method by finding a polynomial feedback. 
The second result provides stability for a class of positive definite functions h. In 
Section 3 we discuss a class of planar systems which has been studied by Hermes 
in [7]: 

(5) 

we give conditions on n, m, k under which the system (5) is stabilizable by polynomial 
feedback. 

2. MAIN RESULTS 

We begin by reminding the reader about the basic facts concerning Lyapunov func­
tions. A Lyapunov function is said to be strict (see for instance [15]) for a system 
with a feedback u(x) if the derivative V of V along the trajectories of the closed-loop 
system is a negative definite function. 

Throughout the paper we use C to denote the class of nonnegative smooth func­
tions $ : IRn x IRP -> IR such that: 

1. $(0, y) = 0 if and only if y = 0. 
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2. The function y —> $(.r,y) is radially unbounded for any x and | ^ (0 ,y ) = 0 
implies y = 0. 

If / is a differentiate function we denote the action of a smooth vector field 
K, considered as a differential operator, on / by Xf. We define, by recurrence, 
Xkf = X(Xk-1f) for Jk> 1. 

The following is our first main result: 

Theorem 2 .1 . Let a system (1) x = f(x,u) be asymptotically stabilizable by a 
smooth feedback control u(x). 

For any smooth function g : Htm + n —• IRn and $ in C such that: 

1. 
_ d $ 

g(x, y) = u(x) + — ( x , y) (6) 

2. There exists a smooth function k(x, y) for which 

/?(*, y) = ( / ( * , «(-.)), ^ ( s , y)) + (*(*, j/), ^ ( x , y ) ) < 0 (7) 

the system 

i = f(x,9(x,y)) 

{ (8) 
y = u 

is asymptotically stabilizable by a smooth feedback control. 

P r o o f . Since x = f(x,u) is asymptotically stabilizable, there exists a strict 
Lyapunov function V such that (f(x)u(x))i VV'(x)) < 0 if x -̂  0. We have 

f(x, 9(x, y)) = f(x,u(x)) + G(x, y) (flf(x, y) - u(x)) 

where G(x,y) is defineded by G(x,y) = J0 |^(x ,^(ar ,y) + (1 — *)i/(:E))dtf. If we 
define now W(x} y) = V(x) + $(x, y), this function is a Lyapunov function and we 
have 

W(x, y) = {f{x, u(x)), W ( x ) ) + (G(X, y) ^(x, y), VV(x)\ 

+ (f(x, u(x)), — ( x , y ) \ + (G(x, y) — ( x , y), — ( x , y ) \ 

So that if we choose 

u(x, y) = -GT(x, y) ( w ( x ) + -^(x, y)J + k(x, y) - -^-(x, y), 
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we have, with the notation of the theorem, 

W(x,y) = (f(x,u(x)), VV(x)) + /3(x,y) -
дФ 

Ђ{x,y) < 0 for (x,y)ф(0,0). 

As a consequence of the Theorem 2.1 hypothesis this quantity is clearly definite 
negative. This ends the proof of the theorem. D 

We now illustrate the use of Theorem 2.1 by means of two examples. 

Example 2.1. (Coron-Praly [4]) Let F be the function F : If1""1 x IR x IR -> IRn 

defined by 

E(xi)x2)y) = - [ ( | | x 1 | | 2 + x 2 ) 3 - O 2 ( y 3 + x i - | | x 1 | | 2 j , ) 2 ] x. 

where C > 0 large enough. 

It is shown in [4] that the extended system {x = F(x,y); y = u} (4) is asymptot­
ically stabilizable by an almost smooth feedback control, even though the reduced 
system x = F(x, u) is not even stabilizable by a continuous feedback. 

Let write the above system as: 

u= 
x = f(x,g(x,y)) 
y = u (8) 

X. 

(9) 

with g(x, y) = y3- \\xtfy + x\ and f(x, z) = -[( | |x 1 | | 2 + x 2 ) 3 - C 2 ; 

Then, by Theorem 2.1, the reduced system becomes 

x = -[(\\x1\\2 + x2)3-C2u2} x. 

It is clear that (9) is stabilizable by u(x) = 0. Let V(x) = \ (||xi||2 + xty2 and 

<*(*, y) = I,,* - i l l n l l V + *\v + (H*ill2 + *1)2 • 

It is easy to check that g(x,y) = | | ( x , t / ) . If we set k(x,y) = - ( | | x i | | 2 + x^f y, 

by using the notation of Theorem 2.1 /?(x, y) = - 4 ( | | x i | | 2 + x\) $(x, y), i s clearly 
nonpositive. 

