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Realizations of Loops and

Groups defined by short identities

A.D. Keedwell

Abstract. In a recent paper, those quasigroup identities involving at most three
variables and of “length” six which force the quasigroup to be a loop or group
have been enumerated by computer. We separate these identities into sub-
sets according to what classes of loops they define and also provide humanly-
comprehensible proofs for most of the computer-generated results.

Keywords: quasigroup identity, loop, group

Classification: 20N05

1. Introduction

In a recent paper [3], N.C. Fiala has investigated (with computer aid) which
quasigroup identities involving at most three variables and with at most six vari-
able occurrences imply that the quasigroup is necessarily a non-trivial loop or
group. That author finds that there are 35 such “laws” which force the quasi-
group to be a loop and that, of these, 16 force it to be a group. However, no
proofs and no group or loop examples are given. We show here that the 35 laws1

can be separated into subsets such that the members of each subset are realized
by the same variety of loops or groups. We show also that some of the 35 loop
and group laws listed in [3] are directly equivalent. Finally, for a sample of the
laws listed in Theorem 4.1 of [3], we provide humanly comprehensible proofs that
a quasigroup which satisfies one of these laws has to be a loop (or group).

For ease of reference, we label the identities listed in Table 1 below and in
Theorem 4.1 of [3] in the form La.b, where a is the row and b is the column in
which the identity La.b occurs.

Following a suggestion of the referee, we begin by re-stating Theorem 4.1 of [3]
as follows:

Theorem (see [3]). There are exactly 35 quasigroup identities (up to renaming,

cancelling, mirroring and symmetry)2 connected by the product operation only

and with at most six variable occurrences which imply that the quasigroup is

1We frequently use the word “law” rather than “identity” to avoid confusion with the identity
element of the loop or group which the identity induces.

2The statement in brackets is copied from the corresponding statement in Theorem 4.1 of [3].
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necessarily a non-trivial loop or group. These 35 identities are listed below in

Table 1.

xx · y = x · yx x[x(yy · z)] = z (xx)(y · yz) = z [x(x · yy)]z = z

[(x · xy)y]z = z xx · y = z · yz x[(xy · z)y] = z(G) (xx)(y · zy) = z

(xx · yz)y = z x · xy = zz · y (xx · y)z = zy x(y · xy) = zz

x(yx · y) = zz x[y(xy · z)] = z(G) x(yx · yz) = z(G) (xy)(x · yz) = z(G)

[x(y · xy)]z = z [(x · yx)y]z = z x(yx · z) = yz(G) (xy)(x · zy) = z(G)

(xy · xz)y = z(G) x(y · xz) = zy(G) x(yy · xz) = z [x(y · yx)]z = z

[(x · yy)x]z = z xy · yz = xz(G) x[(yy · z)x] = z x(yy · z) = zx

x · yz = xy · z(G) x(y · zx) = yz(G) xy · zx = yz(G) x · yz = xz · y(G)

xy · zx = zy(G) x · yz = y · zx(G) xy · z = y · zx(G)

Table 1.

Those of the identities in Table 1 which, according to Theorem 4.2 of [3], imply
that the quasigroup is a group are marked with a superscript (G).

2. Realization of group laws

We show in this section that, of the 16 laws which imply that a quasigroup
satisfying one of them is a group, all those which are not balanced identities (as
defined by Sade [4]) imply that the quasigroup is an abelian group of exponent
two (that is, each of its non-identity elements has order two) and that, of the
remaining four which are balanced, three imply that the group is abelian.

We begin with two lemmas, one new and one well-known.

Lemma 2.1. Every unbalanced identity which involves three variables each oc-

curring twice and which forces a quasigroup to be a loop or group also forces every

non-identity element to have order two.

Proof: Since the identity is unbalanced, one of the variables, say z, must occur
twice on one side of the identity and not at all on the other side. On choosing
each of the other two variables to be the identity element e, we get zz = e for
every choice of z. �

Lemma 2.2. A group G all of whose non-identity elements have order two is

abelian.

Proof: Let a, b ∈ G. Then ab ∈ G and so (ab)(ab) = e, whence aababb = aeb.
That is, ba = ab. �

Theorem 2.3. The twelve laws listed in Table 2 imply that a quasigroup which

satisfies any one of them is an abelian group of exponent two.

Proof: We assume that the computer-generated results of Fiala [3] are correct.
(See Section 5 of this paper for humanly-comprehensible proofs of some of these
results.) Since each of the laws listed in Table 2 is unbalanced, the result follows
immediately from Lemmas 1 and 2 together. �
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x[(xy · z)y] = z x[y(xy · z)] = z x(yx · yz) = z (xy)(x · yz) = z

x(yx · z) = yz (xy)(x · zy) = z (xy · xz)y = z x(y · xz) = zy

xy · yz = xz x(y · zx) = yz xy · zx = yz xy · zx = zy

Table 2.

