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DETECTION OF INFLUENTIAL POINTS 
BY CONVEX HULL VOLUME MINIMIZATION* 

PETR TlCHAVSKÝ AND PAVEL BOČEK 

A method of geometrical characterization of multidimensional data sets, including con­
struction of the convex hull of the data and calculation of the volume of the convex hull, 
is described. Th is technique, together with the concept of minimum convex hull volume, 
can be used for detection of influential points or outliers in multiple linear regression. An 
approximation to the true concept is achieved by ordering the data into a linear sequence 
such that the volume of the convex hull of the first n terms in the sequence grows as slowly 
as possible with n. T h e performance of the method is demonstrated on four well known 
data sets. The average computational complexity needed for the ordering is estimated by 
0(j\r2+(p-i)/(p+-)^ for i a r g e AT, where N is the number of observations and p is the data 
dimension, i .e. the number of predictors plus 1. 

1. INTRODUCTION 

The purpose of the paper is to describe a method of geometrical characterization 
of multidimensional data sets by means of convex hulls and convex hull volumes. 
Recall that the convex hull of a set Y in the Euclidean space, denoted conv(y), is 
the smallest convex set, in the sense of inclusion, that is spanned by Y. For a finite 
data set, the convex hull is a convex polytope with vertices, edges, and faces making 
up its boundary. The method is applied to the problem of detection of influential 
points or outliers in fitting the data by a linear model. 

The need for an alternative way of characterization of data sets arises when the 
data length N is close to or smaller than 5p, where p is the data dimension; it is a 
generally accepted fact that the standard statistical tools loose their capability to 
efficiently describe the data for such small IV. The data geometry just represents 
more information that can be used in data analysis. 

Geometrical properties of multivariate data sets, namely different kinds of order­
ing, have been studied recently by Barnett [2]. The idea of constructing the convex 
hull of the data has been introduced by Bebbington [3] in convex peeling] the convex 
peeling is an analogy to the trimmed mean in multiple dimensions. 

1 Supported by the Grant Agency of the Academy of Sciences of the Czech Republic through 
grant K 1075601. 
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The linear modeling problem can be formulated as follows: given IV points Xi = 
(xnj..., Xip)

T, i = 1, . . . , IV in a p-dimensional space, find a hyperplane (i.e. an 
affine subspace of dimension p— 1) that best fits (in some sense) some large subset of 
the given data. The data that excesively deviate from the model are called influential 
points or outliers. The main task addressed here is the detection of multiple outliers. 

A closely related problem is that of linear regressiony where one component of the 
data is taken as a dependent variable and the other components are called predic­
tors. Examples of robust methods of the linear regression are the Least Median of 
Squares (LMS) and the Least Trimmed Squares (LTS) by Rousseeuw [19]. Efficient 
algorithms for calculating these estimators have been proposed by Bocek and La-
chout [4] and Hawkins [13], respectively. The breakdown point of these methods may 
reach almost 50%, which means that the estimators are insensitive to the presence 
of up to almost one half of arbitrarily severe outliers in the data. 

In cases when all components of data are equivalent and none of them is preferred 
to the others, different criteria and methods for fitting the data by a linear model 
have been proposed. 

Rousseeuw [20] uses the minimum volume ellipsoid (MVE) covering a given num­
ber, at least one half, of the observations, to construct robust estimators. These 
estimators achieve the maximum possible breakdown point, almost 50%, again. 
Since finding the exact MVE is extremely computationally demanding, several al­
gorithms have been suggested for approximating the MVE, see e. g. Rousseeuw and 
Leroy [21], Rousseeuw and van Zomeren [22], and Hadi [12], All these modifications, 
except for the algorithm by Hadi, are probabilistic, based on random drawing of 
p-member subsamples of the data, similar to the elemental set approach, treated by 
Hawkins et al. [14]. 

The algorithm proposed by Hadi is finite computationally feasible, having com­
plexity of 0(N2 log IV). It starts with finding an initial p-member subset of the data, 
which most likely does not contain outliers, and proceeds inductively by sequentially 
increasing the basic subset until some stopping criterion is met. Increasing the size 
of the basic subset is done by minimizing the Mahalanobis distance of the point Xi 
from the centre c&, relative to the measure of dispersion £&, 

Di(cbì Sb) = \J(XІ - cь)
тSь

 1(XІ - cь) 

where Cb and Sp are the mean and the covariance of the basic set. Although the 
algorithm seems to perform well in outlier detection, its interpretation is not s-
traightforward. 

The goal of this paper is to present a procedure for the outlier detection, which 
would have a transparent geometric interpretation, equivalent roles for all compo­
nents of the data and which would be computationally feasible. The basic idea is 
to replace the concept of the MVE by the concept of the Minimum Convex Hull 
Volume (MCHV). The novel task is to find the subset of the given data that con­
tains a given number (at least one half) of the points, whose convex hull has the 
minimum possible volume. 

The concept of the MCHV is justified by the idea that the data satisfying the 
linear model should lie in the same hyperplane and hence they should span the convex 
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hull with zero volume. It follows that the data points that excessively increase the 
volume of the convex hull can be considered as outliers. 

