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K Y B E R N E T I K A — V O L U M E 34 ( 1 9 9 8 ) , N U M B E R 3, P A G E S 2 6 5 - 2 8 8 

MAXIMUM LIKELIHOOD PRINCIPLE 
AND /-DIVERGENCE: 
DISCRETE TIME OBSERVATIONS1 

J I Ř Í MICHÁLEK 

The paper investigates the relation between maximum likelihood and minimum 
/-divergence estimates of unknown parameters and studies the asymptotic behaviour of the 
likelihood ratio maximum. Observations are assumed to be done in the discrete time. 

INTRODUCTION 

In the monograph by Kullback [4] one can find an interesting relation between the 
maximum likelihood estimate of an unknown parameter and the /-divergence of two 
probability measures where one of them is determined by the value of the MLE in 
question. It will be best to describe this relation by a simple example used in the 
monograph mentioned above. 

Let a?i,X2,.. . ,x n be a sample from the Gaussian family 1V(/i,<r2), where the 
parameter (^}<T2) is unknown. Let x be the arithmetic mean and 

*2 = ^I>-*)2 

Further, let (/in, ̂ o) be an arbitrary element of the parametric space 0 = Ri x Rf. 
At this moment it is necessary to mention the notion of /-divergence. Let P, Q 
be two probability measures defined on a measurable space, let //>, /Q be their 
corresponding Radon-Nikodym derivatives with respect to a dominating a-finite 
measure /i. Then the /-divergence between P and Q is defined as 

I(P : Q) = I(fP :fQ) = J fP(x) ln g g ^(dx). 

L O 

0 = JT(x)fP(x)»(dx), 

Let now /Q be fixed and let us look for the minimum of /-divergence over fp under 
the constrain 

1This work was supported by the Grant Agency of the Czech Republic under Grant 201/96/415. 
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where T(x) is a statistic, 0 is a fixed value from the parametric space 0 . In our case 
T(a?i,. . . , x n ) = (x, s2) and 0 = (/i,cr2). The optimal density function f*(x) is of 
the exponential type, namely 

' W " M(r(*)) 

where M(r(0)) = / eTWTW / Q ( Z ) dz is assumed to be finite. As we do not know the 
true value of 0, it is reasonable to substitute it by its maximal likelihood estimate 
and in this way to obtain an estimate / ( / * , / Q ) of the minimum of /-divergence 
I(f* : /<?)• h- o u r example with / Q ~jV"(/L£o,0o) 

But this estimate is nothing else but the /-divergence between two Gaussian mea­
sures, namely 

I(N(X,S2)):N(H0,CTI)) 

multiplied by n. Here we can see a very close connection between the MLE and the 
/-divergence. Kullback shows also in Chapter 5 of his monograph that the estimate 
for the minimum of /-divergence can be expressed as 

I(f* :fQ) = 0 T(0) - log M(T(9)) = In ^ f f i 0 

where 0 is the MLE for the parameter 0 and /*(•) is the density of the exponential 
type derived from the underlying density function / Q ( - ) - Kullback uses this relation 
in the case of in discrete time observations only. Motivating by this interesting 
example we will state the aim of the paper. The main goal of this paper is to study 
this relation between the MLE and the /-divergence in the general case of dependent 
observations. Some results discussed in the paper are not principially new and they 
are presented in order to see the relation between the maximum likelihood method 
and minimal /-divergence method. 

1. EXPONENTIAL FAMILIES 

In this part we will restrict ourselves to the case of i.i.d. random variables generated 
by the exponential family, i.e. with the density function 

f(x,0) = C(0)h(x)eT^T^\ 

where 6 is a parameter from O. We assume, of course, 

C(9)h(x)eT^T^dx = l 
i 

for each 0 6 0 . We will consider the case 0 C R\ only. 

/ 
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If xi , £2, • • •) xn is a sequence of observations coming from this family then the 
logarithm of the likelihood ratio equals 

n n n 

\n]Jf(xj,0) = n\nC(9) + J2Kxj) + T(O)^T(xj). 
i = 1 i = i .7=1 

The MLE 0n must satisfy the following condition 

n n 

In J ] f(xj, 9n) = maxln [ [ / ( * , , 9). 

Under the existence of appropriate derivatives, the MLE 6n is given by 

- Y T(XJ) = —i— C'(0n) - 1 — . nfri C(6n) T'(en) 

This relation says that 0n exists if and only if 

1 n 

- V ^ x ^ G Range TT(0), 

where 7r(0) = [lnC(0)]'[r '(0)]_1 . Therefore it is necessary to assume r'(0) ^ 0 for 
each 0 G 0 . The law of large numbers immediately gives 

£È->i)„-=Ä E,{T(.-)} a.s. 
n i 

where 0* is a true parameter value. As for each 0 G 0 

Ee{T(X)} = *(6), 

then the strong consistency of {- JD" 2X x j ) } n = 1 implies 

PU-^J2T(Xi(U))e R
e
a
e
n|e *(*)} rî b 1-

Now we mention a close connection with the /-divergence. Let 0n G 0 . Then 

,(*: «•> - E- { - %$)}=,n H+w9) - T<9')) ̂ [incwi'' 
We can continue and prove the following relation 

'-TinHx-e) - lnc(*n) c'(§n)(T(e)-T(en)) 



268 J. MICHÁLEK 

+ \nC(9n) + -yh(xi) + r(9n)-yT(xi) n z—-' n f—: 
i J=I 

= -I(6n:6) + \nC(6n)+±J2]nh(x'> + T(§»^flT(xl) 
n 1 n l 

= -I(9n:9)-H(0n), 

where H(0) = —Ee{\nf(x,9)}. In the case of 9 = 9n the corresponding mean value 
is calculated with respect to the empirical distribution function F(-), i.e. 

