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GLOBAL INFORMATION IN STATISTICAL 
EXPERIMENTS AND CONSISTENCY 
OF LIKELIHOOD-BASED ESTIMATES AND TESTS1 

IGOR VAJDA 

In the framework of standard model of asymptotic statistics we introduce a global 
information in the statistical experiment about the occurrence of the true parameter in a 
given set. Basic properties of this information are established, including relations to the 
Kullback and Fisher information. Its applicability in point estimation and testing statistical 
hypotheses is demonstrated. 

1. INTRODUCTION 

We consider the standard conceptual framework of asymptotic statistics, i.e. a sta­
tistical experiment consisting of a sequence of product probability spaces parametri­
zed by 0 E O C Rm'. Under some regularity the Fisher information 1Q0 characterizes 
the amount of information provided by the experiment about the true parameter 
value 0Q E 0 . This information is local. As found by Kullback [8], Rao [16] and 
some others, 1$0 measures the local sensitivity of the sample distribution PQ figuring 
in the experiment to small variations of parameter 0 in the neighbourhood of 0o. If 
I(Peoi Pe) is the Kullback information (information divergence of PQ0 and PQ) then, 
asymptotically for 0 —> 0n, 

KPoo ,Pe) = \(o- oo)i0O(0 - e0y + o(\\6 - e0\\
2). 

If one arbitrarily modifies the distributions P$ with 0 outside an arbitrarily small 
neighborhood of 0o then lg0 remains unchanged. 

We are interested in the global information contained in the experiment about the 
true parameter. The first concept of global information in a statistical experiment 
has been proposed by Lindley [11] and developed later by several authors, see Renyi 
[17,18]. This concept was based on the approach of Shannon (see Cover and Thomas 
[3]), where the information is the difference between prior and posterior uncertain­
ties. De Groot [4,5] extended this approach and considered the difference between 

1 Supported by the Grant Agency of the Academy of Sciences of the Czech Republic under Grant 
175402. 
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prior and posterior risks (for further developments and references see Torgersen [21]). 
Obviously, all definitions of this kind are restricted to Bayesian experiments. 

In this paper we propose a global information applicable to the classical non-
bayesian statistical experiments. It is an asymptotic characteristic of the experi­
ments whose values are changed by an appropriate modification of any distribution 
Pe figuring in the experiment. 

We introduce the global information as a real valued function h0(S) defined for 
all open or closed sets S C 0 and all parameter values 0o G 0 . The real number 
I$0(S) characterizes an asymptotic likelihood of the event that the true parameter 
0o belongs to S. We present formulas for evaluation of this information and clarify 
its relation to both the information divergence I(PeoiPe) of Kullback and to the 
local information lg0 of Fisher. 

We also study the applicability of the global information to the maximum likeli­
hood estimates and generalized likelihood ratio tests. As shown in Vajda [23] and 
Liese and Vajda [10], an asymptotically maximum likelihood estimate in a con­
taminated experiment can easily be inconsistent (a new example illustrating this is 
presented in Section 3 below). Similar phenomenon can take place for the generalized 
likelihood ratio tests. Perlman [13], Pfanzagl [14,15], Strasser [20], Vajda [23] and 
Liese and Vajda [10] considered necessary and sufficient conditions for consistency 
of all asymptotically maximum likelihood estimates. In this paper a new necessary 
and sufficient condition using the concept of global information is found. Similar 
conditions are obtained also for the consistency of generalized likelihood ratio tests. 

2. GENERAL RESULTS 

We consider a statistical experiment ((Xn,An, P? - 0 G 0 ) , n = 1,2...) where 
(Xn,An, PQ) are products of a sample component probability space (X,A} Pe) sat­
isfying the identifiability condition Pex 7-= Pe2 for #i ^ #2- The experiment pro­
vides random samples Xn = (Xi,...,Xn) defined by sample probability spaces 
(Xn ,An, PQ0) where 0O G 0 is an unknown true parameter. We restrict ourselves to 
asymptotic properties of the experiment for n —> 00. 

We are interested in the amount of information h0(S) which the experiment 
provides asymptotically about the occurrence of the unknown parameter 0n G 0 in 
a given parameter set S C 0 . 

The attention is focused on experiments satisfying mild regularity conditions. 
The parameter space 0 is assumed to be a subset of the Euclidean space Rm and 
the distributions V = {Pe - 0 G 0 } dominated by a cr-finite measure /i, with densities 

_dPe 

d/i 

such that the function (0,x) —» Pe(x) is measurable and the random function 0 —> 
Pe(Xi) separable and a.s. continuous. Then, for every open or closed S C 0 , 

1 n 

fn(Xn)S)='mt--Y\npe(Xk), ln0 = - c o , (1) 
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may be considered measurable in Xn (cf. Liese and Vajda [10]). We shall work with 
the random variables 

fn(S) = fn(Xn,S) and /„(*) =/„({*}) = - - £ l n p , ( X t ) (2) 

for open sets S, their complements Sc = 0 — S and points 0 G 0 . 
For every subset 5 c 6 , the random sample Xn provides some evidence about 

whether the true parameter 0n belongs to S, i.e. some "likelihood" of the occurrence 
of 9o in S. This likelihood may vary with n. To avoid the dependence on n, we shall 
deal with the asymptotic likelihood for n —• oo. Consider for all open or closed 
S C 0 the limits 

oo if S = 0. 