The determination of the MCHV has, however, at least the same computational 
complexity as the determination of the MVE. Hence, we suggest the following ap­
proximation, called simply CHV (Convex Hull Volume) method. Like the algorithm 
by Hadi, the procedure is based on sequential increasing of some basic set, which 
probably does not contain outliers at first. At each step, the point is appended to 
the sequence, that increases the convex hull by as little as possible. In this way, 
the whole data set is ordered into a sequence according to the order of entry of the 
points into the basic set. In addition, each point is characterized by the volume of 
the convex hull at the time instant of its inclusion. The possible outliers conclude 
the sequence and increase the convex hull volume significantly. 

It is easy to see that scaling of the data along coordinate axes causes proportional 
changes of volumes of convex hulls of the data, but it does not affect positions of 
individual points relative to convex hulls of other data. It follows that both MCHV 
and CHV as methods of outlier detection are scale invariant. 

Practical implementation of the algorithm CHV is closely related to the well 
known task for finding a convex hull of the given finite data set. Usually, this problem 
means determining the points that are vertices in the convex hull, possibly together 
with some ordering and adjacency information. The CHV algorithm requires further 
evaluation of the volumes of convex hulls, which is done by decomposition of the 
hull to simpler polytopes with p+ 1 vertices, so called simplexes. As a byproduct, 
the output of the algorithm includes a complete list of the faces of conv(X). The 
list of all vertices of conv(X) can be obtained simply as a union of the vertices of 
the faces. 

In the literature two main algorithms have been recently proposed for solving the 
convex hull problem in an arbitrary dimension: the gift-wrapping method of Chand 
and Kapur [7] and the beneath-beyond method due to Seidel [25]. For a more 
general introduction see the books of Edelsbrunner [9] and Preparata and Shamos 
[17]. The algorithm described in this paper is a modification of the simpler gift-
wrapping method. It is the subject of Section 2. In subsection 2.8 the computational 
load of the procedure is treated. The computational complexity is estimated at 
0(N 2 +(P" 1)/(- 3 + 1)) operations for large N using the assumption that the data are 
drawn uniformly and independently from a ball. 

The selection of a suitable initial p-member subset of the data is hard problem, 
in general. If the number N < 5p, this problem appears to be almost as hard as the 
whole outlier detection. The main criterion for comparing different CHV runs with 
different initial sets is the volume of the convex hull of the first k points. Another 
criterion, showing how "flat" the initial set of k points (denoted Xk) is, is the ratio 
of the convex hull volume and the volume of the of the min-max parallelepiped 

П 
г=i 

max xц — min xц 
iexк iexк 

A number of partially useful methods of constructing a suitable initial set is given in 
Section 3. Often, a successful approximation to the MCHV is found in a single run 
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of the CHV, as it is shown on numerical examples in Section 4. The performance of 
the CHV in outlier detection is compared to those of the LMS method. 

2. ALGORITHM CHV 

In this section, the structure of algorithm CHV is described in more details. For this 
purpose we use some terms known in linear algebra that are related to p-dimensional 
Euclidean or linear space, such as linear and affine subspace, dimension, scalar prod­
uct, orthogonal and orthonormal basis, convex set, etc. We do not give exact def­
initions of these terms here for the sake of brevity, but refer the reader to a good 
introductory book into linear algebra. 

The derivation of substantial part of the algorithm is based on the following 
assumption: 

Assumption 1. Each (p+ l)-tuple of a given set of points is affinely independent, 
i.e. it does not lie in one hyperplane (affine subspace of dimension p — 1). 

The assumption excludes some degenerate cases. It is very often fulfilled by real 
data sets. In subsection 2.7 it is shown how the assumption can be overcome by the 
conceptual perturbation technique of Edelsbrunner and Miicke [10]. 

The rest of the section is organized as follows: In the first subsection we introduce 
some necessary geometrical terms. The subsections 2.2-2.5 are devoted to solutions 
of subproblems, which represent the substantial parts of the algorithm. The frame of 
the CHV is a subject of subsection 2.6. In subsection 2.7 the algorithm complexity 
is discussed. 

2.1. Definitions and notations 

In this subsection we define the necessary geometrical terms required in the sequel. 
At the same time we specify representation of the terms in computer memory that 
is used for a practical implementation of the algorithm. 

Point. Each point of the given set is represented by an integer denoting its order in 
the input list of the data. Points will be denoted by small latin letters, iyj, k, 
etc We shall distinguish between a point, say i, and the coordinate vector 
Xi = (xn,... }Xip)

T that determines the position of this point in the space. 
Assume for simplicity that the given set of points is X = {1, 2, . . . , N}. 

Convex Hull of a set X of points is denoted conv(X). As mentioned above, for a 
finite set X it is a convex poly tope. In our implementation, the convex hull is 
represented by a list of faces, see below. 

Simplex is a convex hull of a (p + l)-member set of affinely independent points. 

