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R O B U S T A N D N O N R O B U S T T R A C K I N G 1 

JAN ŠTECHA 

For zero steady state tracking error it is necessary to include n integrators in the control 
loop in the case of reference signal generated by n integrators. This result can be gener­
alized to arbitrary n unstable modes of the reference generator according to the "internal 
model principle". This paper shows an alternative solution of the asymptotic reference 
signal tracking problem using feedforward. The solution is not robust but gives a feedback 
controller with reduced complexity. 

Robust tracking structure with error driven controller and nonrobust control structure 
with feedforward are also compared with respect to quadratic criteria. The alternative solu­
tion with feedforward is not asymptotically robust but sometimes gives better performance 
with respect to quadratic criteria. 

1. INTRODUCTION 

It is well known that for step reference asymptotic tracking (zero steady state control 
error) it is necessary to have one integrator in the control loop. 
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Fig. 1. Asymptotic step reference tracking by the integrator in the controlled plant P or 
in the controller C. 

This integrator can be either in the plant (astatic plant) or in the controller (con­
troller with integrator part, such as PID controller) - see Figure 1. This approach 
can be generalized according to "internal model principle" [6] which states that all 
unstable modes to be followed must be in the plant or in the controller. In such 

1This work has been supported by the Grant Agency of the Czech Republic under grant 
102/97/0861, by the Grant Agency of the Academy of Sciences of the Czech Republic under grant 
A 2147701, and by the Ministry of Education of Czech Republic under project VS 97/034. 
Part of the results were presented at the IASTED International Conferences in Cairo (1995) and 
Innsbruck (1996). 
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case the control error E is approaching to zero for time t —• oo. Asymptotic step 
reference tracking realized by the integrator in the control loop is robust in the sense 
that it does not depend on the dynamic properties of the plant and the controller 
provided that the control loop is asymptotically stable. 
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Fig. 2. Asymptotic step reference tracking by the unit gain. 

Another possibility for asymptotic step reference tracking is to guarantee unit gain 
between reference input and plant output (plant controlled variable) - see Figure 2. 
Feedforward amplifier gain Kj equals Kj = -^, where K is the plant gain (provided 
it is finite). Step reference tracking realized in such a way is not robust because it 
is realized in open loop. The plant must be stable in case of open loop control. 
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Fig. 3. Asymptotic ramp reference tracking by only one integrator in the controller C. 

So there are two possibilities for the realization of step reference asymptotic track­
ing. Both control schemes are standard and are mentioned in [2]. In [3] and [4] it 
is shown that when these two control structures are realized simultaneously (as in 
Figure 3), such feedback structure gives zero steady state error not only for step 
reference, but also for the ramp reference. 

In the paper it is shown how this approach can be generalized for polynomial 
reference tracking and disturbance rejection. Simulation results show how the quality 
of control with simple controller is influenced in these two control structures. 

In the next sections discrete time robust and nonrobust LQ tracking is analyzed. 
For robust control structure it is sometimes necessary to pay in control quality. 
Comparison of these two discrete time control structures is analyzed in the last 
section together with the simulation results. 

2. ASYMPTOTIC REFERENCE TRACKING 

Step reference asymptotic tracking can be realized either by integrator in control 
loop or by feedforward controller which guarantee unit gain between reference and 
plant input. When these two control structures are realized simultaneously (as in 
Figure 3), such feedback structure gives zero steady state error not only for step 
reference, but also for the ramp reference. This statement is now proved for more 
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general case. According to this statement it is necessary to modify "internal model 
principle" for multiple poles of the reference signal. 

It can be shown that the control structure according to Figure 3 can be used for 
polynomial reference tracking with less integrators in the control loop than usual. 
Let the reference signal w(t) be equal to the ith order polynomial, so w(t) = w_ + 
w\t + w_t2 + • • • + Wit1. For robust reference tracking according to Figure 1 the 
controller C must have i + 1 integrators. But only i integrators in the control loop 
according to Figure 3 are necessary for such reference asymptotic tracking. 