E§n{\nf(x,6n)} = l°° (\nC(9n) + \nh(x) + T(9n)T(x)\ dF(x) 
J —oo 

= lnC(0) + ^-£>(*,). 
n i 

Using these facts we see that 

max 1J2 l n f(*i>0) = ~^HO" •• °) ~ H(§") = ~H(9n). 
i=1 

if 6n E 0 . In this way we have proved that the MLE 0n equals the estimate of 
unknown parameter 6 obtained by minimizing the corresponding /-divergence. Fur­
ther, we can assert 

1 n 

lim — max >^ln/(x7-,t9) = — lim H(0n) 
n-oo n see *-^ Jy j ' ' n-oo v nJ 

i=i 

/

oo 

\nf(x,p*)f(x,9t)dx = -H(9<) a.s., 
•OO 

if 0* is a true value and H(6+) exists. When we evaluate the likelihood ratio we can 
write 

£ln fJXj'!\ = -n w* •e)+n W": e°)-
fri f(xj,o0) 

This relation immediately gives 

iVhJaJU 
»£? /(*,-, «o) 

Using the properties of MLE we can similarly state that 

mг.x-У\n І}Ч>V>= I( n : o). 
c nҢ f(xj, o) K n °J 

lim max - f " l n f}*h°\ = 1(9* • *o) a.s 
" - ~ « € 6 I 1 ^ f(Xj,9o) V ' 
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Now, let us write C(6) = eA(-"\ then 

»P-117TTS = - U*-)-M«o)- A'(e„)- Tik)-6
T^)) • 

9€0 frif(xJ>0o) \ T'(6n) J 
Using Taylor's expansion we can express 

A(0o)-A(en) = A'(§n)(eo-en) + ^p±(6o-en)2 + o((0o-en)2) 

T(9o)-T(9n) = T'(0n)(9o-en) + o(\9o-9n\). 

Then r - ^ 
^ l n ± I ^ = n\^^A''(9n) + o(\9o-9n\)\. 

When 0n —* (9* a.s. then we obtain the following behaviour of the likelihood ratio 
maximum 

*» ̂ -tlM\=iI^lA''(9t) + o(\9,-9o\). 
n—oo n eeo *r^ f(Xj, Vo) L 

This result implies that the rate of the loglikelihood ratio maximum behaves like the 
Euclidean distance and if the MLE 9n is asymptotically normal then this rate will 
be asymptotically a noncentral x2-distribution with noncentrality depending on the 
difference (0+ —Oo)2. 

Hence the statistic 1(9n : Qo) can be used for testing the null hypothesis 0 = Oo 
against the alternative hypothesis 0 ^ 0O. If the value of I(0n : Oo) is far from zero 
then the null hypothesis is rejected. But it is necessary to have in mind that our 
decision is strongly dependent on the distance 1(0+ : Oo)- About the asymptotic 
behaviour of 1(0n : 0+) in the i.i.d. case the reader can be referred to Kupperman 
[5] where under some regularity conditions 

2nl(0n :0*) 

behaves asymptotically with X2(l) distribution if the parameter 0 is one only and 
the null hypothesis is true. Extension of this result to multivariate parameters, and 
also to divergences different from the /-divergences, can be found in Morales et al 

In the case where the observations x\, £2, • • • > xn are from a discrete distribution 
function we can say even more about the relation between the MLE and /-divergence. 
Suppose that /(ar, 0) is a density on a finite set X} i.e. 

P9{X = x} = f(x)0). 

For simplicity let f(x,0) > 0 for each x € X and each 0 £ 0 . Then the joint 
distribution function 

f(xl,...,xn,9) = f[f(xj,9) = e x p { n £ - ^ l n / ( M ) j 
; = 1 K aCX U ) 
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= expj-nf-^R^ln^amexpj-nV^/e^jn^^l 

where Rx(-)} x = (xi, £2, - • •, xn) is the empirical probability mass function defined 
by the relative frequencies 

^ ( a ) = ^ W , a eX 
n 

where Nx(a) counts the number of occurrences of a G X in the sequence xi, £2,. • •, xn. 
Then we get to the expression 

± £ > / ( * , , * ) = -/(-MOW - H(Rx(-))} 
n ; = i 

where I(Rx(-)\0) is the /-divergence information between the empirical mass function 
Rx(-) and the theoretical f(-\0). The quantity H(RX()) is the Shannon entropy of 
Rx(-). By continuity, we set in the above formulas In £ = 0, nln ^ = 00, OlnO = 0. 

The above expression gives immediately that the MLE of 0 is nothing else but 
the estimate minimizing the distance I(Rx(-)\0). We see that in a discrete case of 
an exponential family we can write 

-J2\nf(Xj,9) = -I(Rx()\0) - H(RX(-)) = -I(9n\6) - H(9n). 
J = 1 

Hence 

£ ^ I > 1 ( x i ' * ) = -H^n) = -™£I(M)\8) - H(RX()). 