All the requirements of Theorem 2.1 are satisfied, hence 

«Oi,«-,v) = -c2(y3-lkxll2y+^i) (5(l|xi| |2+x2)2-||x1 | |V+3xiy + ;l) 

- ( I M 2 + *2)3y 

is a polynomial stabilizing feedback for the system. 
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Remark 2.2. The above example shows that a system which is not stabilizable 
even by means of a continuous state feedback can be stabilizable by a polynomial 
dynamic feedback. 

Example 2.2. (Hu [8]) Consider the following planar system 

(10) 
X i — Xi — X i X o -~ x 2 { X l = 

x2 = x2 = u. 

It is shown in [8] that (10) is stabilizable locally by means of a continuous feed­
back. Here, we prove that (10) is stabilizable globally by means of a polynomial 
feedback. 

Let write system (10) as: 

xi = /(xi,flf(x2)) 

x2 = u. { 
with g(y) = t/5 and / (x , z) = xf — x\z — z2. 

Using Theorem 2.1, the reduced system is 

x\ = x\ — x\u — u2 . (11) 

Straightforward computations show that (11) is stabilizable by u(x\) = xf. 
Let 

$(xi, x2) = -x^ - xf x2 + ^xf + -xf . 

where a and 6 are positive real numbers large enough. 
Clearly $ G C and g(x2) = ti(xi) + | ^ . 
For k(xi, x2) = —xfx2(x2 — x\) we obtain 

/?(xi, x2) = xf (3xix2 - a - bx\ - xl(xl - xf )2) . 

In order to show that /?(xi,x2) < 0, we discuss two cases. First, assume that 
\x2^ < |xi | 3 + 1. Then, for a and b large enough 3|xix2 | < a + bx\ which clearly 
implies that /3(xi,x2) < 0. Now if |x2 |5 > |xi |3 + 1 then 

P(xi,x2) < - x f ( -3x ix 2 + a + 6x^+x^) < 0 . 

Finally using the result of Theorem 2.1, with V(x) = x2, we deduce that (10) is 
stabilizable by means of a polynomial feedback. 

Remark 2.2. The system (10) if reduced by means of the classical lemma on 
integrators becomes xi = xf — xfu5 — u10 which is not C 1 stabilizable. 

Now, we state and prove our second main result. 
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T h e o r e m 2.2. Assume that the system (1) x = /(x,u) be asymptotically stabi-
lizable by a smooth feedback control tJ(x), with V(x) a strict Lyapunov function 
for the closed-loop system. Then for any smooth functions g : IRm —> IRm which 
vanishes only at the origin, h : ]Rm —• IR+ a definite function such that all the 
following properties are satisfied: 

1. 

h(y)(g(y)-u(x)) = ^(x,y), (12) 

for a function $ in C, and 

2. There exists a smooth function k(x,y), such that the quantity: 

/?(*,y) = h(y)(V(*, «(*)) ,§ |(*.y)) + (*(*,2/)-^(*>2!)) < o, (13) 

and 

f1 dfT ( d$ \ 
3. / ^- (x,tu(x))dtl VV(x) + —(x,0)\ = 0 implies x = 0 

the system 

x = h(y)f(x,g(y)) 

y = u 

is asymptotically stabilizable by a smooth feedback control. 

(14) 

P r o o f . We consider W(x,y) = V(x) + <I>(x,y) as in the proof of Theorem 2.1. 
Using the fact that, 

h(y)f(x,y) = h(y) + G(x,y)h(y)(g(y)-u(x)) 

_ d$ 
= % ) /(x, t/(x)) + G(x, y)-g-(x, y) 

if we choose 

u(x, y) = - G T ( x , y ) ^ ( * , 2/) - GT(x, y ) W ( x ) + * ( * , y) - ^ - ( x , y). (15) 

The derivative of W along the trajectories of the closed-loop system is given by 

W(x, V) = h(y) (/[>, «(*)), W ( * ) > -
дФ 

Ђ{X'У) 

2 

+ ß(x,y). 

This quantity is nonnegative according to the hypothesis of the theorem. 
We shall use the LaSalle's invariance principle. We shall prove first by contra­

diction that if W(x,y) = 0 then y = 0. Suppose y ^ 0, then h(y) ^ 0, therefore 
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we have (f(x, u(x)), W(x)) = 0 which in turns implies x = 0, since ~-^(0,y) = 0 
implies y = 0 we have a contradiction. 

Then on the set {W = 0} we have y = 0. Now in the largest invariant set in 
{W = 0} , since y = u, we must have, 

u(x, 0) = -GT(x, 0) (w(x) + ^{x, 0)) = 0 

and since this relation implies x = 0 by the hypothesis 3 of the theorem, the proof 
is finished. • 

Remark 2.3. In the preceding theorems we require for the reduced system that 
the Lyapunov function V(x) is strict. All the preceding arguments extent to the 
situation which is covered by the Lasalle's invariance principle. The argument is as 
follows: 

Let a smooth reduced system x = / (x , u) be stabilizable by means of a smooth 
feedback law u = u(x). Let V be a known Lyapunov function such that if we 
denote by X the closed-loop vector field X(x) = f(x}u(x)), we have XV(x) = 
{X(x), W(x)) < 0 for all x in HT and so that 

{xemr\xkv(x) = 0;k GIN} = {o}. 