For asymptotic ramp reference tracking two integrators in control loop must be 
realized. Such control loop is difficult to stabilize. Control scheme for ramp reference 
tracking according to Figure 3 has only one integrator in the control loop. 

Laplace transform of the reference polynomial w(t) of the order i equals 

W{S)~ «*+-/(«)' 

where g(s), f(s) are numerator and denominator polynomials with nonzero absolute 
terms, denominator f(s) is stable. The transfer function of the controller C with i 
integrators 

s<P(sy 

where q(s), p(s) are numerator and denominator polynomials with nonzero absolute 
terms. Transfer function of the plant is 

P(s) - # __1 ns)-Kp
a(sy 

where Kp is the gain of the plant and 6(5), a(s) are numerator and denominator 
polynomials with unit absolute terms 6(0) = a(0) = 1. 

According to Figure 3 the control error equals 

E(s) = W(s) - Y(s) - (1 - Fw/y)W(s) - ( l - K ' [ ^ ^ W ) WW-

After the substitution for the plant, controller and reference, the control error 

E(s) _ (_ * / * > $ + ^ * > % h 9(s) _Ma-K,Kpb)9 
w " ^ " i+$fcKr>bM 1*'"+1/oo~ -"W ' 

where A(s) = 5*5(5)0(5) + Kpq(s)b(s) is the characteristic polynomial of feed­
back structure. Because KfKp = 1 and o(0) = 6(0) the difference of the plant 
denominator and the plant numerator polynomials can be expressed in the form 
a(s) — KfKpb(s) = 0(5) — 6(5) = sm(s) for some polynomial 771(5). So the controlled 
error has the form 

p(s)m(s)g(s) 
E^ - /(5)A(5) • 
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There is no zero pole in E(s). Provided that the feedback loop is stable the steady 
state error equals zero (limf_>oo e(t) = 0). 

So we have proved that asymptotic tracking of the polynomial reference of the 
zth order can be realized in control structure according to Figure 3 where controller 
C has only i integrators and feedforward gain Kj is adjusted in such a way that 
unit gain K/Kp = 1 is guaranteed. It is a pleasant property of the control structure 
in Figure 3. 

The same approach can be used for asymptotic elimination of measurable distur­
bance v(t). 

For discrete time control the same principle can be used. For ramp reference 
sequence tracking the discrete time controller C must have two unit poles in robust 
control structure and only one unit pole in nonrobust control structure (continuous 
integrator is changed to discrete summator). 
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Fig. 4 . Tracking errors for robust control structure. 

Example. The quality of two control structures according to Figure 1 and Figure 3 
is compared in this example. The dynamic properties of the superheater of the steam 
boiler on the corresponding 500 MW electric power level is described by the third 
order system with unit gain and equal time contstants 7} = 30s [4]. The plant 
transfer function equals 

P ( S ) = ( 1 + 305)3-

For ramp reference tracking according to Figure 1 the controller C has the transfer 
function 

c=if.i-t5-. 

The controller C must have at least one zero v = — — where Tc > T to be able 
J-c 

to stabilize the control loop. For Tc = 20T = 600s the acceleration constant Kc 

of the controller is adjusted in such a way that the crossover frequency a;n equals 
wo = 2^- = 0.0066s""1. The phase margin 7 is approximately 7 = 30°. Tracking 
errors for step and ramp responses in such control structure are depicted in Figure 4. 
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On the contrary the control structure according to Figure 3 has Kj = 1 and only 

one itegrator in the controller, so C = —- and no zero is necessary for stabilization. 
s 

The crossover frequency in such case is at least two times greater, and this control 
structure has better dynamic properties. Tracking errors for step and ramp responses 
are depicted in Figure 5. 

Continuous time approach was chosen in this section because we analyzed control 
structures with simple controllers - see PI or PII controllers in the previous example. 
Now most control problems are realized by discrete time controllers,*so in the next 
two sections discrete time robust and nonrobust tracking is analyzed. Comparison 
of these two discrete time control structures is analyzed in the last section together 
with the simulation results. 
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Fig. 5. Tracking errors for non-robust control structure. 