As I(Rx(-)\6) > 0, we have 

H(RX()) < H(6n). 
If there exists 6(x) € 6 satisfying 

/(• , 9(x)) = Rx(-), 

then minsee I(Rx(-)\9) = 0 and 

H(6n) = H(RX(-)). (*) 

This property leads us to the following definition. 
We say that an exponential family {f(x)0))0 G 6 } is complete if there exists 

0 e G, 0 = 0(x) such that 
f(x,0) = R(x) a.s. 

Under this property the equality (*) holds. Unfortunately, this relation cannot be 
extended to continuous models because of the absence of analogy with the empirical 
mass function in the discrete case. 
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The following example shows that the relation connecting MLE and /-divergence 
need not be valid in general. As a counter-example we can take the Cauchy distri­
bution function with density 

1 * 
p(x) = -7T 62 + (X — / i ) 2 

where 6 > 0 and fi £ i2i. For the sake of simplicity we put /i = 0. Then the MLE 
<5n must satisfy the equation 

n x2 - fi2 

^TXi d
 = 0 

Further, we need the corresponding /-divergence 

I(pM) : p(, 1)) = In { - 1 ^ } . 

It is sufficient to show that the considered relation is not valid for n = 2. Then the 
MLE 62 satisfies the equation 

x\ _ 52 2 _ £2 

x2 + 62 ^ x\ + 62 

which gives z2 £2 = 64
t i.e. 62 = y/\x\ a^l- If we substitute this expression into the 

formula of likelihood ratio we obtain 

m a x V l n ^ ' ^ l n f fe>2 (1 + *?) (1 + xj) 
*>o £ Pixjt 1) | ^ z ) 2 + x?) !-(52)2 + .a) 

If we use 62 for 7(6 : 1), we get 

Iipi.J2):pi,l)) = ln^^y 

At the first sight we see that these expressions are not proportional each other. 
When we drop the independence among observations we obtain the family of 

random sequences and processes with the exponential type Radon-Nikodym deriva­
tives. We say that a random process {x(t)t t > 0} has an exponential family of 
distributions if there exists a dominating measure P such that for each t > 0 

- ^ - ( w ) = <.(*,*)«(<,«)«* i X>M)-%(«,«) 1 , 
. i= -

where 0 is fc-dimensional parameter, random processes q(ttu) and Bj(ttu)t j = 
1,2,..., M are JVmeasurable, {/ĵ } is a system of nondecreasing cr-algebras. The 
measures P(0) and P are defined on a (\Jt>0 Ft) and P* is the projection on ^t- For 
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more details, see Kiichler and Sorensen [6]. We will again consider for simplicity the 
one-dimensional case k = 1. We start with 

l n ^ ^ = lna(t,^) + l n ^ , u ; ) + f > ; M ) £;(<>")• 
* i = 1 

If the appropriate derivatives exist, then the MLE 9t must satisfy the equation 

M 

a(ł, t) fтţ 

because for each 9 € 0 

' M 

E J ^ ^ Í j B ; ! ^ ) =-(ln«(ť,í)) ' . 

,І = 1 

The entropy Ht(0) = E$ < In ^ ' f, if exists, has the following form 

M 

Ht(e) = lna(t}e) + E9{q(t)u)} + J2T^t^t) E * ^ , " ) } . 
j = -

For 9 = 9t we have 

M 

Hť(ňť) = lna(ť,(7ť) + l n ^ , a ; ) + ^ r i ( ť , Ó^BJ^.UJ). 

It is easy to show that 

Ъ*Ш = -I(št:9) + HÍ t) 

which is a similar relation as in the i.i.d. case. 
This relation immediately yields that the MLE 9t is also an estimate minimizing 

the corresponding /-divergence and 

m a x l n ^ ^ = //(<?<) 
eee dPt

 v ' 

because 1(91 : 9t) = 0. 
The most important case occurs if the parametric functions are not depending 

on time, i.e. Tj(t}9) = Tj(9), j = 1,2, . . . , M only. Then we will speak about 
the time-homogeneous exponential family and we can say more about the corre­
sponding /-divergence. In many cases under time-homogeneity the logarithm of 
Radon-Nikodym derivative can be expressed as 

ln iiw) = K{6) ~ K{9o)+t{Q{9) ~ Q{0o))+£(T'(<?) ~7j{0o)) Bj{t)+0{t)-
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If for each j ' = 1,2,. . . , M there exist limits 

lim jBj(t) = mj(0) a.s .[P(0)], 

then there exists 

ft- ?ln wit)= m) ~ Q{0o))+^(7i {e) ~li(eo)) mj{ey 

This limit is called the asymptotic /-divergence rate I(P(0) : P(0o)) and then we 
can write 

^^m=-1(m:P(e°))+0(1)-
The estimates obtained by minimizing I(P(0) : P(0o)) are called asymptotic MLE's 
and in many cases they have similar asymptotic behaviour as the original MLE's. 
The main advantage of them is computational simplicity very often. The random 
processes { j Bj(t), j = 1,2,. . . , M) then form an "asymptotic" sufficient statistic. 

2. THE CHANGE POINT PROBLEM AND /-DIVERGENCE 

Let us start with the simplest case of change detection in mean value of a normal 
population with constant and known dispersion. This problem was firstly studied 
by Page [10] and its solution is known as the Page-Hinkley test. 

Hence, we have observations t/i,t/2, • • • ,2/n mutually independent and satisfying 
the relation 

yj = W +Cj , ej ~/V(0,<72), j = l , 2 , . . . , n 

where 
fij=fio for j = l , 2 , . . . , r - l 

Hj = /ii for j = r , r + l , . . . , n . 