Vertex in a convex polytope P is a point that lies in the boundary of the polytope, 
so that is not a convex combination of two distinct points from P. If P = 
conv(X), it follows that each vertex of P is also a member of X. 
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Face of a convex polytope is a convex hull of at least p vertices of the polytope, that 
lies in one hyperplane and is a subset of a boundary of the polytope. It means 
that the whole polytope lies in one halfspace determined by the hyperplane. 
From Assumption 1 it easily follows that each face of conv(X) has exactly p 
vertices. 

Also, in computer implementation of the CHV each face of the polytope can 
be represented by ordered p-tuple of points, e. g. s = ( i i , . . . , ip), where ii < 
. . . < ip or, like e.g. in PASCAL, by a (p-member) set of points. 

Vector of Outer Normal of a face of a convex polytope is the unit normal vector 
n of the hyperplane that contains the face, and its orientation is directed 
out from the polytope. The last condition means that the scalar product 
(n, xa — xj) is negative for any points / from the face and a from the polytope, 
not lying in the face, where xa and xj are the coordinate vectors of a and / , 
respectively. 

Adjacent Faces of a convex polytope are two faces that differ only in one vertex. 
It is easy to see that the remaining p — 1 vertices are common to exactly 
these two faces, unless the polytope is degenerate, N < p. The structure of 
the polytope boundary can be described by a face adjacence graph, where 
each face is represented by a node and adjacent faces are connected by edges. 
Assumption 1 implies that each node has exactly p neighbors. 

Area of a face is the (p — l)-dimensional volume of the face. It is determined 
(recursively, after all) as a volume of a simplex in the (p — l)-dimensional 
space. 

Volume of a Simplex. Obviously, any p-tuple of the vertices of the simplex, say 
( i t , . . . , ip), is a face of the simplex. The orthogonal distance of the remaining 
vertex, say /i, from the face is called height of the simplex. It can be calculated 
as absolute value of the scalar product (n, Xh — a?*), where n is a unit normal 
vector of the face and xs is an arbitrary vertex of the face. The volume of the 
simplex is equal to the product of the area of the face and the height, divided 
by the dimension of the space, p. 

Volume of a Polytope is determined as a sum of volumes of a set of simplexes, 
that have pairwise disjunct interiors and their union is the whole polytope. 
The volume of the hull, as expected, does not depend on the particular de­
composition of the polytope to individual simplexes. 

2.2. Calculating volume of a simplex 

In addition to calculating the volume of a simplex, the algorithm described in this 
subsection also computes the area and the vector of the outer normal of a face of a 
convex polytope. 

Let i i , . . . , ip+i be p + 1 affinely independent points in the space. If the intention 
is to calculate the area and the normal vector of the face s = ( i i , . . . , ip), an arbitrary 
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point from the polytope, not lying in the face, can be taken for ip+i. For simplicity 
of the notation, we shall denote the coordinate vectors of the points by xi,..., xp+i. 

The algorithm proceeds in p steps. Gramm-Schmidt's orthogonalization process 
is used to generate a sequence of unit vectors v i , . . . , v p so that (t>i,... ,i>fc) is 
an orthonormal basis of the linear space spanned by #2 — Xi,.. .,xk+i — -Ci for 
k = 1 , . . . j p. At the same time a real sequence c*i,..., ap is calculated, where ak is 
the .^-dimensional volume of the convex hull of x\,..., ajfc.fi. Then, ap represents 
the volume of the simplex spanned by all the points, ap„i is the area of the face s 
and the unit vector of the outer, normal of the face is given by n = —vp. 

Algorithm 2.2 

Initial s tep 
v'1:=x2-xi o r i := | |v i | | vx := t>i/||i;l||; 

Iteration: for k = 2 , . . . ,p do 
J k - l 

vk := (xk+i-xi)-^2 (xk+l-Xi.Vj) Vji 

7 = 1 

ak := afc-i||i/fc||A, vk :=v'k/\\v'k\\ 

endfor 

It is easy to see that the length of v'k is equal to the orthogonal distance of the point 
Xk+i from the affine space spanned by a*i,..., Xk for A: = 1 , . . . ,p. 

2.3. Finding one face of a convex hull 

In this subsection the following problem is solved. Let X be a finite set of points 
containing at least p + 1 members and let ii E X be a, vertex of conv(X). The task 
is to find at least one face of conv(.K) that contains the point i'i, say s = ( i i , . . . , ip). 
In the sequel the notations x\}... >xp and X{ is used for coordinate vectors of the 
points i i , . . . , ip and for i 6 X) respectively. 

As a byproduct of the algorithm, the same sequence {vk} as in Algorithm 2.2 is 
generated; also the sequence of volumes {ak} can be calculated at the same time. 

The point 1*2 is selected by maximizing the angle <pi between the vectors X{ — x\ 
and a;o — a?i, where xo is the coordinate vector of an arbitrarily chosen point in in 
X) io i=- »i. The situation is shown in Figure 1. The cosine of this angle, which is to 
be minimized, is calculated as a scalar product of the corresponding unit vectors. 