3. NONROBUST LQ TRACKING 

Nonrobust tracking control structure with feedforward according to Figure 3 can 
be generalized to two degree of freedom control structure according to Figure 6. 
The controller R consists of feedforward and feedback blocks with transfer functions 
C\ = 4-4 and C*2 = 4j4. The nominator and denominator polynomials q(d), s(d) 
and p(d) will be determined by an optimization procedure. The delay operator 
d is further omitted for simplification. So all polynomials are considered in delay 
operator d. 

According to Figure 6 the control error equals 

E{d) = W{d) VЫ\ -Í-ÎÈI- 9ІаP + b(9-s)) 
У W ~ / д / - / Д (1) 

where A = ap + bq is the characteristic polynomial of the feedback structure and 

a 

1 ŕ' 
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where a0 and f° are coprime polynomials. Factorization of the polynomial /° gives 

/° = (/0)+(/0)-, 
where (/°)+ is the stable part of/0. 
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Fig. 6. Nonrobust structure for asymptotic reference tracking. 

The control quality is measured by the quadratic criterion in the form 

oo 

J = £ e ( J b ) 2 + rtJ(Jfc)2. 
Jfc=0 

(2) 

When the polynomial /° is unstable (unstable modes of the reference which are 
not in the plant) the input U of the plant is unstable too and so the signal U is 
considered in the criterion of control quality (see Figure 6). The constant r is the 
weight of control signal in the criterion and serves as tuning parameter of the optimal 
controller. 

We are looking for the optimal controller R which minimizes the quadratic cri­
terion (2). Such form of control quality criterion depends on initial conditions in 
the plant, controller and reference signal generator. If we have no direct access to 
the state of plant, controller and signal generator the criterion in such form always 
depends on initial conditions (states of the plant and controller). To be able to 
compare the two approaches zero initial conditions in the plant and the controller 
are considered. The initial conditions of reference generator are given by its output. 

The criterion (2) can be written in the following form 

J = ^e(Är) 2 + rtľ(Är)2 = (EE*) + r(Шľ), (3) 
jfc=0 

where we used the following notation 

E = eo + eid1 + e2d
2 + .. . + ef-dt' + ..-, 

E* = e0 + ei<Tx + z2dT2 + - • • + c-d"1" + • • •, 

and (X) is the absolute term of the sequence X written in the form of formal power 
series X = h x-\d~l + XQ + x\d H , so (X) = XQ. 
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— — sga(f°)~ 
The auxiliary U equals U = — ^ } . The criterion (2) after the substitution 

and modification has the form 

/ = (1<L\ - /d!lil\ _ /s*b*9* 9\ . /sgl s*g*l*\ 
\ / / * / \ / A / * / \ / * A * / / \ / A /*A*/ ' W 

where stable polynomial / is obtained by spectral factorization 

66*+ ra a a a = //*. (5) 

and aa = a( /°)~ is augmented plant denominator. Such augmentation appears here 
only in the formula for spectral factorization and is due to U in the criterion. 

The minimization of the criterion is done by completing the squares. The criterion 
after modification has the form 

T In (S^s9j b*9s9n\ (sgsgj b*gsgn\* \ 

+r\ (wJvwJ / 
where we introduce the following factorization of polynomial g = gsgng\. The poly­
nomials gSl gn and g\ are stable, unstable and on the stability boundary parts of 
the polynomial g respectively. The polynomial Jn = gnd^) where /? is the order of 
gn. So Jn is stable polynomial. 

The absolute minimum of the criterion with respect to the controller is reached 
when the first term in the criterion equals zero which results in noncausal controller. 
To obtain the causal structure it is necessary to provide the decomposition according 
to the following relation 

b*9s9n y , «*_ 
/*/ / /* ' 

which results in the equation 

x*f + yl*=b*gsgn, 

To reach the minimum of the criterion the absulute term of the polynomial x* must 
equal zero. The minimum of the criterion is reached (with causal controller) when 

s9s9nl 9 n ra, 

-AT-7 = 0-
 (6) 

From the equation (6) follows that the numerator 5 of the controller C\ equals 
s = y and the characteristic polynomial equals A = gsgnl and so the stability 
and asymptotic tracking is guaranteed. The polynomials q and p of the feedback 
controller result from the solution of the characteristic equation ap+bq = A = gs~gnl. 

