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Regular methods of summability

in some locally convex spaces

Costas Poulios

Abstract. Suppose that X is a Fréchet space, 〈aij〉 is a regular method of summa-
bility and (xi) is a bounded sequence in X. We prove that there exists a subse-
quence (yi) of (xi) such that: either (a) all the subsequences of (yi) are summable
to a common limit with respect to 〈aij 〉; or (b) no subsequence of (yi) is sum-
mable with respect to 〈aij〉. This result generalizes the Erdös-Magidor theorem
which refers to summability of bounded sequences in Banach spaces. We also
show that two analogous results for some ω1-locally convex spaces are consistent
to ZFC.

Keywords: Fréchet space, regular method of summability, summable sequence,

Galvin-Prikry theorem, Erdös-Magidor theorem
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1. Introduction, preliminaries

The results of the present paper are motivated by the Erdös-Magidor theo-
rem [4], concerning summability of bounded sequences in Banach spaces. In Sec-
tion 2, we generalize the Erdös-Magidor theorem for Fréchet spaces. This result
is based on Galvin-Prikry theorem [5], as that of Erdös-Magidor. In Section 3 we
show that two analogous results, for some ω1-locally convex spaces, are consistent
to ZFC. These are based on the work of B. Balcar, J. Pelant and P. Simon given
in [1] and also on a theorem of S. Plewik [7], concerning unions of completely
Ramsey sets.

Let X be a topological vector space; denote by τ the topology of X . A sequence
(xn) in X is called τ -Cauchy if for every neighborhood V of 0 ∈ X there exists
n0 ∈ N such that xn −xm ∈ V whenever n, m ≥ n0. If d is an invariant metric on
X which induces the topology τ , then obviously, (xn) is τ -Cauchy if and only if
(xn) is d-Cauchy. The space X is said to be sequentially complete if every Cauchy
sequence in X converges to a point of X . A family P of seminorms on X is called
separating if for every x ∈ X with x 6= 0, there exists p ∈ P such that p(x) 6= 0.
The local topological weight of X is defined to be the least cardinal number α
such that there is a basis B of neighborhoods of 0 ∈ X with card(B) = α. The
topological vector space X is called a Fréchet space if it is locally convex and its
topology is induced by a complete and invariant metric. A locally convex space
is called an ω1-locally convex space if its local weight is not greater than ω1.
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Suppose that X is an ω1-locally convex space. Then we can find a basis
B of neighborhoods of 0 ∈ X , consisting of open, convex and balanced sets,
with card(B) ≤ ω1. For every U ∈ B we write pU for the Minkowski func-
tional corresponding to the set U , that is, the map pU : X → R given by
pU (x) = inf{t > 0 | x ∈ tU}. Then pU is a continuous seminorm on X
and U = {x ∈ X | pU (x) < 1}. The topology induced on X by the family
P = {pU | U ∈ B} of seminorms, is the topology of X and card(P) ≤ ω1. For the
basic theory of locally convex spaces, we refer to [8].

If M is an infinite subset of N, let [M ]ω denote the set of all infinite subsets
of M . Let N be an infinite subset of N and α a finite subset of N. We set α < N
if α 6= ∅ and max α < min N , or α = ∅. Moreover, for an infinite subset M of N

and a finite subset α of N, we set

[α, M ] = {α ∪ L | L ∈ [M ]ω & α < L} .

A subset A of [N]ω is called completely Ramsey if for every M ∈ [N]ω and every
finite subset α of N with α < M , there is N ∈ [M ]ω such that: either [α, N ] ⊆ A
or [α, N ] ∩ A = ∅. Considering on [N]ω the topology of pointwise convergence,
the Galvin-Prikry theorem [5] (see also [9]) is the following.

Theorem 1.1. Let A be a Borel subset of [N]ω. Then A is completely Ramsey.

The distributivity number of the quotient algebra P(ω)/ fin is denoted by h.
This notion was introduced and studied by Balcar, Pelant and Simon in [1]. They
proved that h is a regular cardinal with ω1 ≤ h ≤ c, and that the value of h

depends on the axioms of set theory. In particular, there are models of ZFC set
theory in which h = ω2. Therefore, the assumption that h = ω2, is consistent to
ZFC axioms.