For k > 2 the point ik is chosen similarly, but instead of the differences as,- — asi, 
i E X the calculation proceeds with orthogonal projections of these vectors (denoted 
below as y,) into orthogonal complement of the linear space spanned by v\,..., Vfc-2-
This projection has the property that the images of the up-to-time found points, 
i i , . . . , ifc-i, coincide. The projection of the vector XQ — XI is denoted by tun. Finally, 
the normal vector of the face is calculated in the manner used in Algorithm 2.2. 
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Fig. 1. Illustration of finding the point 12 in Algorithm 2.3. 

Algorithm 2.3 

Initial step 

Select i0 £ X — {i\} (arbitrarily) 

Put w0 := x0 — x\ w := w0/\\w0\ 

(xi-xuw) 
argmin — — 

iGK-{ io, i i} \\xi - ^l l l 

x2-xi vi := vi/ | |vi| |; 

«2 

"І 
Iteration: if p > 3 then for k = 3,,..., p do 

w0 := w0 - (w0)vk-2)vk-2 w :=w0/\\w0\\ 

tk : = arg mm 
i€X-{7 0 , . . . , i f c - i} "HVill 

k-2 

where y{ := (xi — x\) — Y^ (x% "~ xi> v i ) vi> f° r * £ -X" 
i = i 

Är-2 

v'k-\ '•= (-«!* — SBl) — 5Z í3** _ *l»»i) »i» 
3 = 1 

»*-i := »*-illK-i|| 

endfor 

Concluding step 

ttfo røo -(гt>o,Vp-1)^-1 n : = -™o/ll™o| 
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2.4. Finding a n adjacent face 

Assume that s = ( i i , . . . , ip) is a face of a convex hull of the set X. It is already 
stated above that each face has p adjacent neighbors, each of which is obtained from 
« by interchanging one vertex by another, proper vertex of conv(A'). Without any 
loss of generality we shall assume that the task is to find an adjacent face of conv(X), 
that differs from s in the last vertex, i p, (otherwise first we change the order of the 
vertices in s). 

The first step of the algorithm consists in finding an orthogonal projection op­
erator into a two-dimensional plane, in which the images of the points i i , . . . , i p -i 
coincide. It is easy to see that the orthogonal projection is determined by two vec­
tors: the vector of the unit normal of the face s, denoted n, and a vector v, that is 
equal to vp-\ obtained in Algorithm 2.2. It is obvious that the vector v depends on 
the vertex of s, which should be replaced. 

The image of any point i G X has the coordinate vector 

P(i) = (a;,- — x\,n)n + (xi — a*i, v) v 

The new point ip that should replace ip in the adjacent face is determined as the one 
that maximizes the angle /?; between the vectors P(i) and v, i E X — {ii,..., ip}, 
see Figure 2. 

It can be easily seen that cotangens of this angle, which is to be minimized, is 
equal to the ratio of the scalar products —(a;,- — x\,v)/(xi — x\,n). Note that the 
product (xi — x\, n) is different from zero due to the fact that none other point from 
X lies in the hyperplane containing the face s with respect of Assumption 1. 

Algorithm 2.4 

1. Find the vectors n and v = u p _i according to Algorithm 2.2 

2. Find the vertex ip as 

., (xi-xuv) 
ip := argmax 

i€JГ-{.i,...,.,} ( Э S . - . - 1 . П ) 

Note that the normal vector of the rotated face can be easily calculated as a linear 
combination of the vectors v and n, more exactly by normalizing the vector 

n" = ~(x'p -xltv)n+(x'p -xX)n)v} 

where xp is the coordinate vector of ip. It is obvious from Figure 2. Also, the area 
of the new face can be calculated in a less complex way than by calling a new the 
procedure in Algorithm 2.4. 
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o 

P(I,)=...=PO;1)=O 

o 

Fig. 2. Illustration of finding the adjacent face in Algorithm 2.4. 

2.5. Walk through the whole adjacence graph 

In this subsection we show how the Algorithms 2.3 and 2.4 can be used to generate 
a list of all faces of the polytope, which have one common vertex. The proposed 
approach is a variant of the so called width-first-search in the face adjacence graph. 
An easy modification of this algorithm allows to find all faces of the polytope: this 
is the subject of the "gift-wrapping" method, [7]. 

Below, the list of faces is referred as a sequence L(l)}..., L(NL) of sets of vertices 
of the faces, for simplicity. In a real computer implementation of the algorithm, 
however, it is convenient to organize the list in some finer data structure, which 
allows fast operations of search in the list and insertion of a new face. 

For this purpose we consider a natural ordering of the faces in the list, e.g. 
lexicographic. If the list is stored as ordered and contains n items, then the search in 
the list can be performed in O(logn) operations, while inserting of one face requires 
0(n) operations. Even more efficient data structures include binary trees and 2 -
3 trees [1], where the complexity of both of the operations is reduced to O(logn). A 
linear sequence {L(i)} is used anyway, too, but has the meaning of pointers to faces 
in the list. 

