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PROBABILITY DISTRIBUTION OF TRANSFORMED 
RANDOM VARIABLES WITH APPLICATION 
TO NONLINEAR FEATURE EXTRACTION 

LUBOMIR SOUKUP1 

A method for estimation of probability distribution of transformed random variables is pre­
sented. The proposed approach admits an approximation of the transformation of the random 
variables. The approximate probability density function (pdf) is corrected to obtain a resulting 
pdf which incorporates a prior knowledge of approximation errors. The corrected pdf is not con­
taminated by any uncontrollable approximation. The method is applied to pattern recognition. 
It is shown that class conditional pdf of features can be easily computed even when the feature 
extraction was performed with nonlinear mapping of an input pattern. 

1. INTRODUCTION 

Estimation of probability distributions is general problem that is extensively studied 
in many scientific branches where mathematical statistics is applied. Generally, joint 
probability density function (pdf) of random variables Yj, j G {1 , 2 , . . . , n} that 
depend on other random variables X(, i £ {1 , 2 , . . . , m} should be estimated. The 
relationship between the two sets of random variables is usually described by a 
system of equations 

Yj=bi(X1,X2,...,Xm), j E { l , 2 , . . . , n } , (1.1) 

where bj is real function for Vj £ {1, 2 , . . . , n}. The problem is how to determine 
pdf of random variables Yj when a joint pdf of random variables Xi is given. If 
n < m, no more information is needed. 

Many simplified versions of this problem have been studied. For example, if 
uncertainty of variables Xi is given by their maximal errors, then interval aritmetics 
can be used for estimation of maximal errors of Yj. Such an approach was applied 
in computer vision and was described in [2]. Functions bj were implemented as a 
computer program and a software solution was designed there. 

In this contribution, functions bj have to be in form of mathematical expressions. 
Then pdf of random variables Yj is easy to derive and express in a simple formula. 
However, the formula is not so easy to evaluate even when functions bj are only 
slightly complicated. Therefore approximate functions aj are used instead of the 
original functions bj. Then an approximate pdf is obtained which differs from the 
exact pdf. It is expected that the difference between the approximate and exact pdf s 
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is not significant if functions cij are close to bj. This expectation is not used to prove 
in practice and the difference between the both pdf's is usually neglected without 
any assessment of its magnitude. Hence, the decisions made on the approximate pdf 
cannot be reliable. 

This difficulty is resolved in this contribution. The approximate pdf is corrected 
with respect to the approximation error to obtain reliable pdf of random variables 
Yj. The core of this idea in one-dimensional case (n = ra = 1) was published in [4] 
and [3]. 

2. FORMULATION OF THE PROBLEM 

The problem introduced above will be exactly formulated in this section. Vector 
notation should be used to make subsequent formulae well-arranged. 

X = [Xi, x2,..., Xm], Y = [Yi, y 2 , . . . , Yn], 

6 = [&i, 62 , . . . , bn]; ra, n G N, m > n . 

The vector function b is mapping 

b : X -> y : x >-> b(x), X C Rm , y C Rn . (2.1) 

Then equations (1.1) can be written in vector form: 

Y = b(X) . (2.2) 

Probability distribution of random vector X is given by means of its pdf 

f:X-+R:x^ f(x) . 

Such correspondence will be denoted as X ~ / . For some x G X which is 
realization of random vector X , notation x ^ X will be used too. 

Let a subset Uj C X be support of / , i.e.: Uj = {x G X \ f(x) > 0}. 
Pdf of random vector Y can be easily derived if mapping 6 is regular and injective 

on X. . 
Y~9b, 

9b(v) = L f<F\v 1 *)) 7-=-^ T- d* • (2-3) 
JZ det ( ^ (£гv-») 

Mapping b is vector function 6 = [6, &"], where b" is an auxiliary mapping 

b" : X -+ Z : x h-* 6"(a5), .2 C j R m " n . 

Mapping b" can be chosen in an arbitrary way that makes 6 regular and injective 
on X. 
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To evaluate formula (2.3) easily, the original mapping 6 is approximated by a. 
simpler mapping a. 

a:X -+y :x*-> a(x), Va G X : a(x) » b(x) . (2.4) 

Substituting b with a in (2.3) pdf ga of random vector a(X) outcomes. Approx­

imation error v(x) = b(x) — a(x) is not known precisely, so that a random vector 

Vx can be assigned to v(x) to describe its uncertainty. Since Vx depends on x, 

its pdf is conditional pdf. 

v(x) ^Vx~p(.\x)> xeUvDUj . (2.5) 

Pdf p(. | x) represents a prior knowledge of approximation error v(x). 
In summary, pdf of a random vector Yf which incorporates uncertainties of ran­

dom vectors X> Vx is requested. Random vector X is given by its pdf /. An 
acceptable pdf p(. | x) and a set Uv D Uf; x G Uv have to be designed to represent 
the pdf of Vx. 

3. SOLUTION OF THE PROBLEM 

Random vectors .X", Vx should be summed since the approximation error v(x) was 
defined as a subtraction. Therefore 

Y' = Vx+a(X). (3.1) 

Let pdfs of random vectors Y\ [Vx , X] be introduced: 

Y'~g, [Vx,X]~f. 

To express pdf g, an auxiliary mapping a = [a', a"] have to be introduced similarly 

to b in (2.3). 
5 : V x X -> y9 x y" : [v, x] *-> a(v , x) , 

a'(v ,x) = v + a(x) , V D v(Uv) , y = a(X) , y = a"(V , X) . 

Then pdf g can be carried out with the aid of formula (2.3) 

9(У) = I f(ã-\y, z)) 7--Ҙ---: dz , (3.2) 
det(Џ(ã-\y,z))) 

where £ = [v , x ] . 