Theorem 2.4. Each of the laws x · yz = xy · z (L8.1), x · yz = xz · y (L8.4),
x · yz = y · zx (L9.2) and xy · z = y · zx (L9.3) implies that a quasigroup which

satisfies it is a group. Each of the last three implies that the group is necessarily

abelian.

Proof: The first law is the associative law so any quasigroup which satisfies it
is a group.

Since we are assuming (from [3]) that the associative law holds3, the law L8.4
implies that x(yz) = x(zy) and so yz = zy. Similarly, L9.2 implies that x(yz) =
(yz)x or that xu = ux for arbitrary elements x, u. L9.3 likewise implies that
x(yz) = (yz)x. �

3. Realization of loop laws

In this section, we separate the 19 laws of Table 1 which force a quasigroup to
be a loop, but not necessarily a group, into five subsets according to the variety
of loops which they define.

Again, we begin with a lemma.

Lemma 3.1. (a) A loop L of exponent 2 which satisfies the relation u · uv = v

for all u, v ∈ L (left inverse property) is a left alternative loop; and conversely.

(b) One which satisfies the relation u ·vu = v or the relation uv ·u = v (crossed

onverse property) is a medial alternative loop.

Proof: (a) If a loop has exponent 2, u · uv = v ⇔ u · uv = uu · v since uu = e.

(b) The relation u · vu = v ⇔ vRuLu = v ⇔ RuLu = Id ⇔ LuRu = Id ⇔

vLuRu = v ⇔ uv · u = v and so u · vu = uv · u. �

Theorem 3.2. A loop defined by any one of the laws listed in Table 3 is a left

alternative loop of exponent 2 or, equivalently, is a loop of exponent 2 with the

left inverse property.

Proof: We use Lemmas 2.1 and 3.1(a). For L2.1, (x·xy)y = e = yy so x·xy = y.
A similar argument can be used for L6.4. �

3The truth of this follows immediately from the fact that each of these laws is balanced. See
Section 4.
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x[x(yy · z)] = z (L1.2) (xx)(y · yz) = z (L1.3) x(yy · xz) = z (L6.3)
[(x · xy)y]z = z (L2.1) x · xy = zz · y (L3.2) [x(y · yx)]z = z (L6.4)

Table 3.

Theorem 3.3. A loop defined by any one of the laws listed in Table 4 is a crossed

inverse property loop of exponent 2. Also, it satisfies the medial alternative law.

Proof: We use Lemmas 2.1 and 3.1(b) and, for L3.4, L4.1, L5.1, L5.2, we use
variants of the argument for L2.1 in Theorem 3.2. �

(xx)(y · zy) = z (L2.4) (xx · yz)y = z (L3.1) x[(yy · z)x] = z (L7.3)
xx · y = z · yz (L2.2) x(y · xy) = zz (L3.4) x(yx · y) = zz (L4.1)
[x(y · xy)]z = z (L5.1) [(x · yx)y]z = z (L5.2)

Table 4.

Theorem 3.4. Each of the laws [x(x ·yy)]z = z (L1.4) and [(x ·yy)x]z = z (L7.1)
defines and is realized by any loop of exponent 2. Each of the laws (xx · y)z = zy

(L3.3) and x(yy · z) = zx (L7.4) defines and is realized by any commutative loop

of exponent 2.

Proof: Use Theorem 4.1 of [3] and Lemma 2.1 above. �

Theorem 3.5. The law xx · y = x · yx (L1.1) defines a variety of loops which are

not necessarily of exponent 2. However, every loop of exponent 2 which has the

crossed inverse property is a realization of this law.

Proof: The existence of proper loops not of exponent 2 which satisfy L1.1 is
shown by Figure 1 which gives the multiplication table of the smallest such loop.
Moreover, every abelian group satisfies this law. �

Note that Sections 2 and 3 together account for, and provide realizations of
the loops/groups defined by, all 35 of the laws listed in Table 1.

4. Further comments on the short identities which force a quasigroup

to be a loop or group

We observe that, in fact, any commutative loop whose non-identity elements
have order two and which satisfies u · uv = v for all u, v ∈ Q is a realization of
every one of the loops listed in Theorem 4.1 of [3] which is not a group. Such
a loop (L, ·) is a representation of a Steiner triple system S, where the elements
of S are the non-identity elements of L and u, v, w is a triple of the system if
u · v = w (and so u ·w = v since u · uv = v; also w · v = u since w ·wu = u). The
smallest such loop which is not associative has order 10. The author is indebted
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to Michael Kinyon for the latter information and for supplying the multiplication
table which we exhibit in Figure 2.