The asymptotic likelihood of the event 0o 6 5 is proportional to the limits —7t«0 (S) 
and 7ie0(S

c). We put 

Ieo(S)=-H0o(S
c)-neo(S). (4) 

Definition. The expression (4) is the global information in the experiment about 
the event 0O G S for open or closed S C 0 such that the right-hand side is well-
defined in the extended real line by (3). 

The following statement follows directly from the definition. 

Theorem 1. The global information h0(S) is monotone in the sense that 

h0(Si) < h0(S2) (5) 

for all 5i C -?2 C 0 (including Si = 0) such that the global information exist, and 
skew-symmetric in the sense that 

I9o(S
c) = -Ieo(S) (6) 

for all S C 0 (including S = 0) such that the global information exist. 

P r o o f . If Si, S2 satisfy the monotonicity assumed in (5) then (1),(2) imply 
E fn(Si) > E fn(S2) and E fn(S

c) < E fn(S$) for nonvoid Si and SJ. Then «*0(Si) > 
Tie0(S2) and Tie0(Sl) < "He^S^) and these inequalities remain true also in the void 
case. Thus (5) follows from (4). The relation (6) follows directly from Definition. • 

In the next theorem we show that the definition of global information is applicable 
to all open or closed sets S under a mild regularity of the experiment. The theorem 
is based on the following simple lemma. 
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Lemma 1. Let 0 -̂  S C 0 be open or closed with 

- oo < infn E fn(S) < supn E fn(S) < oo. (7) 

Then (3) holds and the limit Tie0 (S) satisfies the relation 

He0(S) = suPnEfn(S). 

P r o o f . Consider random vectors Yk = (Yi,...,Yfc) and Zn
 = (-̂ i> • •->^n) 

defined for arbitrary Jb, n by Xjb+n = (Yk)Zn) and a subset 5 satisfying the as­
sumptions. It follows from (1) 

(k + n)fk+n(Xk+n,S)>kfk(Yk,S) + nfn(Zn,S) (8) 

and from the i.i.d. property of the components of Xky Xn and Xk+n 

Efk(YktS) = Efk(Xk,S) and Efn(Zn,S) = Efn(Xn,S). 

Therefore it holds for all &, n > 1 

(k + n) E fk+n(S) > k E fk(S) + n E fn(S). 

By a well-known lemma of mathematical analysis (cf. e.g. Lemma 2 on p. 112 of 
Gallager [6]), every bounded sequence with this property is convergent, i.e. in our 
case (3) holds, and the limit Ti90(S) fulfils the stated relation. ---

Theorem 2. Let - c o < E / i (0 ) < E/i(0) < oo for all 0 G 0 . Then the condition 
(7) of Lemma 1 holds for all nonvoid open or closed subsets S C 0 . Consequently 
the global information Ig0(S) is well-defined by (3) and (4) for all open or closed 
subsets S C 0 . If Si C -S2 are such subsets and S\ / 0, .S2 / 0 then the relation 
(5) can be precised as follows 

- 00 = 7*o(0) < I*0(Si) < Ie0(S2) < I9o(e) = 00. (9) 

P r o o f . Clear from Lemma 1 and Theorem 1. D 

The next assertion extends the result of Theorem 2. 

Theorem 3. Under the assumptions of Theorem 2 it holds for all 5 considered 
there 

l im n / n (S )=W* 0 (S ) a.s. (10) 

so that 
h0(S) = limn[fn(S

c)-fn(S)} a.s. (11) 
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P r o o f . Consider an arbitrary natural r, and define for all n > r and 5 under 
consideration 

- l ^_^ _ _ ^ 

,) Âr)(s)=(nУ £ inf- i£inP Ä . ; 
4 ' * г j = l 

where the summation extends over all KT = {ki,..., kr} C {1, . . . , n). According to 
Berk [2] and Perlman [13], the sequence (fn (5) : n = r, r+ 1,...) forms a reversed 
martingale. Since 

Efn

r\S) = Efr(S) 

and the reversed martingale is ergodic, the convergence theorem for reversed mar­

tingales implies fn(S) —*• E/ r (5) a.s. Further, for every 0 E 5 it holds fn(0) = 

fnr)(0) > fnr)(S) so that fn(S) > fn

r)(S) and, consequently, 

l iminf n/ n(5) > E/ r (5) a.s. 

