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NULL EVENTS AND STOCHASTICAL INDEPENDENCE 

GlULIANELLA COLETTI AND ROMANO SCOZZAFAVA 

In this paper we point out the lack o£the classical definitions of stochastical indepen­
dence (particularly with respect to events of 0 and 1 probability) and then we propose 
a definition that agrees with all the classical ones when the probabilities of the relevant 
events are both different from 0 and 1, but that is able to focus the actual stochastical 
independence also in these extreme cases. Therefore this definition avoids inconsistencies 
such as the possibility that an event A can be at the same time stochastically independent 
and logically dependent on an event B. In a forthcoming paper we will deepen (in this 
context) the concept of conditional independence (which is just sketched in the last section 
of the present paper) and we will deal also with the extension of these results to the general 
case of any (finite) number of events. 

1. INTRODUCTION 

Stochastical independence plays a central role both in probability theory and in its 
application to the treatment of uncertainty in expert systems. On the other hand, the 
classical definition may give rise to the counterintuitive situation that an event A can 
be stochastically independent of an event B while being at the same time logically 
dependent on it. We recall that two events A, B are logically independent (to avoid 
cumbersome notation, we drop the conjunction operator, denoting the intersection 
of two events A, B simply by AB) when none of the four atoms ABc

iAB) ACB) ACBC 

is impossible: in other words, each one of the two events A) B remains possible even 
when the outcome of the other is known. For example, two incompatible events 
A, 5 , with P(A) = 0, are clearly logically dependent, nevertheless they satisfy the 
classical definition of independence (the product rule), since 

P(AB) = 0 = P(A)P(B). 

It has been extensively discussed elsewhere (see, for example, [1] and [2], which 
are more recent papers with a large bibliography) that the possibility of dealing 
with zero probabilities is a very crucial feature, even in the case of a .finite family of j 
events: in fact, ignoring the possible existence of null events (which amounts to a j 
stronger requirement of coherence) drastically restricts the class of admissible proba­
bility assessments and the possibility of extending in any case a coherent conditional | 
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probability. 

Consider the following experiment: toss once a coin and, putting 

S = the coin stands (e.g., leaning against the wall), 

consider the following outcomes 

A\ = Sc and head, 

A2 = Sc and tail, 

A3 = S and it gives head in a second toss, 

A4 = S and it gives tail in a second toss, 

and the assessments 
P(AX) = 1/2, P(A2) = 1/2, 

P(A3\A3 V A4) = P(A4\A3 V A4) = 1/2, 

which are clearly coherent. Recall (see [1]) that in our approach conditional probabil­
ity is directly introduced as a function whose domain is an arbitrary set of conditional 
events and that must satisfy only the requirement of coherence: so there is no need 
of assuming positive probability for the conditioning event. 
If we required positivity of the probability of conditioning events in the above ex­
ample, putting X{ = P(A() = P0(Ai) (by P0 we denote, in general, the extension of 
P to the atoms: in this case P0 coincides with P) , we should demand compatibility 
of the following system 

xi = (l/2)(xi + x2 + x3 + x4) 
x2 = (l/2)(^i + x2 + x3 + x4) 
X3 = (l/2)(x3 + x4) 

(Si){ x4 = (l/2)(x3 + x4) 
x3 + x4 > 0 
X\ + X2 + X3 + x4 = I 
Xi>0 

which has no solution. Instead, dropping the condition X3+X4 > 0, we get a solution 
of the system (S\) which allows (trivially) a "Kolmorogovian" representation of the 
first two assessments. 
Then, going on with the algorithm expounded in [1] and [2] (which requires the con­
sideration of a sequence of linear systems, each one referring to the set A\ of atoms 
that in the previous system were giving null probability P0 to some conditioning 
event), we get a second system (52), i.e. 