A topological characterisation of the completely Ramsey sets was given by
E. Ellentuck [3] (see also [6]). S. Plewik [7], using this characterisation, proved
the following.

Theorem 1.2. The union of less than h completely Ramsey sets is completely

Ramsey.

It follows that the assumption that the union of ω1 completely Ramsey sets
is completely Ramsey, is consistent to ZFC axioms. We will use the next conse-
quence of this and of Theorem 1.1.

Theorem 1.3. Assume that h = ω2. Then the intersection of less or equal to ω1

Borel subsets of [N]ω is completely Ramsey.

An infinite matrix 〈aij〉i,j∈N of real numbers is called a regular method of

summability if, given a sequence (xi)i∈N of elements of a sequentially complete
locally convex space X converging to x ∈ X , the sequence x′

i =
∑∞

j=1
aijxj is

well-defined and also converges to x. A sequence (xi) in a sequentially complete
locally convex space is called summable with respect to 〈aij〉 if the sequence (x′

i),
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where x′
i =

∑∞

j=1
aijxj , is well-defined and converges. The following proposition

characterizes the regular methods of summability.

Proposition 1.1. Let 〈aij〉 be an infinite matrix of real numbers. The following

assertions are equivalent.

(1) 〈aij〉 is a regular summability method.

(2) The following conditions hold:

(a) supi

∑∞

j=1
|aij | < ∞;

(b) limi→∞ aij = 0 for every j and

(c) limi→∞

∑∞

j=1
aij = 1.

Proof: The implication (1)⇒(2) is well-known (see [2, p. 75]). The converse
implication for a sequentially complete locally convex space X is proved as in the
case of a Banach space, by considering all the seminorms belonging to a family
P of seminorms defining the topology of X . We give this proof for completeness.
Suppose that (xi) is a sequence in X converging to x and let p ∈ P and ǫ > 0
be given. Then it is clear that the sequence (x′

i), with x′
i =

∑∞

j=1
aijxj , is well-

defined. Condition (c) implies that there exists i1 ∈ N such that for i ≥ i1,

p(x)
∣

∣

∣

∞
∑

j=1

aij − 1
∣

∣

∣
< ǫ/3.

Since the sequence (xj) converges, there is K1 < ∞ such that p(xj − x) < K1

for all j. We set K2 = supi

∑∞

j=1
|aij | < ∞. Since limj→∞ p(xj − x) = 0 there

is j0 ∈ N such that for j ≥ j0, p(xj − x) < ǫ
3K2

. Condition (b) implies that

limi→∞

∑j0
j=1

|aij | = 0, hence there is i2 ∈ N such that for i ≥ i2,

j0
∑

j=1

∣

∣aij

∣

∣ <
ǫ

3K1

.

For i ≥ max{i1, i2},

p(x′
i − x) = p

( ∞
∑

j=1

aijxj − x

)

= p

( ∞
∑

j=1

aijxj −
∞
∑

j=1

aijx +

∞
∑

j=1

aijx − x

)

≤ p

( ∞
∑

j=1

aij (xj − x)

)

+ p (x)

∣

∣

∣

∣

∞
∑

j=1

aij − 1

∣

∣

∣

∣

≤ p

( j0
∑

j=1

aij (xj − x)

)

+ p

(

∑

j>j0

aij (xj − x)

)

+
ǫ

3
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≤

j0
∑

j=1

∣

∣aij

∣

∣p (xj − x) +
∑

j>j0

∣

∣aij

∣

∣p (xj − x) +
ǫ

3

< K1

j0
∑

j=1

∣

∣aij

∣

∣ +
ǫ

3K2

∑

j>j0

∣

∣aij

∣

∣ +
ǫ

3

< K1

ǫ

3K1

+
ǫ

3K2

K2 +
ǫ

3
= ǫ.

�

2. Summability in Fréchet spaces

In this section we prove the following theorem.

Theorem 2.1. Suppose that X is a Fréchet space, 〈aij〉i,j∈N is a regular method

of summability and (xi)i∈N is a bounded sequence in X . Then there exists a

subsequence (yi) of (xi) such that: either

(a) all subsequences of (yi) are summable, with respect to 〈aij〉; or

(b) no subsequence of (yi) is summable, with respect to 〈aij〉.

Moreover, in the first case we can find a subsequence (zi) of (yi) such that all its

subsequences are summable to the same limit.

