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Pseudo-amenability of Brandt semigroup algebras

Maysam Maysami Sadr

Abstract. In this paper it is shown that for a Brandt semigroup S over a group
G with an arbitrary index set I, if G is amenable, then the Banach semigroup
algebra ℓ1(S) is pseudo-amenable.
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1. Introduction

The concept of amenability for Banach algebras was introduced by Johnson in
1972 [6]. Several modifications of this notion, such as approximate amenability
and pseudo-amenability, were introduced in [2] and [4]. In the current paper we
investigate the pseudo-amenability of Brandt semigroup algebras. It was shown in
[2] and [4] that for the group algebra L1(G), amenability, approximate amenabil-
ity and pseudo-amenability coincide and are equivalent to the amenability of
locally compact group G. In the semigroup case we know that, if S is a discrete
semigroup, then amenability of ℓ1(S) implies that S is regular and amenable [1].
Ghahramani et al. [3] have shown that, if ℓ1(S) is approximately amenable, then
S is regular and amenable. The present author and Pourabbas in [9] have shown
that for a Brandt semigroup S over a group G with an index set I, the following
are equivalent.

(i) ℓ1(S) is amenable.
(ii) ℓ1(S) is approximately amenable.
(iii) I is finite and G is amenable.

This result corrects [7, Theorem 1.8]. In the present paper we show that for a
Brandt semigroup S over a group G with an arbitrary (finite or infinite) index
set I, amenability of G implies pseudo-amenability of ℓ1(S).

2. Preliminaries

Throughout ⊗̂ denotes the completed projective tensor product. For an ele-
ment x of a set X , δx is its point mass measure in ℓ1(X). Also, we frequently use
the identification ℓ1(X × Y ) = ℓ1(X)⊗̂ℓ1(Y ) for the sets X and Y .

A Banach algebra A is called (approximately) amenable, if for any dual Banach
A-bimodule E, every bounded derivation from A to E is (approximately) inner .
It is well known that amenability of A is equivalent to existence of a bounded

approximate diagonal , that is a bounded net (mi) ∈ A⊗̂A such that for every
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a ∈ A, a · mi − mi · a −→ 0 and π(mi)a −→ a, where π : A⊗̂A −→ A is the
continuous bimodule homomorphism defined by π(a ⊗ b) := ab (a, b ∈ A), and
called the diagonal map. The famous Johnson Theorem [6], says that, for any
locally compact group G, amenability of G and L1(G) are equivalent. For a
modern account on amenability see [8] and for approximate amenability see the
original papers [2] and [3].

A Banach algebra A is called pseudo-amenable ([4]) if there is a net (ni) ∈
A⊗̂A, called an approximate diagonal for A, such that a · ni − ni · a −→ 0 and
π(ni)a −→ a for each a ∈ A.

Let I be a nonempty set and let G be a discrete group. Consider the set
T := I ×G× I, add a null element ø to T , and define a semigroup multiplication
on S := T ∪ {ø}, as follows. For i, i′, j, j′ ∈ I and g, g′ ∈ G, let

(i, g, j)(i′, g′, j′) =

{

(i, gg′, j′) if j = i′,

ø if j 6= i′,

also let ø(i, g, j) = (i, g, j)ø = ø and øø = ø. Then S becomes a semigroup that
is called Brandt semigroup over G with index I, and usually denoted by B(I, G).
For more details see [5].

The Banach space ℓ1(T ), with the convolution product,

(ab)(i, g, j) =
∑

k∈I,h∈G

a(i, gh−1, k)b(k, h, j),

for a, b ∈ ℓ1(T ), i, j ∈ I, g ∈ G, becomes a Banach algebra. (Note that if G is
the one point group, and I is finite, then ℓ1(T ) is an ordinary matrix algebra.)
We have a closed relation between the Banach algebra ℓ1(T ) and the Banach
semigroup algebra ℓ1(S):

Lemma 1. There exists a homeomorphic isomorphism ℓ1(S) ∼= ℓ1(T ) ⊕ C of

Banach algebras, where the multiplication of ℓ1(T ) ⊕ C is coordinatewise.

Proof: Consider the following short exact sequence of Banach algebras and con-
tinuous algebra homomorphisms:

0 −→ ℓ1(T ) −→ ℓ1(S) −→ C −→ 0,

where the second arrow Ψ : ℓ1(T ) −→ ℓ1(S) is defined by Ψ(b)(t) := b(t) and
Ψ(b)(ø) := −

∑

s∈T b(s), for b ∈ ℓ1(T ) and t ∈ T ⊂ S, and the third arrow

Φ : ℓ1(S) −→ C is the integral functional, Φ(a) :=
∑

s∈S a(s) (a ∈ ℓ1(S)). Now,

let Θ : ℓ1(S) −→ ℓ1(T ) be the restriction map, Θ(a) := a |T . Then Θ is a
continuous algebra homomorphism and ΘΨ = Idℓ1(T ). Thus the exact sequence

splits and we have ℓ1(S) ∼= ℓ1(T ) ⊕ C. �

Lemma 2. If ℓ1(T ) is pseudo-amenable, then so is ℓ1(S).