{ 2/3 = (l/2)(i& + y4) 
y4 = (l/2)(y3 + y4) 
y3 + t/4 = l 
Vi > 0 

which allows to suitably represent, by another probability Pi(Ai) = yf- defined on 
«4i, also the two remaining assessments. 
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Another interesting (and real) situation in which zero probability events come 
naturally to the fore is that of the so-called first digit problem [4]. 
It has been observed that empirical results concerning the distribution of the first 
significant digit of a large body of statistical data (in a wide sense: physical and 
chemical constants, partial and general census and election results, etc) show a 
peculiarity that has been considered paradoxical, i.e. there are more "constants" 
with low order first significant digits than high. In fact, the observed frequency of 
the digit k (1 < k < 9) is not 1/9, but is given by 

P(Ek) = log10(l + ^j, 

where Ek is the event "the first significant digit of the observed constant is &", i.e. 

oo 

Ek=\J Ikn, 
n=0 

with 

/*„ = [*-10n
f(ib + l)-10 f l) . 

These intervals, in spite of their increasing (with n) cardinality, might obviously 
(to guarantee the summability of the relevant series) have probability converging 
to zero. Moreover, since any kind of "regularity" in a statistical table should be 
apparent also in every table obtained from it by any change of units, it follows that 
the sought probability P should be "scale-invariant", i.e. 

p(i) = p(\i) 

for any interval I and real A. By choosing as A a power of 10, it follows that, for 
any integer k between 1 and 9, and for any natural number ra, 

P(hn) = 0. 

In a finitely additive setting, these equalities are compatible with the above value of 
P(Ek). On the other hand, for any given natural number n, 

P(EkIkn) = P(Ikn) = 0 = P(Ek) P(Ikn), 

while Ek and Ikn are clearly not independent (neither logically nor stochastically). 

2. DEFINITIONS 

Let us consider a family of conditional events C = {.r4t|5,-,.At, J5,}, with B{ ^ 0, and 
a coherent probability P on C. We denote by 0 and by Q the impossible and the 
certain event, respectively. Note that an unconditional event A is the same as A\Cl. 
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Definition 1 (de Finetti [3]). — An event A £ C is infinitely less probable than 
an event B e C (in symbols A -< B) if P(A\A V B) = 0 (and so P(B\A V 5 ) = 1). 

This means (if the probabilities of the two events A and B have been coherently 
assessed equal to zero) that once we have reached, by the aforementioned algor­
ithm, the first linear system giving positive probability to A V J5, it still gives zero 
probability to A. 

Definition 2. Two events A,B £ C are of the same degree of probability (in 
symbols A ~ B) if neither A -< B nor B < A. 
Then A ~ B if and only if P(i4|.A V 5 ) P(B\A V J3) > 0. In particular, they are 
called equivalent (in probability) when P(A\A V B) = P(B\A V B) = 1/2. 

Definition 3. An event A £ C is stochastically independent of an event B E C 
(B / 0 and B ^ Q) with respect to a probability P (in symbols yl$5: we choose the 
dollar symbol since it looks like intertwining S and I, the initials of stochastically 
independent) when one of the following conditions holds: 

(i) 0 < P(A\B) = P(A\BC) < 1; 
(ii) P(A\B) = P(A\BC) = 0 and AB ~ ABC 

(iii) P(A\B) = P(A\BC) = 1 and ACB ~ ACBC. 

Notice that this definition implies that we must have also A / 0 and A ^ Q. It 
follows that independence can be considered only for possible events, avoiding the 
counterintuitive situation of the classical definition that implies that any event A is 
stochastically independent of both 0 and fl. 

Examp le 1 (see [4]). We know that a natural number n has been obtained by 
one of two given methods A or Ac: the method is secretly chosen by a friend of ours 
with probabilities P(A) = 1 and P(AC) = 0 (for example, according to whether the 
outcome of the experiment in the first example of the Introduction is, respectively, 
A\ V A2 or S). In method A, n is the number of times our friend tosses a coin until 
the first outcome of "head"; in method Ac, our friend ask a mathematician to choose 
at his will and tell him a natural number n (for example, the mathematician could 
choose the factorial of the maximum integer less than e27): notice that if we judge 
that choice as "uniform", the probability distribution expressing all possible choices 
should be (in a finitely additive setting) P(n) = 0 for any n. 
Then our friend tell us only the number n (call E this event): on the basis of this 
data, we must "guess" (i.e., reassess the relevant probabilities) whether n has been 
obtained by method A or Ac. Clearly 

P(E\A) = ±;tP(E\Ac) = 0, 

so that E and A are not independent. Nevertheless, since 

P(E) = P(A) P(E\A) + P(AC)P(E\AC) = ±, 
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we have 

P(AE) = P(A) P(E\A) = -L = P(A) P(E), 

i.e. the two events verify the classical definition of independence. 