In the simplest case we assume the knowledge of /in, /ii, <r2 and the task is to estimate 
an unknown moment r of a change. When we accept the maximum likelihood 
principle then 

rn= argmax \ T[po(yj) T[pi(yj) > , 
^ n b=i i=r J 

where p , ( ) is the density function of N^i^cr2), i = 1,2. This approach gives the 
well-known detector of a change 

gn = max S?(/i0 ,/ii) ^ A, 
l < r < n 

where ^ ( / / c / i i ) are the so called cumulative sums 

jzzr ^ ' 
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with a2 = 1 for simplicity. A more realistic case occurs if we know a value /io 
before a change but we do not know /ii after the change. This case can be solved 
in two ways. The first one means to substitute the unknown jump \i\ — /i0 in the 
Page-Hinkley test by a maximal acceptable jump, the second one means to use a 
maximum likelihood estimate /ii of fi\. In this case the change detector has the form 

ŞA. max f max5"(/io,/ii) J 

It is easy to prove that 

maxS?(/i0,/ii)= - (y7-/i 0 ) 2 , 
A*i Z 

with 

^ = ̂ T T E % . 
j=r 

which is the arithmetic mean of observations after the change. But, this maximum 
can be rewritten in a more interesting form, namely 

maxS ,^(/i0,/ii) = 7: /(?(-,F?) :p(-,/io)), 
Ml L 

where p(-,0) is the density function of N(6,1). Then the proposed detector of a 
change works in such a way that a change is detected with a high probability in that 
instant f where the largest discrepancy exists between probability density functions 
p('i^o) and p(-, Y r ) measured via /-divergence. 

Similarly for illustration we can proceed in the case when the observations 2/1, j/2, • • • 
. . . , t/r_i before a change are from the population 1V(/i0, <r2) (we assume the knowl­
edge of 0o = (/io, 0o)) and the observations yr)yr+\,..., yn are from 1V(/i, cr2) after 
a change, but we know neither /i nor a2. A test of a change will be based on the 
statistics 

max Sr((fi, cr2), (/i0, <Jo)), r -= 1,2,..., n, 
(/^2) 

where SJ?(-, •) is a cumulative sum derived from the maximum likelihood principle, 
hence 

5:((^A(».^))-;(-+i-r)i.^+E{--^a---Si£}-

As familiarly known the MLE's of (/i, cr2) are for a fixed r 

; = r j=r 

When we substitute these values into Sr(-, •) instead of unknown (/i,<r2) we obtain 

on// 2x / 2^ H - r + 1 ((fln-Ho)2 , ^ i *? -\ 
max Sr ((/i,(7"), (/io,<To)) = 9 - 5 — — + - 3 " l n " 3 ~ * ) • 

0i,<7-) 2 V 0Q °0 ^O / 
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This result is very interesting because the maximum of the cumulative sum Sr(-y •) 
after the change at the instant r can be expressed using /-divergence again. If we 
summarize, the test of change detection is given in the form 

Tl -4~ T —• 1 

gn = rruuc I(p(-, ftT,cr2
r) : p(-,fi0,(rl)), 

l < r < n Z 

where (/xr,(jj?) are MLE's based on the observations r / r ,y r +i , . . . ,r/n-i,2/n after a 
possible change. 

Especially, a very interesting result arises when we consider a change in variability 
only, i.e. /i0 = // = 0 for simplicity. In this case the detection of a change is based 
on the statistic of the form 

4-1,4-1. 
Gl (T2 

Then the estimate f of the time of a change is given by 

f n - r + 1 (tf &l \ \ 

A maximum likelihood test for the inspection of the behaviour of variability in the 
case of i.i.d. Gaussian random variables can be found in Krishnaiah and Miao [3], 
but without any remark about its close relation to the /-divergence. 

On the basis of these particular cases one can suggest a test inspecting changes 
in unknown parameters based on the maximum likelihood principle as follows. Let 
p(-,0) be a probability density function depending on a parameter S G 0 . Let 
£1,-C2,.. •, xr-i be observations from the population generated by P(-,0n), where 
6o is known; further, let xr)xr+\y..., xn-iyxn be observations of the distribution 
P(') #i), where 0\ G 0 , but unknown. We will assume that p(-, 6) is of the exponential 
type family, then on the basis of the previous results 

»s t - s H r = ̂ ^ '<"<• *>: * • «•» 
oee jrr P(xj,0o) r 

for each r = 1,2,. . . , n. Hence, the maximum likelihood detector has the form 

gn = m a x | n " g + i ( pMr) :p ( - , f l o ) ) j , 

where 0r = 0r(xr, z r +i , • • •, xn) is a maximum likelihood estimate of 6 after a pos­
sible change at the time r. 