Proof: Suppose that ℓ1(T ) is pseudo-amenable. Then by Lemma 1 and [4,
Proposition 2.1], ℓ1(S) is pseudo-amenable. �
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3. The main result

Let S, T, G and I be as above. We need some other notations and computations:
For a ∈ ℓ1(T ) and every u, v ∈ I, let a(u,v) be an element of ℓ1(G) defined by

a(u,v)(g) := a(u, g, v) (g ∈ G). Note that

‖a‖ℓ1(T ) =
∑

u,v∈I

‖a(u,v)‖ℓ1(G).

For b ∈ ℓ1(G × G), c ∈ ℓ1(G) and any i, j, i′, j′ ∈ I, let Eb
(i,j,i′,j′) and Hc

(i,j) be

elements of ℓ1(T × T ) and ℓ1(T ) respectively, defined by

Eb
(i,j,i′,j′)(u, g, v, u′, g′, v′) =

{

b(g, g′) if u = i, v = j, u′ = i′, v′ = j′,

0 otherwise,

Hc
(i,j)(u, g, v) =

{

c(g) if u = i, v = j,

0 otherwise,

where u, v, u′, v′ ∈ I and g, g′ ∈ G. Also note that

(1) ‖Eb
(i,j,i′,j′)‖ℓ1(T×T ) = ‖b‖ℓ1(G×G), ‖Hc

(i,j)‖ℓ1(T ) = ‖c‖ℓ1(G).

For u, v ∈ I and g ∈ G, the module action of ℓ1(T ) on ℓ1(T × T ) becomes

(2) δ(u,g,v) · E
b
(i,j,i′,j′) =

{

E
δg·b

(u,j,i′,j′) if i = v,

0 if i 6= v,

(3) Eb
(i,j,i′,j′) · δ(u,g,v) =

{

E
b·δg

(i,j,i′,v) if j′ = u,

0 if j′ 6= u.

For the multiplication of ℓ1(T ) we have

(4) δ(u,g,v)H
c
(i,j) =

{

H
δgc

(u,j) if i = v,

0 if i 6= v,
Hc

(i,j)δ(u,g,v) =

{

H
cδg

(i,v) if j = u,

0 if j 6= u.

And finally, the diagonal maps π : ℓ1(T×T ) −→ ℓ1(T ) and π : ℓ1(G×G) −→ ℓ1(G)
have the relation

(5) π(Eb
(i,j,i′,j′)) =

{

H
π(b)
(i,j′) if j = i′,

0 if j 6= i′.

We are now ready to prove our main result:

Theorem 3. Suppose that G is amenable. Then ℓ1(S) is pseudo-amenable.
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Proof: Let (mλ)λ∈Λ ∈ ℓ1(G × G) be a bounded approximate diagonal for the
amenable Banach algebra ℓ1(G). For any finite nonempty subset F of I and
λ ∈ Λ, let

WF,λ :=
1

#F

∑

i,j∈F

Emλ

(i,j,j,i),

where #F denotes the cardinal of F . We show that the net (WF,λ) ∈ ℓ1(T × T )
over the directed set Γ×Λ, where Γ is the directed set of finite subsets of I ordered
by inclusion, is an approximate diagonal for ℓ1(T ).

For any u, v ∈ I and g ∈ G, by equations (2) and (3), we have,

δ(u,g,v) · WF,λ =

{

1
#F

∑

j∈F E
δg·mλ

(u,j,j,v) if v ∈ F,

0 if v /∈ F,

WF,λ · δ(u,g,v) =

{

1
#F

∑

j∈F E
mλ·δg

(u,j,j,v) if u ∈ F,

0 if u /∈ F,

and thus,

δ(u,g,v) · WF,λ − WF,λ · δ(u,g,v) =























1
#F

∑

j∈F E
δg·mλ−mλ·δg

(u,j,j,v) if u ∈ F, v ∈ F,
1

#F

∑

j∈F E
δg·mλ

(u,j,j,v) if v ∈ F, u /∈ F,

− 1
#F

∑

j∈F E
mλ·δg

(u,j,j,v) if u ∈ F, v /∈ F,

0 if v /∈ F, u /∈ F.