On the other hand, by Lemma 1, the limit relation (3) holds. Taking the limit for 
r —̂  oo we obtain from (3) and from the last relation 

liminf„ fn(S)>n6o(S) a.s. (12) 

Since 

fn(S) > -J2M^,s) > -J2h(xk,e) n£i nti 
where Efi(Xk,Q) -= E/ i (0) is assumed to be finite, the sequence fn(S) has an 
integrable minorant. Therefore, by the Fatou-Lebesgue theorem (cf. pp. 125 and 
162 in Loeve [12]), 

E l iminf n / n (5 )<W, 0 (5 ) . 

Consequently, the inequality in (12) cannot be strict with a positive probability, i.e. 

l imin f n / n (5 )=W, 0 (5 ) a.s. (13) 

Finally, if 0* G 5 then fn(S) < fn(0+). As the strong law of large numbers implies 
fn(0*) — H0O(0*) a.s., it holds 

limsupn fn(S) < Heo(0+) < oo a. s. 

Therefore all but finitely many terms of the sequence fn(S) are a.s. bounded. By 
the same method as used in the proof of Lemma 1, it follows from here and from 
(8) that the sequence fn(S) is a.s. convergent. Hence (13) is equivalent to (10). O 

It follows from (11) that the global information Ie0(S) is the a.s. limit of the 
difference Tstn — Ts<=tn of the generalized likelihood ratio test statistics defined by 
the formula 

n 
sup П Pe(Xk) 

Ts,n = ^ log І M І 5 І = / n ( ) - f n { S ) . 

sup П Pв(Xk) 
ÍЄ jfc=l 

n 
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Ts)n or Tsctn is the generalized likelihood ratio test statistic in testing the hypothesis 
"0o e 5" against the alternative "0O E 5 C ", or testing the hypothesis "0O E 5 C " a-
gainst the alternative "0O E 5", respectively. This provides an alternative motivation 
of our Definition. 

In the sequel we consider under the assumptions of Theorem 2 the following 
modified asymptotic representation 

where 

for 

Ie0(S) = limn(gn(Sc)-gn(S)) a.s., (14) 

gn(S) = Ыgn( ) 
o t »-> 

gn( )=gn(Xn> ) = ±J2l*тШ> e -nk^i -*'(**) 

Note that the difference gn(Sc) — gn(S) = Tstn — 7Sc>n has been used already by 
Kullback [8] as an operational characteristics of the generalized likelihood ratio tests. 

By the strong law of large numbers, under the assumptions of Theorem 2 it holds 
for every 0 E 0 

l im n ^ n (0) = /(0o;0) a.s., (15) 

where 

I(0o,0)= [pejn^dfi (16) 
J P9 

is the Kullback's /-divergence of models pe0 and po. We shall be interested in 
conditions on the family {Po : 0 E 0 } and open or closed sets S C 0 under which 
one can interchange the lim and inf in (14), i.e. to establish the relations 

l i m n i n f 5 ^ W = inf5limn(7n(0) = inf5/(0o;0) a.s. (cf. (15)). (17) 

Such conditions are important since, by inserting (17) in (14), one obtains the fol­
lowing simple formula for the global information 

Ie0(S) = micI(60;e)-mU(e0;e) (18) 

inf I(0O;0) if 0O e S 
ees° v ' 

-inU(0o;0) if 0O(£S. 
B GS 

Our aim is to justify this formula by finding sufficient conditions for (17). The 
following two lemmas are obvious. 

Lemma 2. If the assumptions of Theorem 2 are satisfied and the convergence in 
(15) is uniform on 0 then (18) holds for all open or closed 5 C 0 . 
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Remark 1. The experiments with the convergence in (15) uniform on 0 are rela­
tively rare. Such experiments can be obtained e. g. from the experiments with the 
locally uniform convergence in (15), by restricting the parameter space to bounded 
closed subsets 0* C 0 . As well known, if 0 is open and convex and gn(9) are a.s. 
convex on 0 then (cf. e.g. Theorem 10.8 of Rockafellar [19]), the convergence in 
(15) is locally uniform on 0 and I(0o\0) is convex in the variable 0 G 0 . Typical 
(e.g. exponential) statistical experiments fulfil these conditions. 

Remark 2. The compact parameter sets 0* figuring in Remark 1 can be employed 
also in the framework of general unrestricted models. Namely, let S be an open set 
containing the true parameter 0n and contained in a compact 0* from the interior 
of 0 . Then in typical examples of statistical experiments the relative complements 

S c = S c n 0 * = 0 * - S (19) 

satisfy the relation 

limn inf5c gn(6) = limn inf5c gn(9) a. s. (20) 

Since the closures S and Sc are compacts contained in the interior of 0 , Remark 1 
implies that the convergence in (15) is uniform on S and Sc in all models with the 
convergence in (15) locally uniform on 0 . 