At this moment we can, of course, proceed further by considering stochastically 
dependent variables in general. Let x\, X2,. . . , xn create a random sequence whose 
evolution can be described by conditional probability densities 

P ( * i + i | * j , * i - i f - i * i i e)> 
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9 E 0 . Then the detection of a change in the parameter 9 at the time rG { 1 , 2 , . . . , n } 
is based of conditional cumulative sums 

SW0o) = ±\nft)X^>-^V 
fr*r p(xj\xj-\i...)x\)9o) 

and the corresponding generalized MLE has the form 

f„ = argmax \ max5?(0,90) > , 
i<r<n {Bee r v 'J 

(for more details, cf. Basseville and Benveniste [2]). If the collection of conditional 
density functions satisfies the relation between maximum likelihood estimates and I-
divergence then the estimate fn can be expressed using /-divergences. In the case of 
Gaussian stationary sequences the detection of a change can be based on /-divergence 
asymptotic rate as used in Michalek [8]. But, this case must be investigated more 
carefully because this is one of the possibilities how to come closer to dependent 
variables cases. A further possibility how to utilize the relation between MLE and 
/-divergence is a construction of a change detector based on /-divergences although 
the corresponding likelihood ratio does not satisfy the mentioned relation. Hence 
we can consider the detector 

fn = argmax I - — £ /(p(., 9r) : p(-, 9Q)) \ 
l<r<n ( Z J 

without any reference to the likelihood ratio. 

Next we will use this approach showing a simple test concerning a change at a 
time instant r^ against the alternative hypothesis that the change occurred at r\. 
For simplicity let ri < r2. We will investigate the simplest case when observations 
before the change are generated according to 1V(0,1) and after the change according 
to N(n, 1), when /i is not known beforehand. Let us denote by 

r, —1 o n - _ 

e a . j = 1,2, 
1 = 1 V l=Гj V 

the joint density functions. Then I(f\ : /2) = V ( r2 "" r-)> aa w e ^ a v e Pu* r 2 > ri» 
otherwise 

I(/i:/2)=^|r2-r1|. 

The proposed test is based on the estimates /(* : f\) and /(* : /2), respectively, 
where r2, ri, respectively is substituted by the maximum likelihood estimate of a 
change f. The hypothesis J/2 (i-e. the change at r2) is rejected when 

/ ( * : / 2 ) - / ( * : / i ) > C 
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ì . e . 

or, equivalently, 

2 2 
ү | r 2 - ŕ | - - І - | r i - ŕ | > C . 

2C 
\r2 - ř\ - |ri - ř | > —-

/i2 

where the constant C is chosen in such a way that the first kind error would be 
smaller or equal to a prescribed level a that is 

- D { / ( * : / 2 ) - / ( * : / i ) > C } < a 

under H2. 
In general, we have three possibilities, namely 

a) r > r 2 > r i , b) r2 > r — ri, c) r 2 > n > r. 

In the case a) then \r2 — f\ = r — r2 and |ri — r| = f — n. and the hypothesis H2 
cannot be rejected. In the case b) the hypothesis H2 is not rejected if r > Tl\r2. 
Otherwise, all the remaining possibilities depend on the value of C. The case c) 
means that the left hand side of the inequality equals r2 — ri and the test depends 
on r2 — ri, /i and C whether the hypothesis H2 is rejected or not. For a better 
illustration the chart in Figure 1 presents all three possibilities. 

?! ri-fri r 2 

2 

Fig. 1. Testing changes in mean using /-divergences. 
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Now, let us investigate the behavior of the first kind error, i.e. 

P{/(* : / - ) - / ( * : / i ) > W - } = 
- p | | r_ r 2 | _ | r - r i |>^y / / 2 }_ 

+P{r2-ri>?£}. 

As r2 - n > 0, it holds P j n - r2 > ^ | = 0. But, in the case r2 - ri > | £ , the 

third term would be 1 which is impossible because we demand the first kind error 
to be less or equal to a. Hence, it remains the case r2 — ri < ---J. Then the first 
kind error equals 

P{^_f>_c/h}_P{f<__ir__c/h}. 
This result immediately implies that the following inequalities must hold simultane­
ously 

r2 — ri C r2 + ri C 
~2~<~fi) ~2~>~fi' 

If P{r < r i / / 2 } < a then the first kind error will be less than a. 

At this moment can be answered the question why we have chosen the statistic 
I{* 'h) — -f(* - A ) . This is closely connected with the test based on the likelihood 
ratio (cf. the well known Neyman-Pearson lemma). The logarithm of likelihood 
ratio has the form 

r 2 - l 2 

pJ2 a?.--y(r2.-ri). 
i=ri 

This implies that the Neyman-Pearson lemma suggests the test based on the statistic 

/ i ( r 2 - r_ ) ( a£ j - / i ) 

with the condition 

P {Kr2 - r i ) {K\ - /i) > C/f.} < a, 

i.e. 

which can be easily satisfied because afj.* has the distribution IV (0, > x__ j under 

the null hypothesis with /i > 0. In case /i < 0 the situation is quite analogous. When 
the density functions satisfy the relation between the likelihood ratio maximum and 
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the /-divergence using the MLE's then the statistic / (* : 2) - / (* : 1) is nothing else 
but the likelihood ratio because 

, /OM) , f(x,o) , . f(xtex) 
sup In -77—~r = sup In --7—r^r + In ,; ' ; 
eee f(x,02) *G£ / ( M i ) f{x,02) 

so that 

This proves that the Neyman-Pearson test can be expressed as the difference of the 
corresponding /-divergences. But if the density functions do not satisfy the above 
mentioned relation then both the tests can be quite different. This is the case with 
the detection of a change time. Namely, 

sup In 
re{i,2 n} f{n,r2) 

{ " 1 " 1 1 

/i ] P x; - -n2{n - r + I) - pJ^Xi + -fi2{n - r2 + 1) > 
r 2 V ^ 2 J 

{ max(r,r2)-l } 

/•* J2 Xi + -n2{r-r2) > 
min(r,r2) " J 

max(r,r2)—1 

= /i* ^ x , + - / i 2 ( f - r 2 ) , 

min(r,r2) 
where /z* = /isign(r2 — f). 