Example 2. Recall that also the two events Ek and Ikn of the last example of the 
Introduction should be regarded as independent according to the classical definition, 
while they are not. In fact, for any given natural number n we have 

P(Ek\Ikn) = 1, 

which is different from 

P(Ek\Ic
kn) = ^WfTT = P(EkIL) = P(Ek)P(Ic

kn\Ek) = P(Ek) • 1 = P(Ek). 

In the following example, notice that both conditional probabilities corresponding 
to those introduced in Definition 3 are equal to zero. 

Example 3. The two (incompatible) events A\ and A3 considered in the first 
example of the Introduction are not independent, since P ( J43 | J4 I ) = P(>l3|-4i) = 0, 
but AiA3 j± A\A3\ in fact P(%\A3)P(A3\A3) = 0, i.e. 0 g£ A3. (According to the 
classical definition, these two events should instead be regarded as independent). 

Proposition 1. For any P and for any possible event .A, even if P(A) = 0 or 
P(A) = 1, one has (not A$A)} i.e. the relation $ is irreflexive. 

Proposition 2. Let A, B be two possible events and P a coherent probability. If 
A$B with respect to P, then AC$B and A$BC. 

3. MAIN RESULTS 

Theorem 1. A$B implies P(A\B) = P(A). Conversely, assuming P(B) < 1 and 
0 < P(A) < 1, then 

P(A\B) = P(A) implies A$B. 

P r o o f . Assume A$B: clearly, if P(B) < 1, 

P(A\B) - P(A\B'\ - P{ABC) - PW~P(B\A)] P(A\B) - P(A\B ) - - j ^ y l=P(B) 

so that 
P(A\B) - P(AB) = P(A) - P(AB) 
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and finally P(A\B) = P(A). Notice that the latter relation holds trivially, for any 
A, when P(B) = 1. 
Conversely, if P(B) < 1, and assuming 0 < P(A) < 1 and P(A\B) = P(A)} we have 

P(A\RC\ - P{ABC) - P(A)nBC\A) _ P(A)-P{B)P{A) _ P{AlB ] - ~P(&T " p(Bc) " f=P(S) P{A) 

so that P(A\BC) = P(A\B). The conclusion follows from (i) of Definition 3. D 

Remark 1. When P(B) = 1, so that P(A\B) = P(A), the relation A$B may not 
hold, since the probability P(A\BC) can take any value of the interval [0,1]: in fact, 
for any assessment of this probability, putting (we denote by the same letter P all 
probabilities) 

x\ = P(ABC), x2 = P(AB), x3 = P(ACB), x4 = P(ACBC), 

the following systems are compatible: the first one 
x2 = P(A)(x2 + x3) 
xi = P(A\Bc)(x\ + x4) 
x2 + x3 = 1 
x\ + x4 = 0 
X\ + x2 + x3 + x4 = 1 
Xi > 0 

which has the solution x\ = x4 = 0, x2 = P(A), x3 = 1 — P(A), and the next 

yi = P(A\Bc)(yi+y4) 
yi + y\ = l 
Vi > 0 

which is satisfied for any y\ = P(A\BC) > 0. Consider now the case P(A) = 0: the 
equality P(A\B) = P(A) does not imply A$B, even if it implies (for P(B) £ 1) that 
P(A\B) = P(A\BC) = 0, since it does not follow necessarily that P(B\A) P(BC\A) > 
0. In fact the assessments P(B\A) = 1 and P(BC\A) = 0 are coherent, because the 
following systems are compatible: 

x2 = X\ + x2 

x2 + x3 = P(B) 
x\ +x2 = 0 
X\+ x2 + x3 + x4 = \ 
x{ > 0 

which has the solution x\ = x2 = 0, x3 = P(B), x4 = 1 — P(B), and the next 

2/2 = 2/1 + 2/2 
yi + 2/2 = 1 
2/<>0 

which has the solution yx = 0, y2 = 1. If P(A) = 1, the equality P(A\B) = P(A) 
does not guarantee that A$Bf but (if P(B) ± 1) only that P(A\B) = P(A\BC), while 
P(B\AC) P(BC\AC) > 0 may not hold. In fact, the following systems are compatible: 
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X2 = X2 + X3 
xl = xl + x4 
xl + x2 = 1(-Cl + x2 + x3 + XA) 
x3 = 0(x3 + £4) 
X4 = X3 -f £4 
#1 + #2 + x3 + x4 = 1 

{ Xi>0 

which has the solution X3 = ar4 = 0, x\ = 1 — #2, and the next 

2/3 = 0 
2/4 = y3 + V4 
2/3 + 2/4 = 1 

2/i > o 

which has the solution 2/3 = 0, 2/4 = 1 (this ends Remark 1). 