Figure 1 of the preceding section and the following information are also due to
Kinyon.4 The smallest LIP -loop (Theorem 3.2) of exponent two has order 6 and
is shown in Figure 3. The smallest CIP -loop (Theorem 3.3) of exponent two has
order 5 and is shown in Figure 4.

1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8
2 2 1 4 3 6 5 8 7
3 3 4 2 1 7 8 5 6
4 4 3 1 2 8 7 6 5
5 5 6 8 7 1 2 3 4
6 6 5 7 8 2 1 4 3
7 7 8 6 5 4 3 2 1
8 8 7 5 6 3 4 1 2

Figure 1

1 2 3 4 5 6 7 8 9 0
1 1 2 3 4 5 6 7 8 9 0
2 2 1 4 3 6 5 9 0 7 8
3 3 4 1 2 7 0 5 9 8 6
4 4 3 2 1 8 9 0 5 6 7
5 5 6 7 8 1 2 3 4 0 9
6 6 5 0 9 2 1 8 7 4 3
7 7 9 5 0 3 8 1 6 2 4
8 8 0 9 5 4 7 6 1 3 2
9 9 7 8 6 0 4 2 3 1 5
0 0 8 6 7 9 3 4 2 5 1

Figure 2

1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 1 4 3 6 5
3 3 5 1 6 2 4
4 4 6 5 1 3 2
5 5 4 6 2 1 3
6 6 3 2 5 4 1

Figure 3

1 2 3 4 5
1 1 2 3 4 5
2 2 1 4 5 3
3 3 5 1 2 4
4 4 3 5 1 2
5 5 4 2 3 1

Figure 4

We observe further that, of the 35 identities that force a quasigroup to be a loop
or group, 18 are of the form h(x, y, z) = z, where h(x, y, z) has one occurrence
of z and two each of x and y. Of these, six take the form [h(x, y)]z = z and so
imply that h(x, y) = e. The remaining 12 can be separated into four sets of three
equivalent identities, as we now show.

Remark. Surprisingly, the identities of the form LHS = z listed in Theorem 4.1
of [3] are all of one of the forms zLh(x,y) = z or zMaMbMc = z, where Ma is
either La or Ra and each of a, b, c is one of x, y, xx, yy, xy or yx. None is of the
form zMaMb = z, where each of a, b is as before or may involve three variable

4Kinyon obtained these results with computer aid, probably using mace4.



378 A.D.Keedwell

occurrences: for example, the identity [x(yy)](zx) = z (which is not one of the 35
identities in Table 1) can be written zRxLx(yy) = z.

We look first at the identity L1.2. This is x[x(yy · z)] = z or we may write it
in the form zLyyLxLx = z. Therefore, LyyLxLx = Id. That is, L−1

yy = LxLx and

L−1
x = LyyLx. So, LxLxLyy = Id and LxLyyLx = Id. Thence, zLxLxLyy = z

and zLxLyyLx = z. These are the identities (yy)(x · xz) = z (which is L1.3) and
x(yy · xz) = z (which is L6.3). Thus, L1.2 ⇔ L1.3 ⇔ L6.3.

Next, we look at the identity L2.4. This is (xx)(y · zy) = z or we may write
zRyLyLxx = z. Therefore, RyLyLxx = Id. That is, R−1

y = LyLxx and L−1
xx =

RyLy. So, LyLxxRy = Id and LxxRyLy = Id. Thence, zLyLxxRy = z and
zLxxRyLy = z. These are the identities (xx · yz)y = z (which is L3.1) and
y[(xx · z)y] = z (which is L7.3). Thus, L2.4 ⇔ L3.1 ⇔ L7.3.

Similarly, the group identities L2.3, L5.4 and L6.1 are equivalent and so too
are the group identities L4.2, L4.3 and L4.4, see Theorems 5.4 and 5.5 below.

There remains the question of finding humanly-comprehensible proofs that each
of the identities listed in Theorem 4.1 is necessarily a loop (or group).

Since each of the identities L8.1, L8.4, L9.2 and L9.3 of Theorem 2.4 is a
balanced identity in the sense of Sade [4] with a pair of variables separated on
one side and not on the other, as required by Taylor’s theorem (Taylor [5] and
(earlier) Belousov [1], [2]), it follows that a quasigroup which satisfies any one of
these is a group.

Also, for most of the other laws listed in Theorem 4.1 of [3], it is quite easy
to show that a quasigroup which satisfies that law is unipotent but usually less
easy to show that the element to which all squares are equal has to be an identity
element.

We provide a few examples of such proofs.

5. Some proofs

Firstly, we consider two examples of laws of the form [h(x, y)]z = z.