The minimum of the criterion equals 

'opt =<»7£»>-M(wKw)'>- (7) 
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where the second term equals the absolute minimum of the criterion in case of 
noncausal controller and the first term expresses the augmentation of the criterion 
due to the causality of the controller. 

From the previous solution follows that nonrobust asymptotic tracking structure 
is standard feedback structure with two degree of freedom, in which during optimiza­
tion procedure the spectral factorization is realized with augmented denominator 
aa = a(/°)"~ of the plant. 

4. ROBUST LQ TRACKING 

Robust asymptotic reference signal tracking is realized according to Figure 7 with 
one degree of freedom controller. The controller R consists of two blocks in series. 
The first block has transfer function C = ^W and its nominator and denominator 

PW 
polynomials q(d) and p(d) respectively will determined by optimization procedure. 
The second block with transfer function l / ( / ° )~ guarantees asymptotic reference 
signal tracking. The polynomial / ° determines the modes of the reference which are 
not in the plant P and (/°)~ determines its nonstable part. 
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Fig. 7. Robust quadratic optimal reference tracking. 

According to Figure 7 the control error equals 

m = WW-YW* i-% = £%;, (8) 

where A = ap(f°)~ + bq is the characteristic polynomial of the feedback structure. 
The control error is stable for arbitrary reference W = 4 provided the feedback 
structure is stable. So asymptotic tracking is robust and does not depend on property 
of the plant. 

The control quality is measured by the same quadratic criterion (2) as in the 
previous case where again the signal U is considered in the criterion of control 
quality (see Figure 7). We are looking for the optimal controller R which minimizes 
the quadratic criterion (2) which after the substitution can be written in the following 
form 

J - / 9 g* \ _ /^1^_\ _ /9*^*9* 9\>/99l 9*9*l*\ /Qx 
\ / / * / \ / A / * / \ / *A* / / H \ / A / * A * / ' W 

where stable polynomial / is obtained by spectral factorization (5). To obtain stable 
feedback structure it is necessary to modify the last quadratic term in the criterion 
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(4) in the following way 

/qglq*g*l*\ _ /qglaoiaon q*g*i*(aoi)*(aon)*\ 
\/A f*A* / \/Aaoia0„ f*A*(a0i)*(a0n)* I 

- I n n fi9>9nta'oA fqgsgn^noy _• _«\ 

where we introduce the factorization of polynomials g as described in previous section 
and also factorization of polynomial a0 = ao5aonaoi. The polynomials ao5, aon and 
aoi are stable, unstable and on the stability boundary parts of the polynomial ao 
respectively. The polynomial aon = auncfa, where a is the order of aon. So aon is 
stable polynomial. 

The minimization of the criterion is done by completing the squares 

_ / ( Q^m b*m \ / qlm b*m V * *\ 

"" \ \Afao\aon l*fao\aOn) VA/aoiaon /*/a0ia0 ny 0 1 l/ 

<(&){&)')• ( i»> 
where the stable auxiliary polynomial m = 5r5^naon. To obtain the causal control 
structure it is necessary to provide the decomposition of one term in the previous 
criterion, so 

l-PL- = TJ— + ?1- (11) 
rfaoiaon faoiaOn I* 

From the previous decomposition follows the equation for polynomials x and y 

x*faoia0n + yl* =b*m. (12) 

For minimum of the criterion the absolute term of the polynomial x* must equal 
to zero. After the substitution the decomposition (11) to the criterion it is possible 
to provide the minimization of the criterion with respect to causal controller. The 
minimum of the criterion is reached when 

qml y 

A/a 0 ia 0 n fao\aOn 

Previous condition for causal optimal control can be expressed in the form of poly­
nomial equation 

_m/-yA = 0. (13) 

The solution q = yaos and A = /mao5 of the previous equation determines the 
nominator of the controller. Such solution guarantees determination of the denom­
inator of the controller from the equation for the characteristic polynomial of the 
control structure. 