Lemma 3. If the assumptions of Theorem 2 hold and the convergence in (15) is 
locally uniform on 0 then 

h0(S)= mf„/(*o;0) (21) 

for all S and Sc considered in (19) and satisfying (20). 

Next we formulate a stronger result for open balls 

Sr(0o) = {eeRm: \\0 - 0O\\ <r}, r > 0, 

with surfaces 
Sr(0o) = {e:\\e-6o\\ = r}. 

Theorem 4. If the assumptions of Theorem 2 hold, 0 is open and convex, and 
gn(0) are a.s. convex on 0 , then for every open ball Sr(0o) with the closure Sr(0o) 
contained in 0 

ho(Sr(0o))=M I(6O;0). (22) 
0&&r\Vo) 

P r o o f . It suffices to prove that (20) holds for S = Sr(0o) and 0* = Sr(0o)> 
Since 0 is assumed to be open, Sr(0o) is contained in the interior of 0 . Further, for 
S and 0* under consideration 

sc = e*-s = sr(0o). 
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Hence (20) will be proved if for every random sequence 0n = 0n(Xn) G Rm with 
| | 0n-0o | | > r and for 

<"=<°+ff^Hw 

we prove the relation 

liminfn((7n(0n) - gn(0n)) > 0 a.s. (23) 

To this end fix n and consider the segment 0(t) = 0Q + rt(0n — 0o) £ Rm for 
0 < t < 1/r. The assumed convexity of gn(0) together with the identity gn(0o) = 0 
implies 

9n(0(t))<(l-rt)gn{0o) + rtgn(0n) = rtgn(0n). 

The unique point 0(t) of the segment belonging to Sr(0o) corresponds to tn = l / | |0n — 
#o|| < 1/r, i.e. 0(tn) = 0n. It follows from here that gn(0n) < rtngn(0n) < gn(0n), 
i.e. gn(0n) — gn(0n) > 0, provided gn(0n) > 0. Thus (23) follows from the relation 

liminfn0n((?n)>O a.s. (24) 

By Remark 1, I(0o\0) is continuous on 0 and positive on 0 — {0n}- Therefore its 
infimum on the compact Sr(0n) -s positive. Also the convergence in (15) is locally 
uniform on 0 and thus uniform on all compact subsets of 0 . It follows from here 

limsupn |inf5r(0o)0n(0) - inf5r(0o)/(0o;0)| < limn ^Vsr(Bo)\9n(O)-I(0o]O)\ = 0 a.s. 

which implies (24). • 

By means of Theorem 4 one can clarify relation between the global information 
Ie0(S) a n ( - t-ie Bahadur exact slopes (see Bahadur [1]). We do not go into details 
here. In the sequel we clarify the relation to the local Fisher information 1$0 men­
tioned in the Introduction. Suppose that 0n is from the interior of 0 and consider 
an experiment for which the gradient 

V\nPe0=(^-\npe,...,^-lnPe)^ 
e=e0 

exists and the Fisher information matrix 

l 0 = j(VЫp oУ{V\np o)pв0dti 

is positive definite. Let the experiment satisfy also the assumptions of Theorem 4 
and the asymptotic relation 

I(A; 0) = \(o - e0)ie0(e - e0y + o(\\e - e0\\2) 

for 0 -> 60. 
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Theorem 5. Under the above considered assumptions it holds asymptotically, for 
r j O , 

Ie0(Sr(e0)) = \r2cu0ley0 + o(r 2 ), (25) 

where UQ minimizes the quadratic form UXQQU* on the surface S\ = S\(0) — Si(0) of 
the unit sphere centered at 0, i.e. A(0n) = LJO1Q0L>O is the smallest eigenvalue of le0. 

P r o o f . All spheres S = Sr(6o) with sufficiently small r > 0 satisfy the assump­
tions of Theorem 4. By Remark 2, 1(60,6) is convex and consequently continuous 
in the variable 6 G 0 . By (22) it holds for all sufficiently small r > 0 

Ie0(Sr(6o))= inf I(0Q\9O + ru) = I(60]6Q + rur) 
wGS i 

where the minimizing ur £ S\ exists. Further, asymptotically for r j 0 

I(6o, 60 + ru) = - r ^ I ^ w * + o(r 2 ), u E Si. 

Since the last asymptotic formula holds uniformly for all L> from the compact Si, 
the points L>r tend to the above defined UQ. Consequently ujrle0<jjr tends to L)01Q0<JJ0 

and (25) follows from the relation 

h0(Sr(6o)) = \r*urI9ou*r + o(r2). • 

Let us note that Theorem 4 can be extended to arbitrary bounded closed or open 
sets S with the closure S contained in 0 . The spherical surface Sr(6o) figuring 
implicitly in (22) is in this case replaced by the boundary 5 = 5 — 5° where S° 
denotes the interior of S. 