At the first sight we see that the final result contains 
/ ( * : r2) = -ti2(r - r2), 

but, in addition, also the statistic of the type 
r - l 

is present. 
The reason why it is useful to use the statistic 7(* : 2) — / (* : 1) is evident in 

testing composed hypotheses. Let us consider the simple hypothesis that a change 
occurred at the time r2 but the alternative hypothesis is composed a change occurred 
after the time r2. Then 

7(*:2) = ^ | r 2 - f | 

but / (* : 1) is substituted by infr>r2 %-|r — f|. 
~ 2 

It is evident that / (* : 1) = 0 if r > r2 and / (* : 1) = \\r2 - t\ otherwise, i.e. if 
r <r2. 
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Then the test statistic equals 

/ ( * : 2) — inf / (* : 1) = ^ ( r — r 2 ) for f>r2 I(* : 11 = Ś 
r>r2 

= 0 for ř < r 2 . 

2 

The simple hypotheses is rejected if ^-(r — r 2 ) > C, which gives 

2C 
r > r 2 H -r 

where the constant C is determined so that 

PÍүk2-ŕ|>O/tf2}<a. 

Now, we can use this approach in a general scheme. Let x\> # 2 , . . . , xn be an n-
tuple of observations of mutually independent random variables which are generated 
by a density function /(•) before a change and by a density g(-) after a change at 
an instant r E { l ,2 , . . . ,n} . Let ri < r 2 and let us calculate /-divergence of the 
corresponding density functions. It is easy to prove that 

In(ri : r 2 ) = (r 2 - r i) h(f : g). 

Let f be the MLE of the change time, hence 

9(xi) 

i.e. for each r ^ f 

ln "77—7, 

E i„ g ( s ť ) . y ^ ! , g(^») 

. '"TR*?1"/^-
Then 

- ^ ^ l n
 t

ÍÁ*X:~"Xn) .=(n + l-ř)M?(9:f), 
r<={l,2,...,n} / n + i ( X i , . . . , X„) 

where 

n + 1 — r *-r-/ /(a?t 

3. LIKELIHOOD RATIO TEST AND /-DIVERGENCE 

The classical likelihood ratio test is based on the statistic 

s "Pgee 0 07=1 V(xj,e) T ( x i , x 2 , . . . , я n ) = 
supt,€0117=1 P(*j,8) ' 
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where 0 is a parametric space and 0n is a subset of 0 corresponding to the hypoth­
esis IIo- Thanks to properties of the function ln() one can write 

ln(T(xi,-r2 , . . . , ;rn)) = In sup 1 7 ^ , 0 ) - In I sup TT p(xj, 9) 

n n 

= sup In TT p(Xj, 9) - sup In TT p(xj, 9) 
oee0 fJi eee £ * 

E p(xj,9) ^U P(XJ,9) 

In w y — sup > In , J \ \ . 
»e«o i = 1 Pi*jM eeefri p(xji90)

i 

where 0n is an arbitrary element of©. Now, let us assume that the density functions 
{P(j 0). 9 GQ] satisfy the basic relation between the likelihood ratio maximum and 
I-divergence (e.g. p(-,9) belongs to the exponential family of densities). Then we 
can express the test statistic T(x\y x2,..., xn) in the form 

T(xx, x2)..., x„) = exp {~(I(p(-, 9) : p(-f 90)) - I(p(-, 90) : p(-, 9Q))} 

where 9 is a global MLE over all the space 0 and 0n is a local MLE over the 
hypothesis domain 0n only. At this moment it is evident that there are many 
important questions about the existence of these estimates. 

The following examples serve as an illustration of the situation. 

Example 1. Let x\^x2) • • • yXn be an n-tuple of mutually independent observa­
tions coming from N(fi} 1), where the parameter /i is unknown and set up the hy­
pothesis /i E (a, b) against the alternative hypothesis /i £ (a, b). The test statistic 
T(xi, #2, • • • > xn) has in this case the form 

\nT(xux2,...,xn) = sup 

чBs(i'-")2ЫHë(* i-'',!} 
i n 

= 0 if x = - Ş ^ x . Є(а,b) 

= -^І>.-я)2+|í>-*)2 if *< 
2 ^ v • / 2 . 

* = 1 1=1 

= 4x>«-*)aн4І>-ï)a if *>6-2 -f 4 ' 2 . , 
t = l 1=1 

Using these relation we can state that 

T ( x 1 ) x 2 ) . . . , x n ) = l for xe(a,b) 

T ( x 1 ) x 2 ) . . , . 5 n ) = e x p { - f ( x - a ) 2 } for x<a 

T ( x 1 ) x 2 ) . . . , x n ) = e x p { - f ( x - 6 ) 2 } for x > 6. 
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Let us denote by 

xo = x for x Є (a,6) 

x o = a for x < a 

XQ = Ь for x > 6, 

then 
T(xi, x 2 , . . . , x n ) = exp { - - ( x - xn)2 J , 

which in the sense of /-divergence means 

T(xXi x2)..., xn) = exp { - - 7(p(-, x0) : p(-, x ) ) | . 

There is no problem to show that 

i n f « I s u p - C ^ T r l = Sw,*o) :P(-,S)). 