The simplest way of choosing a11 is: a " (v , x) = x . Then 

C Ґ - 1 
2 _ 1 ( y . * ) = [y - « ( * ) , * 1 . (3.3) 

Pdf / can be factorized with the aid of conditonal pdf p( . | a;) of random vec­
tor Vx. 

f(v,x) = p(v\x)f(x). (3.4) 
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Furthermore, 

det(j§(ГV*))) = 
дa' дa' 

дv ' дx 

дa" дa" 

дv ' дx 

r 9a 
&n , "^~ 

ax 
= | . G n | | . G m | = l . (3.5) 

En is identity matrix of order n, and O m > n i s m x n zero matrix. 
After substitutions (3.3), (3.4), (3.5), and with regard to the inclusion in (2.5), 

formula (3.2) changes to 

(3.6) 9(y)= / - p ( y - a ( æ ) | : - ) / ( . - ) d ж . 
Jбfr) 

To evaluate the integral in (3.6) easily, a suitable pdf p(. | x) and set Up has 
to be chosen. A solution of this subproblem will now be shown in a subsequent 
pattern-recognition example. 

4. APPLICATION TO NONLINEAR FEATURE EXTRACTION 

In pattern recognition, Bayesian approach is frequently used to classify a pattern to 
one of classes u>k, k E /C C JN. The pattern is represented by a vector of measured 
parameters x G X. Parameters that admits easy discrimination among the classes 
u>k are rarely identical with components of the pattern vector x. Therefore feature 
extraction is usually necessary before classification. Feature extraction is a mapping 
6 (see (2.1)) that can be nonlinear in principle. Choice of a mapping 6 is based on 
the knowledge of the physical process that generates the pattern vector x. Instead 
of the vector x a feature vector 

y = h(x) 

has to be dealt with in classification. A decision rule for classification utilizes a pos­
terior probabilities P(u>k \ y) that depend on class conditional pdf's g(y \u>k) besides 
a prior probabilities P(u>k) according to Bayes formula 

P(»k\v) = 
g(y\u>к)P(u>k) 

9(y\ui)P(ui) 
keic 

2-~tieK 
(See e.g. [1]) 

Now, for some given class conditional pdf f(x |u>fc), pdf g(y\u>k) can be com­
puted by means of formula (3.6). For simplicity, substitutions f(x \u>k) —* /(#)> 
9(y \UJk) —+ g(y) can be adopted. Approximate mapping a is assumed to be linear. 
Pdf of the pattern vector x is truncated Gaussian, i.e.: 

/(*) •{ 
q exp ( - ì (x - џ)т M(x - џ)) <= x Є Uf C X , 
0 <=x$Us , 

where q is normalizing constant, n is mean vector, and M inverse covariance matrix. 
Support Uf has to be given in form of a m-dimensional cuboid parallel to eigen­

vectors of matrix M. 
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Typically, the only information about the approximation error is its range, namely 
its lower and upper bound. It means that the pertinent pdf p(.\x) should be 
uniform. In the least informative case, support V of pdf p(.\x) is the same for all 
xeUp/i.e.: A 1 

P(v\x)k\ CV = W\ ^ ^ (4.1) 
( 0 <^v<£V. 

Set V can be estimated on the basis of knowledge of the approximation error v(x), 
so that v(X) C V. If mapping a is part of Taylor series expansion of mapping b up 
to the linear terms, the well-known formula for the rest (Taylor's theorem) can be 
used for the estimation of V. 

Under these assumptions, formula (3.6) can be further modified: 

g(y) = qcv exp [-- (x - n)T M(x - ^) J 
JUpC\Uw(y) \ l J 

= qcv I , exj> (-IzTKTMKz) dz , 
JK-\UpnUw(y)) V 2 J 

where Uw(y) = {x 6 X \ y — a(x) E W C V}. The last equality was derived after 
substitution z = K~l(x — fi) that diagonalizes matrix M. 

KT M K = diag(rci , . . . , Km) . 

Matrix K consists of eigenvectors of matrix M. Sets Upi W have to be chosen 
in form of appropriate parallelepipeds so that K~1(UP C\Uw(y)) is parallel to the 
m-dimensional cuboid Uj. Pdf g can be finally expressed: 

T-rm Mv) ( 1 2 \ 
. 9(V) = q cv H t e l ^ exp \~- * t, J dt, , 

where r,-, S{ are linear functions. 
Hence, the corrected pdf can be easily computed with the aid of error function. 

5. EXAMPLE 

As an illustrative example let us consider a simple case of feature extraction in two-
dimensional feature space. Figure 1 shows three classes with normally distributed 
features x\, #2- It is apparent, that a feature selection (or another linear feature 
extraction) cannot provide a clasifier with a reasonable single feature to distinguish 
among the three classes, since their projections onto the axes overlap themselves. 
The Euclidean distance to the origin, i.e. the nonlinear function y = \Jx\ + x\, 
seems to be more convenient. The proposed method allows to reliably estimate the 
pdf of the distance y for all the three classes. Consequently, the distinguish-ability of 
feature y can be tested and the risk of misclassification can be evaluated in advance. 
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Ф m-

Fig. 1. Feature extraction by means of Euclidean distance to the origin. 

6. CONCLUSION 

The proposed method enables safe and reliable use of approximation in transforma­

tion of random variables. Uncertainty of the approximate functions is integrated with 

uncertainty of the approximation errors by means of superposition of two random 

vectors, so t h a t the approximate pdf is corrected with regard to the approximation 

errors. C o m p u t a t i o n of the corrected pdf is very effective because it does not include 

any iterative procedures. 

Beside the presented application to pat tern recognition, the suggested approach 

can also be applied to a wide area of scientific and technical problems dealing with 

non-linear parameter est imation. 

(Received December 18, 1997.) 
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