3. EXAMPLES 

First we illustrate the general theory by experiments with discrete and continuous 
sample spaces X. 

Example 1 (Bernou l l i experiment). Consider the experiment defined by 

* = {0,1} and Pe({x}) = p0(x) = 6x(l-0)l-x for x G {0,1}, 6 G 0 = (0,1). 

Here the sample Xn = ( X i , . . . ,Xn) is i.i.d. by the Bernoulli law B(6) with 0 = 
0o 6(0,1) . It holds 

fn( ) = -IşSn^Ҷl-Ø)1-** 
П , 

fc = l 

U=i \ fc=i / 

= 0Bln- + (l-0 n) lny--- . 
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where 

On = 0n(Xn)=-f]l{1}(Xk). 
77 --——' Пk=i 

By definition, 

Ш = inf 0 „ l n i + ( l - 0 „ ) l П l _ _ 

for every subset 5 C (0,1) and 

I(0o; 9) = 0oln
6f + ( l - 0 o ) l n i _ ^ 

for every 0 £ (0,1). Since the functions 1/0 and 1/(1 — 0) are logarithmically convex 
in the domain 0 (E (0,1), the functions fn(6) and _(0o*,0) are convex in the same 
domain. Further, the Fisher information is given by the formula 

2*o = 
Øo(l - *o) 

and, for r [ 0, 
r2 
r - ' „ 2 \ / (0o;0o±r) = ---I , o- | -o(H) . 

We see that the assumptions of Theorem 2, Remark 1 and Theorem 5 are satisfied. 
Therefore, by Theorem 2 the global information h0(S) exists for all subsets S C 
(0,1). By Theorems 1 and 2, this information satisfies the relation (6) and in the 
case 0 ^ S\ C S_ / © also (9). By Theorem 3, it satisfies the relations 

I9o(S) = limn [inf5c I(6n, 0) - infs I(9n, A)] a.s. 

By Theorem 4 it holds for all 0 < r < min{0o, 1 - 0o} 

f /(0o,0o + r) if 0O < \ 
IooWo-r, 0o+r)) = min{_(0o;0o - r), /(0O;0O + r)} = { v " J 

t 2 (00 ,00- r ) if 0O > j 

By Theorem 5 it holds for r [ 0 

, . „ ( ( „ „ - , , S o + , ) ) = _ l l _ + 0 ( A 

Example 2 (Normal experiment). Let the experiment be defined for some 
a > 0 by 

\ 3 

* = Я and d P ' ( ( ° ° ' g ) ) _ p^j.) - _ _ L _ e - - ^ - foг x Є Д, (9 Є C Я. 
dx V27Гťг2 
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Then the sample Xn = ( X i , . . . , X n ) is i.i.d. by the normal law 1V(0,<r2) with 
9 = 0o € R. It holds 

/•« = --S^+éîB*.-* 2n(т2

 Ł 

ln(2тг<72) , Yn , (~f„ - Ø)2 

+ ̂  + 2 2n 2(т2 

- /„(*<>) + 2(Ţ2 + , 
where 

* » = ^ X > * ~ t f ( * o , < r V n ) and Yn = ±^2(Xk-Xn)
2~x2

n-v 
k=i k=i 

Further, 

2 2 n 2cr2 0€S 

for every S C R and 

-W>,0)- 2a2 

for every 0 £ R. Obviously, 

r /rys ln(27T(72) 
/n(5) > V

2 ' > -CO 

and the functions fn(0) and 7(0o;0) are convex in the domain 0 G -R. Finally, the 
Fisher information is constant, 

Ze0 = —o> cr-5 

and for every r > 0 

/(0o,0o ±r) = yZ, 0 . 

The assumptions of Theorem 2, Remark 2 and Theorem 5 are satisfied. Analo­
gously as in the previous example, we obtain from Theorems 1 and 2 that the global 
information Ie0(S) exists for all open or closed sets S C R and satisfies the relations 
(6) and (9). From Theorem 3 we get in this case 

Ie0(S) = \ (inf5c||0o - 0||2 - infs||0o - 6ff 

and from Theorem 4 
2 2 

**o((0o - r, 0o + r)) = ^ = T- l9o for all r > 0. 

We see that the relation to Fisher's information is more concrete than in the general 
case considered in Theorem 5. 