With this result it is clear that the proofs of the theorems are unchanged, and the 
same computed feedbacks stabilize the system. In fact, in this case we obtain similar, 
but more general, results than those established in [9]. Note that since, in general, 
it is not easy to find a strict Lyapunov function V even if the global asy mptotic 
stability of the origin for the closed-loop reduced system is proved, the advantage 
of this approach is that the stabilizing feedback, for the augmented system, is given 
explicitly in some situations when with the preceding theorems we prove only the 
existence. 

Remark 2.4. Note that the feedback obtained is smooth. If we relax the condition 
(7) of Theorem 2.1 by the condition 

(^(x, y) = o) =-> (/(*, u(x)), ^(x, y)) < 0 

we only obtain an almost smooth feedback (i.e. smooth excepted at the origin). 
The argument is as follows: This condition is a necessary condition for the existence 
of k(x,y). The condition is also sufficient for the existence of an almost smooth 
function k(x,y) as we shall see by using an argument analogous to the one used by 
Sontag in his proof of Arstein's Theorem (see [14]): 

Let <p the function defined by 

if/? = 0 
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then 

k(x,y) = -(p[f(x,u(x)), 
дФ 

-дy-{x,y) 

2> дФ 
'дy-{x,y) 

satisfies condition (7). The corresponding result for condition (13) of Theorem 2.2 
is obtained by a similar computation which we shall omit. 

3. THE PLANAR SYSTEMS OF HERMES 

In his interesting paper [7] Hermes consider the following planar systems 

fx = yk+cxnym ,-v 

\y = u c # 0 . ( 5 ) 

This author proves that when the nonnegative integers k,m,n satisfy 

(i) k is odd 

(ii) 2 ( * + J ) > f c _ r a > n > i 

the control system (5) admits a C 1 global feedback control. As an application of our 
theorems we shall prove that (5) is globally asymptotically stabilizable by polynomial 
feedback when 

k is odd 

fc<mor (16) 

k > m and (n > 2 or m is odd) or (17) 

k > m and n = 1 and 2m + 1 > k. (18) 

In other words when k < m or (k > m and n = 2) we can relax the left side of 
the inequality (ii) of Hermes. Then our conditions are larger, moreover our feed­
back control is polynomial and explicitly exhibited. To prove this result we shall 
distinguish two cases. 

3.1. k < m 

In this case, and in order to stabilize system (5), we use the Jurdjevic-Quinn's 
method (see for instance [13] and references therein): After the preliminary feedback 

u - - x ( l + ym-kxn)+v 

it is easy to verify that the Lyapunov function 

"<-.»»=n-v+1+5-" 
is a first integral for the drift term and simple reasoning shows that 

{(x,y) e IR2 \XkYV(x,y) = 0;* G IN} = {(0,0)} 
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where X represents the drift term and Y is defined by Y(x} y) = (0 1)*. 
Finally the closed-loop system defined from (5) with 

u(xy y) = - x ( l + cym'kxn) - y*, 

is asymptotically stable at the origin. 

3.2. k > m 

In this case we rewrite the system (5): 

| x = ym(yP+cxn) 

\ y = u 

with p = k—m a, positive integer. The study of this case is divided in three sub-cases. 

3.2.1. m is odd 

Using similar arguments as those given in the case k < m it is straightforward to 
check that with the Lyapunov function 

and with the feedback 
u(x}y) = -x(yp + cxn)-ym 

the closed-loop system is asymptotically stable at the origin. 

3.2.2. m is even and n > 2 

The stabilizability of (19) will be shown using Theorem 2.2. In Theorem 2.2 appears 
a function $(x,y) with some properties. To obtain this kind of function we need a 
lemma. 

Lemma 3.1. Let 

$(*, y) = ay2r + /?* n t /2 p + 1 + ax2 + bx2^+l> 

where r^n^p, are integers such that n > 2,r > p, a and /? are given real with a > 0. 
For a and 6 positive, sufficiently large, $ is a positive definite function. 

The p r o o f of this lemma is straightforward, and we shall omit it. 

Now we shall say that a polynomial is odd (resp. even) if the corresponding 
polynomial function is odd (resp. even), i.e. all the monomial are of odd (resp. 
even) degree. By a finite repeated use of the preceding lemma we get the corollary: 
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Corollary 3.1. For any real a > 0, any integers r, n > 2, any odd polynomial P 
of degree strictly less than 2r, there exists an even polynomial Q of degree less than 
(deg(P) + l)n such that the function 

$(x, y) = ay2r + P(y)xn + Q(x) 

is positive definite. 