This theorem, in case X is a Banach space, is the Erdös-Magidor theorem [4].
In the following by a basis of neighborhoods of 0 ∈ X we shall mean a countable
basis B of neighborhoods of 0 ∈ X consisting of open, convex and balanced sets.
For the proof we need the following two lemmas.

Lemma 2.1. Let (zj) be a bounded sequence in the Fréchet space X . For every i,
we define the function

fi : [N]ω → X by

A = {k1 < k2 < . . .} 7−→ fi(A) =
∞
∑

j=1

aijzkj
.

Then fi is continuous.

Proof: Fix A = {k1 < k2 < . . .} ∈ [N]ω . Let U = Un ∈ B be a basic neighbor-
hood of 0 ∈ X and let p = pn be the corresponding Minkowski functional. Since
(zj) is bounded, the sequence (p(zj)) is also bounded, so there exists K < ∞ such
that p(zj) < K for every j ∈ N. Furthermore, it follows from Proposition 1.1 that
∑∞

j=1
|aij | < ∞, hence there exists ζ such that

∑

j>ζ |aij | < 1

2K
. Put

C = {B = {m1 < m2 < . . .} ∈ [N]ω | mj = kj for j ≤ ζ} .
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Clearly, C is an open neighborhood of A in [N]ω. We show that fi[C] ⊆ fi(A)+U .
Indeed, if B ∈ C,

p (fi(B) − fi(A)) = p

( ∞
∑

j=1

aijzmj
−

∞
∑

j=1

aijzkj

)

= p

( ∞
∑

j=1

aij

(

zmj
− zkj

)

)

≤
∑

j>ζ

∣

∣aij

∣

∣ p
(

zmj
− zkj

)

≤
∑

j>ζ

∣

∣aij

∣

∣2K < 1,

and hence fi(B) − fi(A) ∈ U , that is fi(B) ∈ fi(A) + U . Thus fi is continuous
at A; since A is arbitrary, the proof is complete. �

Lemma 2.2. Let (zj) be a bounded sequence in the Fréchet space X which is

summable to z with respect to 〈aij〉 and let v1, . . . , vN ∈ X . Then the sequence

(v1, . . . , vN , zN+1, . . .) is also summable to z with respect to 〈aij〉.

Proof: For every i we set

wi =

N
∑

j=1

aijvj +
∑

j>N

aijzj.

We need to prove that the sequence (wi) converges to z. Indeed, let P be a family
of seminorms on X , defining the topology of X , and let p ∈ P . Then for every i
we have:

p(wi − z) = p

( N
∑

j=1

aijvj +
∑

j>N

aijzj − z

)

= p

( N
∑

j=1

aijvj −
N

∑

j=1

aijzj +

∞
∑

j=1

aijzj − z

)

≤ p

( N
∑

j=1

aij

(

vj − zj

)

)

+ p

( ∞
∑

j=1

aijzj − z

)

≤
N

∑

j=1

∣

∣aij

∣

∣p
(

vj − zj

)

+ p

( ∞
∑

j=1

aijzj − z

)

.

Now limi→∞ p(
∑∞

j=1
aijzj − z) = 0 and it follows from condition (b) of Proposi-

tion 1.1 that limi→∞

∑N

j=1
|aij |p(vj − zj) = 0. Thus limi→∞ p(wi − z) = 0 and

the result follows since p ∈ P is arbitrary. �
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Proof of Theorem 2.1: Let B = {Ul | l ∈ N} be a basis of neighborhoods of
0 ∈ X , let P = {pl | l ∈ N} be the corresponding family of Minkowski functional
and let d be a complete and invariant metric on X which induces the topology τ
of X . Consider the set:

A =
{

A = {k1 < k2 < . . .} ∈ [N]ω |
(

xki

)

is summable with respect to 〈aij〉
}

.

Claim 1. The set A is a Borel subset of [N]ω.
Indeed, observe that

{k1 < k2 < . . .} ∈ A ⇔
(

xki

)

is summable with respect to 〈aij〉

⇔ x′
i =

∞
∑

j=1

aijxkj
converges in X

⇔ (x′
i) converges with respect to the metric d

⇔ (x′
i) is d-Cauchy

⇔ (x′
i) is τ -Cauchy

⇔ (∀Ul ∈ B) (∃ s ∈ N) [(∀n, m ≥ s) ((x′
n − x′

m) ∈ Ul)] .