From here we see again a close relation between MLE and /-divergence. It is quite 
natural to ask how this relation can be generalized. We can, of course, write imme­
diately 

T(x1,x2,...,xn)-exP\- inf I sup j S n ^ ' ^ 
1 fo€(a,b) Kgfl .f-^ p(Xj,Ho) 

This follows from the relation 

SUP E l n # T T = ? J ( P ( ^ ) :K.Ato)) - ^ (x - /xo ) 2 . 

Now, inf/iog(ai){(:c — fio)2} either equals 0, if x G (a, 6) or equals a if x < a and 
equals 6 if x > b. These facts establish the formula for T(x\,X2,..., xn). 

Example 2 . Let us have observations x\, x-i,..., xn from the population AT(0, <r2) 
and test the hypothesis Ho : 0 < <r2 < K against the alternative hypothesis H\ : 
<r2 > K. 

In this case we can easily calculate that the likelihood ratio has a form 

In P(X)(T2) - I In - \ _i_ I (± _ ± \ 
lnp(x,<T2)-2ln<T2 + 2\a2 a2)' 

This gives 

E" in P^i'*72) _ n in °"o . 1 O-2-O-Q v * ,a 
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Let us use the relation 

E p(xjj(r
2) n (s2 s2 \ 

where s2 = £ £ j = 1 ( z / ~x)2. 
Next, let us calculate 

O<OÎ<K{2\<J2 <т2 JJ 

Using properties of the function x — In x — 1 we can find out that this infimum equals 
s2 in the case 0 < s2 < K and equals K if s2 > K, because 

hm I In 1 = +oo. 
ar\0+ \ X X J 

In this way we have proved that 

{ n , 2\ 1 = 0 for 0 < S 2 < K 

r-\, p(Xi,(TZ) I — 
sup > In -7-- T£ > / 2 2 \ 
°2>°f^i P(xJ>ao)j = f ( ^ - l n ^ - l ) for s2>K. 

This result is also very closely connected with the /-divergence, as seen at the first 
sight. Similarly, we can proceed in the case of the hypothesis Ho • Ko < <r2 < /__ 
against the alternative hypothesis Hi: a2 £ (Ko,Ki). Then the resulting test is 
based on the following statistic 

sl(xi,x2,...,xn) = s2 for s2 e (Ko3Ki) 

sl(xi,x2,...,xn) = Ko for s2 < Ko 

s2(xi,x2,...,xn) = Ki for s2 > I<i. 
Here, we can see again an interesting relation, namely 

J$K , I SUP E I n $ ^ T | = iHp(;s'):p(;S2)). 
ai^Kotfx) l < r - 6 . R i £ ^ PW)^o)J 2 

Then the test statistic T(xi, x2i..., xn) equals 

T(xi ,x2i...yxn) = exp | - M f. -_ in L. . i j I 

Example 3. Let us consider an n-tuple xi, x2,..., xn of observations from a two-
dimensional population 1V(0,_R), i.e. Xj =• (XJI,XJ2), with the density function 

К * . Щ = - I B І 1 / . Д P \ - \ X R ~ l X) • 
1 

2x|jг|-/-' 
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Here the parameter space 0 contains all the positive definite symmetric matrices M, 
i.e. 

e = { U : J R = ( 5 j «3), JR>0} . 

The hypothesis is given by 6 0 : {M0 : Mo = (£ l
 H ° ) , M0 > O\. 

This means that the subset 0O characterizes the stochastic independence of the 
coordinates of observations. If we calculate the MLE over all 0 we obtain the 
following estimates 

1 n 1 n 1 n 

i= i ^ i= i i= i 

By a similar calculation we can find out that the MLE over the hypothesis 0n equals 

& = „-!>?-' k*=l-z2xh-

In both the cases the MLE's belong to the parameter space 0 , 0o, respectively with 
probability 1. 

The corresponding /-divergence between two-dimensional Gaussian population 
with vanishing mean and the covariance matrices Mo, Mi equals 

7(p(.,JRi):p(.,JR0)) = 

= - (tr Mi JRQ1 - lndet{,Ri MQ1} - 2) . 

If we choose for simplicity Ro = E = (J °) then 

I(R :E) = -(tTR-ln det R - 2 ) . 
Zt 

Using this we can write 

T(xi, x2)..., xn) = exp { -^ ( t r Mx - In det Mi - 2 + tr M0 + In det iR0 + 2) , 

where 

*-&-£)• MM-
Then 

-T(xi,a,2 , . . . ,xn) = exp {~2 l n d e t ( ^ o M i ) j 
2 

n/2 

= exp 

where 

f » d e t A i l = íáetkX = {l_AxuX2^^Xn)]n,2 

[ 2 d e t í ř o j V d e t ^ ° / 

K X Ь X 2 *n) = 
У/ŔÍ Ř2 
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In this way we have got that the test statistic T(x\t x2t..., xn) equals 

T(xltx2t...txn)= ( v / l - r 2 ) " , 

where r is the sample correlation coefficient between Xjt\ and Xjt2t j = 1,2,..., n. 