From these results we know that for a,6,cf, positive reals large enough 

$( X ) y) = 1 -y^+P*1 + — l _ c x n 2 / m + 1 — i — x 3 y m + 1 

v ' * ' m+p+\y m + 1 y m + 1 y 

+ax2 + bxm+2n + dx3(m+V 

is positive definite. With the notation of Theorem 2.2, let g(y) = yp and h(y) = ym, 
so that the reduced system is f(x) u) = u + cxn. 

The feedback u(x) = — cxn — x3 stabilizes the reduced system and we have 
| f (*,y) = ym(yp + czn + x3). The conditions 1 and 2 of the Theorem 2.2 are 
satisfied. If we define k(xyy) = — x2ym+l we have 

/?(*,</) = - * 2 y m [ym+^^^ 
[ V m + 1 / V m + 1 / 

+ 2ax2 + (m + 2)n&z(m+2)n + 3(m + 2) dx^m^ 

From the Corollary 3.1 we know that this quantity is negative (m is even) provided 
a,6,d are chosen large enough. The condition 3 of Theorem 2.2 is satisfied. The 
relation 4 is simply 

(x + 2ax + (m + 2)n6x(m+2>n-1 + 3(m + 2)x3(m+2>-1 = 0) =» x = 0 . 

Since all the conditions of Theorem 2.2 are satisfied, it is now easy to give the 
feedback, by using relation (15) in the proof of the theorem. The feedback control 
is polynomial. 

3.2.3. m is even, n = 1 and 2m + 1 > k 

We shall prove the stabilization of (19) by means of Theorem 2.2. With the current 
hypothesis (19) is now 

J x = ym-P+1yP-1(yP + cx) 

\ y = u. 

We shall prove first that the system 

J x = yP-l(yP + cx) 

\ y = u 
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is stabilizable. 

With the notation of Theorem 2.2, we let g(y) = yp, h(y) = t/ p " 1 , f(x,u) = 

u + ex, u(x) = - ( c + l)x, $(ar, y) = ^ y 2 ? + * ± V x + §x 2, with a > ^ ± - ^ , and 

fc(*>y) = ^ x ' 
It is straightforward to check that conditions 1 and 3 of Theorem 2.2 are satisfied. 

On the other hand, we have 

x,y) = -.y-1 (а-kţpľ.) <0. 0( 

This implies that condition 2 is satisfied. Then, by Theorem 2.2, system (21) is 
stabilizable by a polynomial feedback. 

In order to conclude that (20) is asymptotically stabilizable, we need a lemma. 

Lemma 1. Assume that the system 

i = f(x) + ug(x) (22) 

is stabilizable. Then, for any nonnegative continuous scalar function h which is such 
that h(x) = 0 implies f(x) = 0, the system 

x = h(x)f(x) + ug(x) (23) 

is stabilizable. 

P r o o f . Let u(x) be a stabilizing feedback for system (22). By the converse the­
orem of Lyapunov there exists a smooth Lyapunov function V with time derivative 
negative along the trajectories of the closed-loop system defined from (22) controlled 
u = u(x) 

Vfa)0O = (f(x), W(x)) + u(x) (g(x), W ( * ) ) 

is negative definite. Consider now the following feedback 

iii(x) = h(x)u(x) - (g(x)i VV(x)). (24) 

The derivative of V along the trajectories of the closed-loop system (23), (24) is 
given by 

Vm(x) = h(x) V{22)(x) - (g(x), VV(x)f . 

Since V(22) is negative definite we get 

{V(23)(x) = 0} = {h(x) = 0, (g(x), VV(x)) = 0} . 

Now, (g(x), W ( x ) ) = 0 implies that (f(x), VV(.c)) ^ 0 or x = 0, then we have 

{V(23)(*) = °> C {h(x) = 0, (f(x), W ( * ) ) -i 0} U {0} 

which implies, since the hypothesis of the lemma, that {V(23)(-c) = 0} is reduced 
to {0}. a 

Using the preceding lemma we get the following corollary: 
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Corol lary 3 .2 . If the system 

.v) í i = f(x,\ 
\ y = u 

(25) 

with f(x,0) = 0, is stabilizable then the system 

,y) ( x = h(y)f(x,] 

\ y = u 
(26) 

is stabilizable for any positive definite smooth function h. 

The Corollary 3.2 proves tha t (20) is stabilizable when p > 1, since we need 
/ ( x , 0 ) = 0. When p = 1, one can use similar arguments as those given in the case 
k < m to show that with u(x, y) = —ym(cy + 2c2x) — (y + ex), and using V(x} y) = 
^y2 + cxy + c2x2 as Lyapunov function, the closed-loop system is asymptotically 
stable at the origin. 

This ends the case 3.2.2. 

(Received August 20, 1996.) 
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