Further our algorithm employs an array £(-) of sets of points which is needed 
for storing the auxiliary information, which vertices of the sets L(-) remain to be 
considered for rotations later. 

Let z'o be the fixed vertex on the polytope boundary. The index of a currently 
processed face is denoted c. 

Algorithm 2.5 

Initialization: 

While n > c do 

Use Algorithm 2.3 to find a face s that contains the point in. 
Put n : = l , c : = l , L(l) := s, 1(1) := s - {i0}. 
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If £(c) + {} then for all k G £(c) do 

Rotate the face L(c) by replacing the vertex k by a new one, kf, according 
to Algorithm 2.4 and denote the new face as s. 

Search for s in the currently existing list of faces. (It is possible to restrict 
the search to {L(c + 1 ) , . . . , L(n)}.) 

If 5 is a member of the list, i.e. s = L(j) for some j> then 

put e(j)-.= e(j)-{k'} 

else add s into the current list, 

n := n + 1, L(n) := s, j?(n) := s — {£', in} 

endif 

endfor 

Put c : = c + l 

endwhile 

The list of faces {£(•)} generated by Algorithm 2.5 has the property that any 
rotation of any face in the list, which is obtained by replacing a vertex i ^ in, leads 
to a face which is also a member of the list. Since the graph of adjacent faces is 
continuous (and finite), the list consists of all faces of the poly tope which contain io 
as required. Note that the list of all faces of the poly tope could be obtained if the 
condition i -̂  io is relaxed. 

2.6. The main algorithm CHV 

Let X be a finite set of points satisfying Assumption 1 and let i\,..., ip be a p-
member user selected subset of X. The task is to order all the points in X into a 
sequence i i , . . . , i/v, so that 

vol[conv(Xn+i)] = min vol[conv(Xn U {i})], 
t£X — A n 

where Xn = { i i , . . . , i n } , n = p}..., IV — 1. (Note that the case when the starting set 
has more than p members can be solved similarly: an arbitrary p-member subset of 
the starting set is chosen and at the beginning of the procedure, first the remaining 
points from the starting set are appended to the sequence.) 

Now, we show, how the volume of the polytopes conv(XnU{i}) can be calculated. 
Let 5 be a face of conv(Xn), having the vector of the outer normal ns and let xs 

be coordinate vector of one (arbitrary) vertex of s. We say that the face s looks at 
the point i if 

w,,i = (xi-xsyns) > 0. 

In the opposite case we say that the face s does not see the point i. The term o;,̂ -
has the meaning of the height of the simplex conv(s U {i}) and thus it does not 
depend on the choice of the vertex xs in the face. Assumption 1 assures that uSti 
cannot be zero. 
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It is claimed that the polytope conv(Xn U {i}) can be written as a union of 
conv(Xn) and all simplexes conv(s U {i}) where s looks at i. Recall from subsec­
tion 2.1 that the volume of the simplex conv(sU {i}) is equal to ips wSii/p> where ips 

is the area of the face s. Next, it is easy to see that the simplexes and conv(Xn) have 
pairwise disjunct interiors. Collecting these facts results in a method of calculating 
volumes of convex polytopes. 

T 
Fig. 3. Illustration of finding the convex hull of Xn U {i}. 

Now, take note about the faces of the extended polytope conv(Xn+i)=conv(Xn U 
{in+i})- They can be divided into two groups. The faces in the former group have 
common vertex in+i, the latter group contains exactly the faces of conv(JKn) that do 
not see the point in+i. It is obvious from Figure 3. Using this fact and Algorithm 
2.5, the list of all faces of conv(Xn) can be recursively updated. 

Let us introduce the notation 

T n( i) = vol[conv(Xn U {i})] ieX, n = 1 , . . . , TV 

In computer implementation, each point is characterized by one scalar 7(i), which 
is updated at each step, until it is appended to the sequence. Hence we shall skip 
the subscript n of 7(1') in the algorithm. The output sequence of volumes is 7(in) = 
vol[conv(Xn)], n = 1 , . . . ,1V. Obviously 7(1*1) = . . . = 7(ip) = 0 for the initial p 
points in the sequence because the convex hull of less than p + 1 points has a zero 
volume. 

The list of faces of conv(Xn) considered in this subsection is somewhat different 
from the list in Algorithm 2.5. It need not be stored in a special data structure, 
but it should contain more information about the faces. Each face s is characterized 
by a triad (is,ips,ns) of one (arbitrary) vertex (its coordinate vector is denoted 
below as aj5), the area, and the unit vector of the outer normal, respectively. At 
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the beginning, the list of faces is initialized by two items, both determined by the 
chosen subset of points, but differing in orientation of the normal vector. 

The main procedure CHV is summarized as follows: 

Algorithm 2.6 

Initial s tep 

Select (randomly, systematically or using an apriori information) an initial 
p-tuple Xp = { # 1 , . . . , xp) and denote it s. 

Calculate ips and ns for the face s using Algorithm 2.2 and an arbitrary 
point ip+i G X — s. Initialize the list of faces by the items (ii, ips>ns) 
and ( i i . ^ . - n , ) . 