In the next example assumptions of Theorem 2 are not satisfied but, nevertheless, 
the global information h0(S) can be evaluated for all bounded neighborhoods 5 of 0Q. 
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Example 3 (Contaminated errorless observations). Let us consider the ex­
periment with <¥ = {1, 2, . . .} and 

pe({x}) _ n / x _ e , n x !{*}(*) 
= pe\x) = €+(! — £) tor x = 1, 2,..., 

fix fix 

where 0 < e < 1/2, //x > 0, fi\+fi2 + '" = 1, and 0 G 0 = {1 ,2 , . . . } . As before, the 
sample Xn = (X\,..., Xn) is i. i. d. by P^ . In accordance with the robust statistics 
(see e.g. Huber [7]), the sample components can be described by the formula 

Xk = (l-ek)6o+ekZk) 

where ek are the Bernoulli trials with a fixed parameter e and the random variables 
Zk are mutually and also on ei,C2,... independent, identically distributed by /i. 
Thus this experiment describes an errorless observation of the true parameter 6Q 
contaminated at the level e by data from a source distributed by fi. The alternative 
data will be called a noise. 

It holds 

AИ-Чt-И-^) 
Let us consider the entropy function 

He0(
e) = - / Pe0\np9dii 

= - £ O. + (!-*) 1{M W)ln f£ + (1 - *) ^!}^) 
x=l V P* / 

lnl-e^ln(l + i=f) if 0 ± 00 

\nl
7-(e^eo + l-e)\n{l+^-) if 0 = 0O. 

Therefore if 0 £ 0O then 

I(0o;0) = H*0(0) - H*0(0O) = m ^ T l + fo"o + 1 " £)ln g / i ' 0 + 1 ~ g 

£Lj0 + 1 - 5 e:/i^0 

is positive and bounded above by (efie0 + 1 — s) (1 — £)/sfie0-

We are interested in open neighbourhoods S = 5 r(^o)fl0 of 0Q or, more generally, 
in bounded subsets 

S = {j, j + 1, • • •, k} C 6 , 1 < J < ô < *. 

For such 5 

m(S) = mins — > 0 and M(S) = maxs — < oo. 
l*e fie 



Global Information in Statistical Experiments and Consistency . . . 257 

The obvious relation 

ln(e + (1 - e) m(S)) < fn(S) < \n(e + (1 - e) M(S)) 

implies that Efn(S) is uniformly bounded for all n. Therefore, by Lemma 1, 
limn Efn(S) = 7io(S) exists and is finite. In this situation, by Definition, Ie0(S) = 
-co follows from the relation 

n6o(S
c) = lim„ E fn(Sc) = -oo. (26) 

In the rest of this section we investigate in more detail the statistical experiments 
of Example 3. We shall prove (26) for experiments with infinite entropy of noise. 
Such a noise is unpleasant as in the resulting statistical experiments all information 
Ido(S) about bounded parameter sets attain the minimum possible value Ie0(9) 
(and the information about complements Ie0(S

c) attain the maximum possible value 
Ie0(Q)). Thus the noise is not permitting a reasonable localization of the unknown 
value 0n in the given parameter space. We shall see in Section 5 that in such 
situations the maximum likelihood estimator is inconsistent. 

Let us first notice that (26) follows from the relation 

limn E / n ( X ( n ) ) = - o o for .X(n) = rnaxjli,... , X n } . (27) 

To this end it suffices to take into account for k = max5 the inequality fn(S
c) < 

/n((&,oo)) and relations 

r / / , N W / I"" (*(")) l f * (» ) > k 

fn((k, OO)) < < 

\ / „ (* + l ) < l n e if X{n)<k, 

and for every k >6Q the relations 

( k \ n / k \ n 

= (eF(k) + \-e)n = [\-e(\-F(k))]n, (28) 
where F(k) is the distribution function of noise. 

Let for T > 0 there exist k0 = k0(T} n) such that 

»x<e-nTfiko for all x > *0. (29) 

Obviously, for all T large enough we obtain k0 > 0Q. Further, the assumed inequality 
£ < 1 — e implies for every Xn 

\ne if Xk^X(n) 

; E - « M ™ = Í £ < • i i -
jfe = l 

if Xk = -X(n) 

> l n £ - i l n A i X ( n ) 1 
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i.e., 

fn(X(n))<-\ne+-\nfiXin). 

It follows from here 

1 °° 
E/n(X(n)) < -\ne+-Y,P(X(n) = x)\nfix 

n x=l 

1 °° 
< - l n e - f - ^2 P(X(n) = x)\nfix 

x=k0+l 

< - In e + I P(X(n) > k0) In e " n T (cf. (29)) 
n 

= -\ne-TP(X(n)> k0). 

Lemma 4. If the noise distribution function F(k) satisfies the conditions (29) and 

lim lim n[l - F(k0(T, n))] = oo (30) 
T-+00 n—»oo 

then (27) and, consequently, (26) hold. 

P r o o f . By (28), 

P(X(n) > k0) = 1 - [1 - e(l - F(k0))]
n 

so that under (30) 

lim P(X,n) > k0(T, n)) = l - e~c^T\ 
n—^00 

where limT-+oo <f(T) = oo. The desired relation (27) follows from here and from the 
inequality preceding Lemma 4. • 

The following result indicates that (29) and (30) represent a heavy tail condition 
on the noise distribution //. 