Therefore,

A =
⋂

l∈N

⋃

s∈N

⋂

n,m≥s

Dl,n,m,

where

Dl,n,m =

{

{k1 < k2 < . . .} ∈ [N]ω |

( ∞
∑

j=1

anjxkj
−

∞
∑

j=1

amjxkj

)

∈ Ul

}

.

By Lemma 2.1, the set Dl,n,m is open, being the inverse image of the open set Ul

by the continuous function fn− fm (here fn and fm are as in Lemma 2.1). Hence
the set A is Borel.

By the Galvin-Prikry theorem, there is M = {k1 < k2 < . . .} ∈ [N]ω such that:
either [M ]ω ⊆ A, or [M ]ω ∩ A = ∅. Therefore, for the sequence zi = xki

, either

(I) every subsequence of (zi) is summable with respect to 〈aij〉; or

(II) no subsequence of (zi) is summable with respect to 〈aij〉.

It remains to prove that in case (I) we can find a subsequence of (zi) all of
whose subsequences are summable to the same limit. Let Z = span{zi | i ∈ N},
be the closed linear span of (zi). Then (Z, d) is a separable metric space. Choose
a countable cover {B1

n | n ∈ N} of Z consisting of open balls of radius 1. Consider
the following subset of [N]ω:

F =
{

A =
{

k1 < k2 < . . .
}

∈ [N]ω | the subsequence (zki
) is summable to some

point of the ball B1
1

}

.
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Claim 2. F is a Borel subset of [N]ω.
Indeed, we have:

A = {k1 < k2 < . . .} ∈ F ⇔ (zki
) is summable to some point of the ball B1

1

⇔ the limit of z′i =

∞
∑

j=1

aijzkj
belongs to the ball B1

1

⇔ (∃ k ∈ N ∃ l ∈ N) (∀ i ≥ l)
[

d (z′i, z) < 1 −
1

k

]

,

where z is the center of the ball B1
1 . Therefore,

F =
⋃

k∈N

⋃

l∈N

⋂

i≥l

Gk,i,

where

Gk,i =

{

{k1 < k2 < . . .} ∈ [N]ω | d

( ∞
∑

j=1

aijzkj
, z

)

< 1 −
1

k

}

.

By Lemma 2.1, the set Gk,i is open, being the inverse image of some open set by
a continuous function. Hence the set F is Borel.

The Galvin-Prikry theorem, now implies that there exists M1 ∈ [N]ω such that:
either [M1]

ω ⊆ F , or [M1]
ω ∩ F = ∅, that is, either

• each subsequence of (zi)i∈M1
is summable to a point in the ball B1

1 ; or
• each subsequence of (zi)i∈M1

is summable to a point outside the ball B1
1 .

Repeating the same argument we find a sequence, N ⊇ M1 ⊇ M2 ⊇ . . ., of infinite
subsets of N such that for each k, either

(1) each subsequence of (zi)i∈Mk
is summable to a point of the ball B1

k; or
(2) each subsequence of (zi)i∈Mk

is summable to a point outside the ball B1
k.

If each Mk is given its natural order, we let L1 = {l11 < l12 < . . .} be the diagonal
sequence, where l1k is the k-th term of Mk.

Claim 3. There is k1 ∈ N such that condition (1) holds for Mk1
.

Indeed, let us suppose that for all k, every subsequence of (zi)i∈Mk
is summable

to a point outside the ball B1
k. The sequence (zl1

j
), being a subsequence of (zi),

is summable, say to z ∈ Z. If Mk = {m1 < m2 < . . .}, then, by Lemma 2.2,
the sequence (zm1

, . . . zmk−1
, zl1

k
, zl1

k+1
, . . .) is also summable to z. Since this is a

subsequence of (zi)i∈Mk
, we obtain z /∈ B1

k. Since this happens for all k, we have
reached a contradiction.

Using Lemma 2.2 again, we find that every subsequence of (zi)i∈L1
is summable

to a point of the ball B1
k1

.