Put 7(i) := 0 for i G Xp 

7(i) := xl)s \(xi - xi,ns)\/p otherwise. 

Iteration: for n = p , . . . , IV — 1 do 
Find in+i := argmin 7(2") and append it to the resultant sequence. 

t £A —.A n 

Put A :=7(«Vi+i)-T(«Vi) 

For all ieX - Xn+i put y(i) := 7(1) + A 

For all faces s = s(iSltpS)ns) of conv(Xn) so that (scn+i — xSjns) > 0 do: 

for all i G X - Xn+1 calculate u8ti := (SB,- — xs,ns). 

liu8i > 0, then put 7(i) := 7(0 - ^s u8ti/p 

endfor 

delete s from the list of faces. 

. endfor 
Find all faces of conv(Xn+i) containing in+i using Algorithm 2.5 and add 

them into the current list of faces. (After completing this step the list 
should contain all faces of conv(.Xn+i)). 
For each such a face s = s( in+i,^5,^5) do: 

for all i G X — Xn+\ calculate u)S}i := (»,• — -En+i, ns). 

lfu8ti > 0 then put 7(1) := 7(0 + ^* w*ti/p 
endfor 

endfor 
endfor 

Note that in general, each rotation (application of Algorithm 2.2) included in Al­
gorithm 2.5 requires O(N) operations. In Algorithm 2.6, however, it is possible to 
perform each call of the procedure more efficiently, as explained below. 

Assume that in n—th step a face s of conv(.Kn+i) containing in+i should be 
rotated by replacing a point i ^ i n + i by a point i'. While in the original procedure 
the point i' is searched in the whole set Xn — s, here the search can be restricted to 
a smaller set, Mn — 5, where Mn is a set of vertices of conv(Xn+i) adjacent to the 
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point in+i- More exactly, Mn is a set of all points j G Xn so that the connecting 
line conv{j, in+i} lies on the boundary of conv(Xn+i); we say that (j,in+i) is an 
edge of the polytope. It can be easily seen that the set Afn can be obtained as the 
intersection 

ATn=VnCiQn, 

where Vn is the union of vertices of all faces of conv(Xn) that see in+i, and Qn is 
the union of vertices of all faces of the polytope that do not look at in+i. 

2.7. Coping with degenerate point sets 

It has been shown recently by Edelsbrunner and Miicke [10] that the point sets that 
are not in the prescribed position can be (conceptually) perturbed to satisfy the 
general position assumption (here Assumption 1). 

In the CHV algorithm (2.6), the event that Assumption 1 is not fulfilled is in­
dicated by the result uSti = 0 for some face s and point i. The problem is solved 
by a small perturbation of one of coordinates of the point i immediately when the 
case occurs. The perturbation of the coordinate should lie somewhere between the 
precision of the processed data and the computer precision limit. 

If such a shift can be performed, usually the involved loss of calculation precision 
is negligible. Otherwise we propose to assign two coordinate vectors to each point. 
The former coordinate vector is possibly perturbed and used for finding the adjacent 
faces, and the later vector is unperturbed and used for calculating the volumes of 
the simplexes. 

2.8. Algorithm complexity 

It is obvious that the algorithm complexity strongly depends on the number NL of 
faces of the convex hull of the given data. In each of N steps, the CHV algorithm 
(i) updates the volumes 7(i), i = 1 , . . . , 1V in 0(N • NL) operations and (ii) updates 
the list of the faces of conv(Xn). The update of the list of the faces is performed 
in 0(N • NL) operations, also, because there is O(NL) rotations and each of them 
requires O(N) operations. We conclude that the algorithm complexity is 0(N2-NL). 

It remains to estimate the number NL. We start with the worst case. In 1971, 
P. McMullen [15] proved that the maximum number of faces of a polytope with N 
vertices in a p-dimensional space is 

-VL(max) = < 
' {Nmm) T&n- forevenp, p = 2m 

2 ( N ~ m " l ) for odd p, p = 2m + 1 

It follows that /Vz,(max) = 0(1VLP/2J), where the brackets denote the (lower) integer 
part. 

In spite of this unfavourable result, it appears that in most of the practical ex­
amples the encountered NL is not so large; usually it is much smaller than NjL(max). 
see Example 1-4 in Section 4. In the sequel we explain this observation and present 
an alternative method for estimating NL for given N and p. 
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Assume that the IV points are chosen independently and uniformly at random 
from a p-dimensional ball. Then, the number of the faces of the convex hull of 
the point is a random variable, depending on the positions of the points. Consider 
the expected value of this variable, denoted NL(mean)j and study how the number 
depends on N and p. 

Fig. 4. Expected number of faces of a convex hull of N points, independently and 
uniformly drawn from a ball in the p-dimensional Euclidean space, as a function of N for 

p = 3 , . . . , 9 (from the bottom up), respectively. 