Then, for a =
∑

u,v∈I,g∈G a(u, g, v)δ(u,g,v) in ℓ1(T ) we have

a · WF,λ − WF,λ · a =
1

#F

∑

j,u,v∈F

E
a(u,v)·mλ−mλ·a(u,v)

(u,j,j,v)

+
1

#F

∑

j,v∈F,u∈I−F

E
a(u,v)·mλ

(u,j,j,v)

−
1

#F

∑

j,u∈F,v∈I−F

E
mλ·a(u,v)

(u,j,j,v) ,

and thus, by (1),

∥

∥a · WF,λ − WF,λ · a
∥

∥ ≤
∑

u,v∈F

∥

∥a(u,v) · mλ − mλ · a(u,v)

∥

∥

+
∑

v∈F,u∈I−F

∥

∥a(u,v) · mλ

∥

∥

+
∑

u∈F,v∈I−F

∥

∥mλ · a(u,v)

∥

∥.

(6)
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Now, suppose that M > 0 is a bound for the norms of mλ’s. Let ǫ > 0 be
arbitrary, and let F0 be an element of Γ such that

∑

(u,v)∈J0,g∈G

|a(u, g, v)| =
∑

(u,v)∈J0

∥

∥a(u,v)

∥

∥ < ǫ,

where J0 = (I × (I − F0)) ∪ ((I − F0) × I). And choose a λ0 ∈ Λ such that for
every λ ≥ λ0,

∑

u,v∈F0

∥

∥a(u,v) · mλ − mλ · a(u,v)

∥

∥ < ǫ.

Now, if (F, λ) ∈ Γ × Λ such that F0 ⊆ F , λ ≥ λ0, then we have,

∑

u,v∈F

∥

∥a(u,v) · mλ − mλ · a(u,v)

∥

∥ ≤
∑

u,v∈F0

∥

∥a(u,v) · mλ − mλ · a(u,v)

∥

∥

+
∑

(u,v)∈J0

∥

∥a(u,v) · mλ

∥

∥

+
∑

(u,v)∈J0

∥

∥mλ · a(u,v)

∥

∥

< ǫ + ǫM + ǫM,

and analogously,
∑

v∈F,u∈I−F

‖a(u,v) · mλ‖ < ǫM

and
∑

u∈F,v∈I−F

‖mλ · a(u,v)‖ < ǫM.

Thus by (6), we have ‖a · WF,λ − WF,λ · a‖ < ǫ + 4ǫM .
Therefore, we proved that a · WF,λ − WF,λ · a −→ 0, for every a ∈ ℓ1(T ).

Now, we prove that π(WF,λ)a −→ a for any a ∈ ℓ1(T ).

By (5), we have

π(WF,λ) =
1

#F

∑

i,j∈F

H
π(mλ)
(i,i) =

∑

i∈F

H
π(mλ)
(i,i) .

Thus, (4) implies that

π(WF,λ)a =
∑

i∈F,v∈I

H
π(mλ)a(i,v)

(i,v) ,
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since a =
∑

u,v∈I H
a(u,v)

(u,v) . Then we have,

∥

∥π(WF,λ)a − a
∥

∥ ≤
∑

i∈F,v∈I

∥

∥H
π(mλ)a(i,v)−a(i,v)

(i,v)

∥

∥

+
∑

v∈I,u∈I−F

∥

∥H
a(u,v)

(u,v)

∥

∥.
(7)

Let ǫ > 0 be arbitrary, and let F0 and J0 be as above. Choose a λ1 ∈ Λ such that
for every λ ≥ λ1,

∑

i,j∈F0

∥

∥π(mλ)a(i,j) − a(i,j)

∥

∥ < ǫ.

Now, if (F, λ) ∈ Γ × Λ is such that F0 ⊆ F , λ ≥ λ1, then by (1) we have,

∑

i∈F,v∈I

∥

∥H
π(mλ)a(i,v)−a(i,v)

(i,v)

∥

∥ ≤
∑

i,j∈F0

∥

∥π(mλ)a(i,j) − a(i,j)

∥

∥

+
∑

(u,v)∈J0

∥

∥π(mλ)a(u,v)

∥

∥ +
∑

(u,v)∈J0

∥

∥a(u,v)

∥

∥

< ǫ + ǫM + ǫ,

and
∑

v∈I,u∈I−F

‖H
a(u,v)

(u,v) ‖ =
∑

v∈I,u∈I−F

‖a(u,v)‖ < ǫ.

Thus, by (7) we have
∥

∥π(WF,λ)a − a
∥

∥ < 3ǫ + ǫM.

This completes the proof. �

We end with a natural question:

Question 4. Does pseudo-amenability of ℓ1(B(I, G)) imply amenability of G?
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