4. THE CASE OF DEPENDENT VARIABLES - AUTOREGRESSION 

First, we will investigate in detail the most elementary case, i.e. the autoregressive 
sequence of the first order. Let us have observations 

XJ+I + axj = e J + i , j = 0, l , . . . , n - 1, 

x J + i + bxj = e J + i , j = 0 , 1 , . . . , n — 1, respectively, 

where for simplicity ej+i ~ -V(O,0Q), N(0tal) respectively. We will look at the 
behavior of 

. f(xo,xit...txntbtal) 
ma* — —-. 
beRi f(x0ixit...,xntat(T_\) 

It is easy to prove that 

. f(xotxit...txntbt*_) _ n <T\ \ J ^ ( ,b ,2, J__\*(x._ ,+ax)2 

lnf(x0txlt...txntat*l:)- 2 l n ^ 2 ^ 2 ^ + i + * * i ) + 2 ^ ^ + i + « i ) . 

if for simplicity xo ~ N(0,1). Then the MLE of the parameter 6 equals 

6 = -^ E
П —1 

_ Q Xj + l X* 

E o " 1 ^ ' 

When we substitute 6 for 6 in the likelihood ratio, we obtain 

_ f(x0tx\t.. .,xn,6,c7?) n , a? n T ~ h -T - ~ 

where Boo = „- E o " 1 *?> Boi = Bio = „- E o " 1 * i * . + i . Bn = VT E o " 1 * ; + i and 

A = ( ^ ' H aT = ( l a ) ) r̂ = ( U ) 
\_rCio, -an/ 

The form of the likelihood ratio maximum which shows a close connection with 
/-divergence can be expressed as follows 

f(xQtXit...txntbtcr_) __ n (aT Ra ^_<r\ \ 
max In ---, «̂  — — • =-
6GÄI / ( x 0 , « i , . . . , a ? n , 0 , 0 * 0 ) 2 \ (T0

2 cг( 

•-l--r—h-j-i 
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This result strongly reminds the asymptotic /-divergence rate between two Gaussian 
autoregressive sequences, see Michalek [7]. 

A quite similar situation occurs in the case of a general autoregressive sequence 
of the pth order with parameters (ai, a2>..., ap, a%) and (61,62,..., bp, a\), i.e. 

pì+i + z2ak Xi~k = a° e*+1' 
Jb=i 

p 

Zi+i + 5 ^ 6* *»-* = <TI Ci+i, respectively. 
jb=i 

Then the logarithm of the likelihood ratio is given by 

l n f(xo,xi,...,xn,b3al) _ n a\ 1 y-A (x t+i + ax :E2 + - - • + aP
 Xi-P)2 

f(xo>xii...,xtlia,a%) 2 <TG
2 2 j ^ a% 

_ 1 Y> (-Ci+i + fti s i + • - • + bp Xj-p)2 

2 ^ <r? 
2=0 1 

Now, we must find the MLE of bT = (61, 62, . . . , bp). We obtain a system of linear 
equations k = 1, 2 , . . . ,p 

36* 

o n n n 
0 = TÜ: = -C XJ x i - * + 6 i 1C XJ-1 arJ-k + • • •+bp 5Z XÍ-P xi-*-

1 1 j=i 

The matrix of the system is positive definite with probability 1 and the matrix 
of second partial derivatives is negative definite, which means there is the only 
solution of this system and this solution gives the maximum of likelihood ratio. If 
we substitute the maximum likelihood estimate 6 into the logarithm of the ratio we 
get 

/ ( x , 6 , a\) n a\ n aT Ma n b Mb 
max In — --7 = — ln —-r + — -- — .-—, 

b fix.a.al) 2 a2
0 2 al 2 a\ 

where 
1 n 

JR = {RijYi,j = V Rij = -J^Xk-iXk-j. nni 
More interesting situation arises if we consider the whole parameter, i.e. including 
dispersion a\. Then the maximum likelihood estimate of a\ equals 

1 n 

a\ = - J2(XJ + 61 x j . i + • • • + bp Xj-p)2, 
n r-r 

; = i 

i.e. 
a\ = b Mb 
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and hence, the expression of the likelihood ratio maximum over (6, cr\) is given as 

f(x,Ь,(тl) n (атJRа <ŕi2 N 

max In -7 5~ = õ Ђ «•—5- - 1 

Now, the expression within parentheses would be identical with the asymptotic I-
divergence rate between two Gaussian autoregression sequences if the Toeplitz ma­
trix T = {fij}?j=1 with 

1 n 

fij = -]£****+|i-j | 
n * = i 

were used instead of the matrix M. 
We can state the following theorem dealing with the asymptotic behaviour of the 

likelihood ratio maximum in the case of Gaussian autoregressive sequences. 

Theorem. Let {x»}£li be an stationary autoregressive Gaussian sequence of the 
pth order with parameters (61, 62 , . . . , bp, <r\). Let (ai, a2y..., ap) <T%) be parameters 
of another Gaussian autoregressive stationary sequence. Then the likelihood ratio 
maximum satisfies 

1™ * ™*v P(x>h>*i) _ lim — max 

= І/((ò>*):(«.*o)), 

n - ~ n tj.ij"..*,^? P(x> ° . ^o) 

where (6*,<T*) are true parameters and 

I((6,(r0:(a,^)) = — / - - — m ~ l n 7 ; — rvT""1 dA ' 
47rf_7r y^(a,(70)(

A) V(a,<70)(
A) / 

and ^t^^ (̂-)» ^(a,<70)(')
 a r e the corresponding spectral density functions. 

P roo f . It follows almost immediately from the strong consistency of maximum 
likelihood estimates in a stationary case, e.g. see Anderson [1]. D 

(Received November 7, 1996.) 
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