An asymptotic expression for i V i ( m e a n ) for IV —• oo has been derived first by H. 
Raynaud [18], 

-VL(mean) « 2 
Ą>--1 Г ( p+1 ) 

(P+-)#-
Lřp-1 

Nттт 
Bp, ( p + 1 ) ! 

where Br is the volume of the unit ball in the r-dimensional space, 

_ 2 W 
Br-rfif) 

In short, the result says that NL(mean) = 0(IVfr-i)/(p+i)) for jy -> oo. It is in 

accordance with the idea that for large N a significant portion of the points lies in 

the inter ion of the convex hull. 
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The exact analytic expression for iVr(mean) for general N and p have been derived 
by C. Buchta and J . Miiler [6]. Since the general formula for IVL,(mean) is complex, 
we present only numerical results, plotted in Figure 4, for p = 3, . . . , 9 and N = 
p + 2 , . , . , 60 . 

It is worth noting that the expected number of the faces remains the same if the 
points are chosen at random, uniformly and independently, from a p-dimensional 
ellipsoid, instead of the ball. Alternatively, it may be assumed that the points are 
drawn at random with a p-dimensional Gaussian distribution. An expression for the 
expected number of the faces for the last case is due to Efron [11], but it involves 
calculation of complex multiple integrals. However, it is possible to guess that the 
expected number in this case is smaller than iVL,(mean), because the points will be 
more concentrated near the center of the distribution, in the interior of the convex 
hull, and thus not contribute to the number of the faces. 

3. APPROXIMATION TO THE MCHV 

Consider the MCHV problem, minimization of the volume of convex hull of K from 
N observations, where IV/2 < K < IV. A satisfactory approximate solution to the 
problem is given by the CHV algorithm if the A'th volume j(K) is small compared 
to j(N) and small compared to volume of the corresponding min-max parallelpiped. 
It is a hard task to find such a solution in general, it may require multiple run of 
the CHV with various initial sets. 

In this section we provide two ad hoc methods for finding the initial set that 
possibly allow to obtain a satisfactory solution to MCHV problem in a single run of 
the CHV. 

The first method is due to Hadi [12], who solved the same problem (finding a p-
member outlier-free subset of the data) for his algorithm by ordering the observations 
in ascending order according to the criterion A(c&, S&) in Introduction, where c& and 
Si, are replaced by some robust location and covariance matrix estimators. Then, 
the initial basic set is given by the first p points in the sequence. 

Beside this, we propose still another simple procedure, which seeks for the starting 
set in the main cluster of the data. 

Procedure 2. For each coordinate i, i = 1, . . . ,p , order the measurements with 
respect to the ith coordinates and assign to each point k E X its "distance" from 
the median according to 

Kik = \0i(k)-(N + l)/2\, 

where Oi(k) is the order of the point k in the sequence ordered with respect to the 
ith coordinates and IV is the number of the data. For example, if IV is odd, the 
middle point in the ordered sequence has the distance Kik = 0, its neighbors have 
Kik = 1, etc. 
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Then, the starting set Xp is selected by minimizing the criterion 

V(k) = max re,-*. 
i.= l,....p 

The latter procedure is used in the following section. 

4. NUMERICAL EXAMPLES 

The algorithm CHV has been implemented on a PC, the source program is written 
in PASCAL. Bellow we list the computer results obtained for four very well known 
data sets, examined e. g. in [21]. For comparison, we calculated the LMS estimators, 
also, using the computational procedure developed by Bocek and Lachout [4]. Then, 
the ordering of the points according to their absolute residuals with respect to the 
LMS linear model is considered. 

Example 1: COLEMAN. (Sociometrical information on 20 schools from the 
Mid-Atlantic and New England States, [16]). The data have the dimension p = 6, 
and the length 1V = 20. 

Procedure 2 gives the starting set S\ = {5,8,9,14,16,18}. It has been found that 
the polytope conv(.K) has 246 faces, the points no. 8 and 14 lie in the interior of 
the polytope, and the rest measurements are its vertices. The volume of conv(X) 
is 0.056% of the volume of the min-max parallelpiped. The CHV output sequence 
starts with Si and continues with {3,6,12,4,13,7,20,19,1,17,10,11,15,2}. How­
ever, it appeared that starting set S\ is not optimum. For some other starting sets, 
e.g. for S2 = {6,7,9,11,15,16}, the point no. 18 (member of S\) terminates the 
output sequences and thus can be considered for an outlier. Next, the LMS linear 
regression model, obtained by minimizing the k = 13th residual, results 

y = -0.3336 xx + 0.0554 x2 + 0.6233 x3 + 0.9091 xA - 2.0618 -r5 + 21.8439 

with 
#(13) = 0.2926. 

Again, the point no. 18 has the largest residual with respect to the model. All 
these facts show that Procedure 2 "failed" in this example. The sequences resulting 
from CHV(Si), CHV(52) and from the LMS algorithm are listed in Table 1 (a). We 
conclude that only the points no. 18 and 3 can be considered for outliers. 

Example 2: STACKLOSS. (The operation of a plant for the oxidation of am­
monia to nitric acid, [5]), p = 4, N = 21. 