Lemma 5. The conditions (29) and (30) hold only if the entropy 

oo 

H(iJL) ^-^Vk^Hk 
k=l 

is infinite. 

P r o o f . It follows from (29) 

k0 oo 

H(n) > - ^ / / „ l n p „ - ^ Hk\n(e-nTnko) 
k=l Jb=fc0+1 

> (l-F(k0))nT. 

Hence (30) implies H(y) = 00. D 
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Example 4 (Light tailed noise). Let us consider the geometric noise \xx = 
(1 - /3) px~x for x = 1,2,... and 0 < p < 1. The entropy 

^ ) = m r ^ + r ^ i n -

is finite. In this case (29) fails to hold. 

Example 5 (Heavy tailed noise). Consider the logarithmic noise distributed 

by 

F(k) = l ^± , k = 0,1,2,... 
V h / ( e + A;) 

where /? > 0. Here 

j-e+x 

џx = F(x)-F(x-l) = ß Í —%-, x = l,2,... 
Je+x-l y\n т ғ y 

(31) 

If 0 > 1, i.e. if the tails of logarithmic noise are not heavy enough, then H(fi) is 
finite so that, by Lemma 5, the conditions of Lemma 4 do not hold. Therefore we 
shall restrict ourselves to 0 < (3 < 1. For these /? the assumptions of Lemma 4 hold. 
Indeed, the concavity of $(£) = — tint implies for every x 

Therefore 

The integral equals 

\n(y\n1+l3y) f°° \n(y\n1+p y) , f°° dy „ a. f°° lnlny . 

1-ß 
+ ÌŻI 

so that the necessary condition H(fi) = co for (29) and (30) is satisfied. Furthp~, 
(31) implies for every x 

<Hx< 
(e + x-1) ln 1 + / 3(e + x - 1) " F * ~ (e + x) ln 1 + / 3(e + x) 

so that (29) holds for some ko = ko(T, n) < (eTn — e). It follows from here 

1 - F(k0(T, n)) > 1 - T(eTn - e) = 1 

(Tny 

which implies (30). 
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4. CONSISTENCY OF GENERALIZED LIKELIHOOD RATIO TESTS 

Throughout this section we consider a statistical experiment of the above consid­
ered type satisfying the assumptions of Theorem 2. A null hypothesis Ho will be 
represented by an open or closed subset fl / S C 0 . This hypothesis is assumed 
to be tested against an alternative 7i\ represented by an open or closed subset 
0 £ S* C Sc = 0 - S. 

The test is a sequence of measurable mappings rn = Tn(Xn) G {0,1} where 
rn = 1 means that Tio is rejected. Every test rn can be characterized by a family of 
random sequences 

?rn(0o) = P ( r » = !)> 0o G ©• 
Members of the families 

(an(0) = 7r n (5) :0G5) and (pn(0) = 1 - 7rn(0) : 0 G ST) 

are called first and second kind errors respectively, and (irn(0) • 0 £ S*) is a power 
function. The test is consistent if 

limn7rn(0o) = O for 0O G S (32) 

and 
limn 7rn(0o) = 1 for 0O e S*. (33) 

In the Bayes theory the consistency leads to the asymptotically vanishing average 
errors 

en = f[ls(O)<*n(O) + ls*(O)/3n(6)]dW(0) 
J0 

taken with respect to an arbitrary prior distribution W. The Neyman-Pearson 
theory is interested in families of asymptotically 6>level tests (r„ : 0 < e < 1), i.e. 
in the tests rn satisfying the condition 

limsupn 7rn
e\0o) < e for every 0O G S and 0 < e < 1. 

Such a family is said to be consistent if (33) holds for all 0 < e < 1 with 7rn replaced 
by T£>. 

The consistency of a test in the sense of (32), (33) implies that the family of 
identical tests (rn = rn : 0 < e < 1) satisfies the assumptions of Neyman-Pearson 
theory and is consistent in the sense considered there. If, conversely, (rn ^ : 0 < e < 
1) is a consistent Neyman-Pearson family then under mild restrictions there exists 
a sequence en [ 0 such that (32) and (33) hold for the test rn = rn

 n . Thus the 
concept of consistency represented by (32) and (33) is relevant in the Bayes as well 
as Neyman-Pearson testing theory (cf. Strasser [21] and Lehman [9]). 

A generalized likelihood ratio test (GLRT) of Tio = 5 is described by a sequence 
of pairs (Tnjtn) where tn G R and 

n 

sup5 rj Pe(Xi) 
Tn = Tn(Xn) = - In -=-

sup© n pope-) 
« = 1 
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or, equivalently, 

Tn = fn(e)-fn(s). 
It is defined by rn = l (_ 0 0 | t n)(T n) , i.e. Ti0 is rejected if and only if Tn < tn. We see 
that the test statistic Tn is fixed so that the test and its universal characteristics 

7rn(0o) = P ( / n (0 ) - fn(S) < tn) (34) 

depend solely on the critical value tn. 
The consistency of GLRFs can be characterized by means of global statistical 

information as follows. 