Theorem 2. Let .A, B be two possible events and P a coherent probability. The 
following conditions hold: 

(a) if 0 < P(A) < 1, then A%B implies B%A; 

(b) if P(A) = P ( £ ) = 0, or P(A) = P ( 5 ) = 1, or P(A) = 0 and P(B) = 1, or 
P(A) = 1 and P(B) = 0, then 

A$5 implies (not B%A) 

Proof , (a) Since 

w)=n*™ 
using Theorem 1 we get P(B\A) = P(B), and so 

(b) Let P(,4) = P ( 5 ) = 0. This gives P(S |^ C ) = 0 and so, if it were B$A, 
then P(B\A) = 0 = P(AB\A). On the other hand, from A$B it follows P(A\B) = 
P(A\BC) = 0 and P(A£ |A )P(AB c | v l ) > 0 (contradiction). 
Let P(A) - P(B) = 1. Now, A$B implies P(A\B) = P(A\BC) = 1 and 

P(AcB\Ac)P(AcBc\Ac)>0; 

in particular, P(J5C|AC) > 0. On the other hand, P(B\A) = 1, and so B$A would 
imply P(B\AC) = 1, i.e. P(BC |AC) = 0 (contradiction). 
When P(A) = 1 and P(B) = 0, obviously P(B\A) = 0. So, since A$B implies 
P(A | 5 ) = P(,4|BC) = 1 and P(B | 4 C )P (5 C |A C ) > 0, assuming B$A we would get 
the contradiction 0 = P ( P | A ) = P(B\AC). 
In the case P(A) = 0, P(B) = 1 the proof is similar. • 
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Theorem 3. A%B implies P(AB) = P(A) P(B). Conversely, if 0 < P(A) < 1 and 
0 < P(B) < 1, then 

P(AB) = P(A)P(B) implies A%B. 

P r oof. The initial statement follows easily from the first implication under The-
orem 1. 
Conversely, since the product rule impliès P(A\B) = P(A) and P(B\A) = P(B), 
one has 

_ P(A)P(BC\A) _ P(A)(l-P(B\A) 
ПA\B ) - j ^ - ŢZ-pЩ ' 

and so A%B. • 

Remaгk 2. When P(B) = 0, the equality P(AB) = P(A) P(B) holds for any 
P(Л), while the equality P(A\B) = P(A) may not hold, and so, by Theorem 1, 
neither A%B. If P(B) = 1, both equalities hold for any A, but (as it has been 
already noticed in Remark 1) this does not imply A%B. If P(A) = 0, the product 
rule is satisfied for any J?, and we have also P(A\B) = P(A\BC) = 0, but it does not 
follow that P(B\A)P(BC\A) > 0 (this also has been shown in Remark 1). Finally, 
if P(Ä) = 1, both equalities hold (the second one with 1 in place of 0), but not 
necessarily the corresponding inequality having Ac in place of A holds. 

The last theorem shows that (with our definition) stochastical independence is 
stronger than łogical independence. 

T h e o r e m 4. If A%Bђ then A and B are logically independent. 

P r o o f . If A and B were logically dependent, this would correspond to one (at 
least) of the following three situations: AB - I ; Л C ß o г ß Ç Л ; A V ß = fì. So 
we give the proof in three steps: 
0) AB ф 0 ; 

(ii) (not AÇB) and (not B Ç A); 

(iii) AVBфïì. 

(i) Suppose AB = 0: we prove that (not A$B). The proof is trivial when 
P(A)P(B) > 0 and P(B) ф 1, or P(A) > 0 and P(B) = 0. In the remaining 
cases, it is enough to verify that the condition P(B\A) P(BC\A) > 0 does not hold, 
since P(B\A) = P(ЩA) = 0. 