Procedure 2 gives the starting set S\ = {5,6,9,20}. The convex hull of the data 
has 66 faces, the points no. 5,6 and 20 lie in the interior of the polytope, and the 
rest ones are the vertices. The volume of conv(X) is 2.33% of the volume of the 
min-max parallelpiped. Note that since the data are integers, many 5-tuples of them 
lie in the same hyperplane and thus break Assumption 1, so that the perturbation 
technique have had to be used. 
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The LMS linear regression model is based on minimizing the k = 12th residual 
and gives 

y = 0.75 xi + 0.4043 x2 - 0.0213 x3 - 35.4149 

with 

r ( 1 2 ) = 0.5319. 

The results are listed in Table 1(b). The points no. 1,2,3,4 and 21 seem to be 
outliers with respect to both of the criteria, CHV and LMS. 

Table 1. The concluding part of the CHV and the LMS sequences with the 
corresponding convex hull volumes and the residuals, respectively. 

(a) COLEMAN (b) STACKLOSS (c) SALINITY (d) WOOD. 

n CHV(si) CHV(s2) LMS n < знv LMS 

*n 7(*'n) ł'n 7 ( ł n ) ł'n гes. 
n 

ł'n 7(ł'n) ł'n гes. 

12 7 57.5 14 23.2 5 0.293 13 17 374.1 8 1.192 
13 20 62.6 5 33.1 19 0.293 14 7 483.2 14 -1.787 
14 19 79.4 8 43.2 1 -1.064 15 8 545.0 20 2.075 
15 1 117.8 13 61.3 4 -1.421 16 13 693.3 13 -2.617 
16 17 183.0 12 97.0 10 1.668 17 21 1291 2 3.372 
17 10 275.0 17 146.2 12 1.929 18 4 2319 3 7.974 
18 11 441.1 10 225.9 17 -2.570 19 3 3636 21 -8.234 
19 15 545.3 3 377.3 3 - 4.735 20 1 4436 1 8.394 
20 2 715.4 18 715.4 18 6.467 21 2 5128 4 9.064 

(a) (b) 

n cнv LMS n cнv LMS 

ł'n 7(*'n) *'n гes. 
n 

*'n 7(*n) *n гes. 

20 13 73.09 9 1.73 12 11 4.68 Ю " 1 0 2 0.0042 
21 28 80.80 1 -1.87 13 14 1.08 Ю " 9 13 0.0042 
22 6 95.10 11 2.00 14 12 1.70 Ю " 9 1 0.0134 
23 4 111.3 10 2.16 15 5 2.72 Ю " 9 7 0.0154 
24 17 135.6 8 -2.74 16 7 4.25 Ю " 9 5 0.0178 
25 3 159.4 24 4.21 17 4 2.73 Ю " 8 4 -0.1887 
26 15 197.9 23 5.02 18 6 3.54 Ю - 8 8 -0.2152 
27 5 305.8 5 5.33 19 8 4.24 Ю " 8 6 -0.2187 
28 16 500.9 16 13.82 20 19 4.94 Ю " 8 19 -0.2530 

(c) (<-) 
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Example 3: SALINITY. (Measurements of water salinity, [23]), p = 4, N = 28. 

Procedure 2 gives the starting set S\ = {12,18,20,25}. The convex hull of the 
data has 103 faces, the points no. 12,25 and 26 lie in the interior of the polytope, 
and the rest ones are the vertices. The volume of conv(X) is 6.84% of the volume 
of the min-max parallelpiped. 

The LMS linear regression model is based on minimizing the k -= 16th residual 
and gives 

y = 0.3618^1 - 0.0863x2 - 1.3267*3 + 37.3671 

with 
r ( 1 6 ) = 0.3146. 

The results are listed in Table 1(c). Only the points 5 and 16 seem to be far 
deteriorated from the linear model. 

Example 4: WOOD. (Anatomical factors on wood specific gravity; the data are 
taken from [8] and modified by Rousseeuw [19], who planted four outliers at cases 
4,6,8 and 19), p = 6 , JV = 20. 

Procedure 2 gives the starting set S\ = {2,5,9,11,14,15}. The convex hull of 
the data has 346 faces, all the 20 points have been found on the boundary of the 
polytope. The volume of the convex hull is approximately 19 % of the volume of the 
min-max parallelpiped. 

The LMS estimation, consisting in minimization of the 13th absolute residual 
with respect to the regression model, gives 

y = 0.2355*1 + 0.0460*2 - 0.5747x3 - 0.3668x4 + 0.6264*5 + 0.3185, 

where 
r(i3) = 0.0042. 

The results are listed in Table 1 (d). We note that all of the four outliers, 4,6,8, and 
19, were detected by both of the criteria. 

5. CONCLUSIONS 

The CHV algorithm is a novel heuristic method for outlier detection in the multi­
variate linear regression, based on geometry of data sets. The method may also be 
regarded as a special case of a clustering algorithm. The average computational load 
of the procedure for large data samples is 0(iV2+(-3"-1)/(-9+1)). 

The numerical examples show that the CHV method detects the same outliers as 
the LMS in the examined cases, but it assigned different weights to the outliers. 
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