Theorem 6. Let the hypothesis S satisfy a.s. the relations l im n / n (S) = Tig0(S) 
and limn fn(S

c) = n&(Sc). If there exist 0 G S and 0* G 5* such that 

Ie(S) <0 and / * . ( S ) > 0 (35) 

then no GLRT is consistent. If for all 0 G S and 0* G S* 

Ie(S)>0 and I9*(S) <0 

then every GLRT with limn tn = 0 is consistent. 

P r o o f . By assumptions, 

/n(0) = min{/„(5), fn(Sc)} -> min{n0o(S),n„o(S
c)} a.s. 

Hence 
fn(Q)-fn(S)^Je0(S) a.s, 

where 
Je(S) = min{0, H9(S

C) -H9(S)} = min{0,/*(S)}. 

Therefore (34) implies that limsupntfn < Je0(S) is necessary for 7Tn(0o) —> 0 and 
liminfntfn > Je0(S) is necessary for 7rn(0o) —• 1. It is clear from here and from 
(32), (33) that (35) contradicts the consistency of any GLRT. The sufficiency of the 
condition formulated in the theorem follows from the fact that limsupn tn < J$0(S) 
is sufficient for 7rn(0o) —> 0 and liminfn tn > J$0(S) is sufficient for 7rn(0o) —• 1. D 

Example 6. In the normal experiment of Example 2 we get for S = (a, 6), S* = 
(-co, a) U (6, oo) and 0O G 5, 0i G S* 

ho(S) = Ieo((9o-rO)0o + ro)) = ^ 

and 

IeAS) = -I6l(S
c) = -mm{I0l((-oo,a)), /9l((6,oo))} = - ^ , 

where r. = min{|0,- - a\,\6i - b\}, i = 0,1, are positive. The GLRT rn = (Tn,0) 
rejects Ho if and only if Xn £ S (cf. the formula for Tn = / n ( 6 ) - fn(S) which 
follows from Example 2). By Theorem 6, this test is consistent. 
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5. CONSISTENCY OF APPROXIMATELY MAXIMUM LIKELIHOOD 
ESTIMATES 

In the framework of general statistical experiment we consider point estimators 0n = 
9n(Xn), i.e. sequences of measurable mappings Xn —• O. An estimator is said to 
be strongly consistent if 9n —> 0o a.s., i.e., 

limn lsP(*0)(M = * a ' s - f o r a11 r > °- (36) 

We may assume without loss of generality that fn(0) are uniformly bounded on 0 . 
Indeed, fn(0) can be replaced by fn(0) = <p o fn(9) where <p(x) — x/(l + \x\). 

We are interested in the maximum likelihood estimators (MLE's) defined by the 
condition fn(9n) = /n(©) a.s. or, more generally, in the approximate MLE's (briefly, 
AMLE's) defined by the condition fn(0n) - fn(@) —» 0 a.s. 

Denote en = fn(9n) — /n(©)- We shall need the obvious relations 

fn(Sc) - fn(S) > en => §n e s 

and 

fn(Sc) - fn(S) < -en => §n i S 

for subsets 5 C O different from 0 and 0 . If the left-hand side tends a.s. to h0(S) 
then Ie0(Sr(9o)) > 0 implies that (36) holds and Ieo(Sr(0o)) < 0 implies that (36) 
fails to hold. The following result follows directly from here. 

Theorem 7. Let for all balls S = Sr(6o) contained in 0 the global information 
I6o(S) exist and satisfy the relation l im n( / n(5 c) - fn(S)) = h0(S). If h0(S) > 0 
for all balls with sufficiently small r > 0 then all AMLE's are strongly consistent. If 
Ie0(S) < 0 for one of these balls then no AMLE is strongly consistent. 

This result is an alternative to the results on AMLE's obtained by the authors 
cited at the end of Section 1. The condition of existence of global information 
imposes stronger restriction on the model than assumed in their theorems. On the 
othe'r hand, in models where the global information exists it provides considerably 
simpler characterization of consistency. 

Example 7. In the model of errorless observations contaminated by a heavy tailed 
noise studied in Example 5 the assumptions of Theorem 7 hold. For the "open 
sphere" S\(0o) = {#o} it was proved ho({0o}) = — oo. Therefore Theorem 7 implies 
that no AMLE is strongly consistent in this model. In fact, it is easy to see from 
the proof of Lemma 4 that no AMLE is in this case consistent, even in the ordinary 
(non-strong) sense. 

(Received September 12, 1997.) 
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