Now consider a countable cover {B2
n | n ∈ N} of the ball B1

k1
, consisting of open

balls in B1
k1

of radius 1/2. Repeat the previous procedure to the sequence (zi)i∈L1
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to obtain an infinite subset L2 of L1 and a k2 ∈ N such that every subsequence
of (zi)i∈L2

is summable to a point of the ball B2
k2

.
We inductively construct a sequence N ⊇ L1 ⊇ L2 ⊇ . . ., of infinite subsets of

N and a sequence B1
k1

⊇ B2
k2

⊇ . . ., of open balls in Z, such that for every n the
following properties hold:

(i) diam(Bn
kn

) ≤ 2

n

(ii) every subsequence of (zi)i∈Ln
is summable to a point of the ball Bn

kn
.

Clearly, diam(
⋂∞

n=1
Bn

kn
) ≤ diam(Bn

kn
) ≤ 2

n
for every n. Thus, diam(

⋂∞

n=1
Bn

kn
) =

0, that is, the set
⋂∞

n=1
Bn

kn
is at most a singleton.

If each Ln is given its natural order, we let L = {l1 < l2 < . . .} be the diagonal
sequence, where ln is the n-th term of Ln. Then every subsequence of (zi)i∈L is
summable to a point of

⋂∞

n=1
Bn

kn
(by the construction and Lemma 2.2). Therefore

the sequence (zi)i∈L is the desired subsequence of (xi). �

3. Summability in ω1-locally convex spaces

In this section, assuming that h = ω2 we quote first the following theorem,
analogous to Theorem 2.1.

Theorem 3.1. Assume that h = ω2. Let X be a sequentially complete ω1-loca-

lly convex space. Suppose that there exists a countable family of neighborhoods

of 0 ∈ X consisting of open, convex and balanced sets such that the family of

corresponding Minkowski functionals is separating. Let 〈aij〉i,j∈N be a regular

method of summability and (xi) be a bounded sequence in X . Then there exists

a subsequence (yi) of (xi) such that: either

(a) all subsequences of (yi) are summable, with respect to 〈aij〉; or

(b) no subsequence of (yi) is summable, with respect to 〈aij〉.

Moreover, in the first case we can find a subsequence (zi) of (yi) such that all its

subsequences are summable to the same limit.

Proof: There exists a basis B of neighborhoods of 0 ∈ X , consisting of open,
convex and balanced sets, such that card(B) ≤ ω1. Moreover we can find a
countable subfamily B′ of B such that the family of the corresponding Minkowski
functionals is separating. Consider the set:

A = {A = {k1 < k2 < . . .} ∈ [N]ω | (xki
) is summable with respect to 〈aij〉} .

Then,

{k1 < k2 < . . .} ∈ A ⇔ the sequence (x′
i), x′

i =

∞
∑

j=1

αijxkj
, converges in X

⇔ (∀U ∈ B) (∃ s ∈ N) [(∀n, m ≥ s) ((x′
n − x′

m) ∈ U)] .
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Therefore,

A =
⋂

U∈B

⋃

s∈N

⋂

n,m≥s

DU,n,m,

where

DU,n,m =

{

{k1 < k2 < . . .} ∈ [N]ω |

( ∞
∑

j=1

anjxkj
−

∞
∑

j=1

amjxkj

)

∈ U

}

.

It is easy to verify that Lemma 2.1 holds if X is any sequentially complete locally
convex space. So the set DU,n,m is open, being the inverse image of the open
set U , by the continuous function fn − fm. Thus, by Theorem 1.3, the set A
is completely Ramsey being the intersection of ω1 Borel sets. Therefore there is
M = {k1 < k2 < . . .} ∈ [N]ω such that either [M ]ω ⊆ A or [M ]ω ∩ A = ∅. By
setting (yi) = (xki

), we have that either

(1) every subsequence of (yi) is summable, with respect to 〈aij〉; or
(2) no subsequence of (yi) is summable, with respect to 〈aij〉.