In this way the quality criterion reaches its minimum 

'opt =<,ЧЙ.*>Ҷ(w)(w)*>' <"> 
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where the second term equals the minimum value of the criterion in the case of 
noncausal controller and the first term in the criterion expreses the augmentation of 
the criterion due to the causality of the controller. 

The equation (8) can be changed to the polynomial equation by its multiplication 
by dQ, where a is the order of the plant P. The equation (8) has then the form 

xfaoicioп + yî = 6m, (15) 

where x = x*da, 1 = l*da and 6 = b*da. Previous equation must be solved for 
minimum degree of polynomial x (to guarantee that absolute term of x* equals 
zero). 

Robust tracking structure is standard feedback structure with one degree of free­
dom controller and for the purposes of synthesis with augmented plant Pa = P/fo\- • 
In reality the term (fo\- is of course realized in the controller. 
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Fig. 8. Robust and nonrobust control of stable system for <p = 40°, £ = 0.766. 

5. SIMULATION RESULTS 

Program in MATLAB was realized to simulate optimal control in one and two de­
gree of freedom control structure for arbitrary plant transfer function and arbitrary 
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reference. Here only results of optimal discrete time control of the continuous system 
with stable and unstable poles are presented. 

Example. Let us have a continuous system with the transfer function 

1 
G{s) = 

Ä- + 2£s+ľ 

where damping factor f = cos(y>) 6 (1, —1). One degree and two degree of freedom 
structure give the same results for stable plants. For cp = 40°, f = 0.766 the 
simulation results are shown in Figure 8 (sampling period T8 = 2ir/8 and weight in 
the criterion r = 10). 

For unstable plant with <p = 110°, f = —0.342 simulation results of control in 
both structures are presented in Figure 9 (with the same sampling period and the 
same weight in criterion). 

How optimal criterion depends on damping factor f = cos(y>) it is shown in 
Figure 10. For stable plants the results of both control structures are the same, but 
for unstable plants they differ considerably. 
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Fig. 9. Robust and nonrobust control of unstable system for tp = 110°, £ = —0.342. 
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6 
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Fig. 10. Robust and nonrobust control - Criterion as a function of damping factor (p. 

6. CONCLUSION 

From the comparison of the results of robust and nonrobust control structure the 
following conclusions follow immediately: 

• Quadratic criterion and initial conditions 
Quadratic criterion defined in (2) depends on initial conditions in plant and 
the controller. So the optimal controllers depend on initial conditions too. To 
be able to compare the two approaches zero initial conditions are considered. 

• Absolute minimum of quadratic criterion 
Absolute minimum of quadratic criterion is the same in both control structures. 
Robust control structure with one degree of freedom is unrealizable in this case 
(feedback loop must be causal) whilst nonrobust control structure with two 
degree of freedom can have anticipating feedforward part. 
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• Stable plants 
For stable plants both structures give the same results and so for stable plants 
the robust control structure with error driven controller is preferable. It is the 
reason that error driven controllers are so popular in praxis. 

• Unstable plants 
Only for unstable plants nonrobust control structure gives better performance 
than the robust structure because one degree of freedom controller must si­
multaneously stabilize and optimize the whole feedback structure. 

• Robustness of two degree structure 
Even two degree of control structure can be realized as a robust control struc­
ture with respect to asymptotic tracking. But robustness is guaranteed only 
with respect to plant parameters and not to controller parameters. 

• Robustness of one degree structure 
One degree of freedom structure is robust with respect to plant and controller 
parameters provided the feedback structure remains stable. But unstable 
modes of the reference must remain fixed in the plant or in the controller. 

• Robustness to all plant parameters 
To quarantee robustness with respect to all plant parameters in one degree of 
freedom control structure it is necessary, according to internal model principle, 
to realize the model of the whole unstable part of the reference in the controller 
(the denominator of the controller must contain polynomial / and not only / ° ) . 

• Asymptotic reference tracking 
Asymptotic reference tracking in two degree of freedom structure with nonro­
bust controller is guaranteed without internal model of unstable part of the 
reference. 

(Received October 31, 1996.) 
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