(ii) If it were A Ç B, and so P(A\BC) = 0, we should have also P(A\B) = 0 
and P(B\A) P(BC\A) > 0 (since A$B). But the latter condition cannot be true, 
since P(B\A) = 1 and so P(BC\A) = 0. On the other hand, if it were B Ç A, 
then P(AC\B) = 0, i.e. P(A\B) = 1; from A$B it fołlows P(A\BC) = 1 and 
P(B\AC) P(BC\AC) > 0, but the latter inequality cannot hold, since P(B\AC) = 0. 

(iii) Let A V B = U: then Bc Ç A, so that P(A\BC) = 1. From A$B it fol-
lows P(A\B) - 1 and P(B\AC) P(BC\AC) > 0, while P(BC\AC) = 0, since ACBC = 
(A V B)c = 0. • 
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4. CONDITIONAL INDEPENDENCE 

Def init ion 4 . An event A is stochastically independent of an event B conditionally 
on E (BE T-- 0 ^ BCE) with respect to a probability P (in symbols A%B\E) when 
one of the following conditions holds: 

(i) 0 < P(A\BE) = P(A\BCE) < 1; 

(ii) P(A\BE) = P(A\BCE) = 0 and ABE ~ ABCE 

(hi) P(A\BE) = P(A\BCE) = 1 and ACBE ~ _4C£C£. 

Almost all properties established in the previous sections can be suitably extended 
to conditional independence . 

We show now that , as in the classical case, if A%B we may have situations in 
which, for every event E, the condition A%B\E may not hold. 
Let us consider, assuming P(A) = P(B) = 0, the case P(A\B) = P(A\BC) = 0 
with AB ~ ABC ( i .e. 0 < p = P(B\A) < 1). It is enough proving tha t the 
assignments P(A\BE) = 1 and P(A\BCE) = 0 are coherent. We must consider 
the conditional events A\Q, B\Q, A\B, A\BC, B\A, A\BE, A\BCE, so start ing with the 
following system 

x\ + x2 + x 5 + x6 = 0(xi + x2 + x3 + x4 + x 5 + x6 + x7 + xs) 
X2 + x3 + x6 + x7 = 0(xi + x2 + X3 + x4 + x 5 + x6 + x7 + x8) 
x2 + x6 = 0(x2 + x3 + x6 + x7) 
x\ + x 5 = 0(xi + X4 + X5 + Xs) 
X2 + XQ= p(xi + x2 + x 5 + x6) 
x2 = l(x2 + x3) 
xi = 0(xi + x4) 
x\ + x2 + X3 + x4 + x 5 + x6 + x7 + xs = 1 
Xi >0 

whose unknowns are 

xi = P(ABCE), x2 = P(ABE), x3 = P(ACBE), x4 = P(ACBCE), 

x5 = P(ABCEC), x 6 = P(ABEC), x7 = P(ACBEC), x8 = P(ACBCEC), 

and whose solutions are such tha t xi = x2 = X3 = x 5 = XQ = x7 = 0 and x4 + xs > 0. 
It follows tha t the second system is 

2/2 + 2/6 = 0(2/2 + 2/3 + 2/6 + 2/7) 

2/1 + 2/5 = p(yi + 2/2 + ys + ye) 
y2 = I(y2 + y3) 
yi + y2 + y3 + ys + ye + y7 = 1 
w > 0 

which has the solution y2 = 2/3 = y6 = 0; finally, the third system is 

z\ + z$ = p(zi + z2 + z5 + z6) 

Z2 = 1(2:2 + z3) 
> zi + z2 + z3 + Z5 + z6 = 1 

zi > 0 

which has the solution Z3 = z6 = 0, z\ + z$ = p, z2 = 1 — p. 
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5. CONCLUSIONS 

We showed tha t our definition of stochastical independence is stronger than the 
classical one: this circumstance avoids some inconsistencies, but others remain (for 
example, part (b) of Theorem 2). So we are looking for an "improved" definition, 
which should be still stronger than the classical one, but different from the one given 
in this paper: to pursue this aim we will rely on the idea of taking into account the 
different "layers of zeros" (in a sense related to tha t of Definition 1) corresponding 
to the relevant null conditional probabilities . 

(Received November 7, 1997.) 
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