Finally, it is easy to see that in case (1) we can find a subsequence (zi) of (yi)
such that all its subsequences are summable to the same limit. Indeed, denote by τ
the topology of X and by τ ′ the topology on X induced by the family B′. Since the
family {pU | U ∈ B′} is separating, the topology τ ′ is Hausdorff. Therefore (X, τ ′)
is a locally convex space whose topology is induced by the countable family of
seminorms {pU | U ∈ B′}. Hence, this topology is induced by an invariant metric.
As τ ′ ⊆ τ , every subsequence of (yi) is summable with respect to τ ′. By repeating
the second part of the proof of Theorem 2.1 we find x ∈ X and a subsequence (zi)
of (yi) such that each subsequence of (zi) is summable to x with respect to τ ′.
But then every subsequence of (zi) is summable to x with respect to τ . Thus,
(zi) is the desired subsequence. �

In the following theorem, as there is no completeness, the method of summa-
bility 〈aij〉 we consider is such that for every i, aij 6= 0 only for finitely many j.
Such a method of summability is, for instance, the Cesàro method of summability.

Theorem 3.2. Assume that h = ω2. Let X be a vector space and T be a family

of locally convex topologies on X such that card(T ) ≤ ω1 and for each τ ∈ T the

local weight of (X, τ) is not greater than ω1. We assume the existence of τ0 ∈ T
such that the space (X, τ0) is a Fréchet space. Let X be endowed with the locally

convex topology induced by the family T . Let 〈aij〉 be a method of summability

such that for every i, aij 6= 0 only for finitely many j. Let (xi) be a bounded

sequence in X . Then there exists a subsequence (yi) of (xi) such that: either

(a) all subsequences of (yi) are summable to a common limit, with respect

to 〈aij〉; or

(b) no subsequence of (yi) is summable, with respect to 〈aij〉.

Proof: Since the space (X, τ0) is a Fréchet space, from Theorem 2.1 we conclude
that there exists a subsequence (zi) of (xi) such that, in the space (X, τ0), either
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(a′) all subsequences of (zi) are summable to a common limit, with respect to
〈aij〉; or

(b′) no subsequence of (zi) is summable, with respect to 〈aij〉.

In case (b′) the sequence (yi) = (zi) proves the theorem. Consider now the case
(a′), and let x ∈ X be the limit to which are summable all the subsequences
of (zi). There exists a family P of seminorms on X , which induces the topology
of X with card(P) ≤ ω1. Consider the set:

A = {A = {k1 < k2 < . . .} ∈ [N]ω | (zki
)

is summable to x with respect to 〈aij〉} .

Observe that

A = {k1 < k2 < . . .} ∈ A ⇔

⇔ (zki
) is summable to x

⇔ the sequence (z′i), z′i =

∞
∑

j=1

αijzkj
, converges to x

⇔
(

∀ p ∈ P
)(

∀m ∈ N
)(

∃ s ∈ N
)

[

(

∀n ≥ s
)

(

p
(

z′n − x
)

<
1

m + 1

)]

.

Therefore,

A =
⋂

p∈P

⋂

m∈N

⋃

s∈N

⋂

n≥s

Dp,m,n,

where

Dp,m,n =

{

{k1 < k2 < . . .} ∈ [N]ω | p

( ∞
∑

j=1

anjzkj
− x

)

<
1

m + 1

}

.

The set Dp,m,n is open, being the inverse image of some open set by a continuous
function. Hence the set

⋂

m∈N

⋃

s∈N

⋂

n≥s

Dp,m,n

is Borel. By Theorem 1.3 it follows that the set A is completely Ramsey. Thus,
there exists M = {k1 < k2 < . . .} ∈ [N]ω such that: either (I) [M ]ω ⊆ A or (II)
[M ]ω ∩ A = ∅. We set (yi) = (zki

). In case (I) all the subsequences of (yi) are
summable to x, with respect to 〈aij〉, and in case (II), no subsequence of (yi) is
summable, with respect to 〈aij〉. �

Remarks 3.1. (1) Theorem 3.1, in the case of a sequentially complete locally
convex space X of local weight ω, coincides with Theorem 2.1.

Theorem 3.2, in the case where the family T is countable and for each τ ∈ T
the local weight of (X, τ) is ω, is proved in ZFC set theory and, clearly, gives
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a generalization of Theorem 2.1 when 〈aij〉 is such that for every i, aij 6= 0 only
for finitely many j.

(2) If the local weight of X is equal to ω1, we do not know whether Theorems 3.1
and 3.2 can be proved in ZFC set theory. However, we think that these theorems
are independent of the ZFC axioms.

Acknowledgments. The author would like to thank the referee for their kind
remarks about the notation.
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