Theorem 5.1. A quasigroup (Q, ·) which satisfies either of the identities (A)
[x(x · yy)]z = z (L1.4) or (B) [x(y · yx)]z = z (L6.4) is necessarily a loop.

Proof (A): Let w 6= y, where w = x or w = z if (Q, ·) has only three elements.
Then

(1) [x(x · yy)]z = z = [x(x · ww)]z.

Right cancelling z, we get x(x · yy) = x(x · ww). Then, by left cancellation,
we get yy = ww = u say for all y, w ∈ Q and so the quasigroup is unipotent
and, in particular, uu = u. From (1), [x(xu)]z = z for all x, z ∈ Q. Putting
x = u and using the fact that uu = u, this gives uz = z and so u is a universal
left identity. But, from the same equation, x(xu) also is a universal left identity,
so x(xu) = u = xx by definition of u. Cancelling x, we get xu = x and so u
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is also a universal right identity. Therefore, the quasigroup is a loop and every
non-identity element has order two.

Proof (B): Let w 6= y as before, then we have

(1) [x(y · yx)]z = z = [x(w · wx)]z.

If we cancel z on the right and then x on the left, we get

(2) y · yx = w · wx

for all w, x, y ∈ Q. Put w = fx in (2), where (in Belousov’s notation) fv and
ev respectively denote the left and right local identities for the element v. We
deduce that y · yx = x for all x, y ∈ Q. Therefore, from (1), [xx]z = z for all
x, z ∈ Q. It follows that xx = yy = · · · = u say is a universal left identity and
that the quasigroup is unipotent. Thence, from (2), y ·yu = u ·uu = uu = u = yy.
Cancelling y on the left, we get yu = y and so u is also a universal right identity.
Therefore, the quasigroup is a loop and every non-identity element has order
two. �

Secondly, we consider the four sets of three equivalent laws mentioned earlier.

We begin by providing humanly comprehensible proofs that a quasigroup which
satisfies any one of identities L1.2, L1.3, L6.3 and L2.4, L3.1, L7.3 is a loop.

Theorem 5.2. A quasigroup (Q, ·) which satisfies any one of the equivalent

identities L1.2, L1.3, L6.3 is a loop.

Proof: We consider the identity L1.3: namely,

(A) (yy)(x · xz) = z.

Put x = fz in (A). Thence, (yy)z = z and so yy = fz for all y, z ∈ Q. Thus,
all squares are equal to fz. Since z is arbitrary, fz is a universal left identity, f

say, and xx = yy = · · · = f .
Now put z = ex in (A). We get (yy)(xx) = ex and so ex = ff = f . That is,

the right local identity of each element x is equal to the universal left identity f .
Thus, f is a universal two-sided identity and (Q, ·) is a loop in which every non-
identity element has order two. Moreover, because x · xz = z from (A), the loop
has the left inverse property. �

Theorem 5.3. A quasigroup (Q, ·) which satisfies any one of the equivalent

identities L2.4, L3.1, L7.3 is a loop.

Proof: We consider the identity L2.4: namely,

(B) (xx)(y · zy) = z.

Put z = fy in (B). Thence, (xx)(yy) = fy for all x, y ∈ Q. We deduce that
(xx)(yy) = fy = (ww)(yy) and so ww = xx = u say.
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From (B), (xx)(x · xx) = x. That is, u(xu) = x for all x.
Now put y = u in (B) to get (xx)z = z. That is, uz = z and so u = fz for all

z ∈ Q. In other words, u = ww = xx = . . . is a universal left identity. Therefore,
from (B), y ·zy = z for all y, z. Put y = ez in the last equality. This gives ezz = z

and so ez = u for all z. Consequently, u is a universal right identity. Because
y · zy = z for all y, z, (Q, ·) is a loop with every non-identity element of order two
and which satisfies the crossed inverse property. �

The next theorem provides a humanly comprehensible proof that each of the
identities L2.3, L5.4 and L6.1 forces a quasigroup to be a group.

Theorem 5.4. A quasigroup (Q, ·) which satisfies any one of the identities (A)
x[(xy · z)y] = z (L2.3) or (B) (xy)(x · zy) = z (L5.4) or (C) (xy · xz)y = z (L6.1)
is a group.

Proof: The identity (A) can be written as LxyRyLx = Id which implies that
RyLxLxy = Id and that LxLxyRy = Id; so the identities (A), (B) and (C) are
equivalent.

The identity (C) implies that (xy · xz)y = z = (wy ·wz)y for all w, x, y, z ∈ Q.
By right cancellation of y, we get

(1) xy · xz = wy · wz.

In particular,

(2) xx · xx = wx · wx.

Put w = fx in (2). This gives,

(3) xx · xx = xx

and so, from (2), xx = wx · wx. For any v ∈ Q, there exists an element w such
that wx = v and so xx = vv for every v ∈ Q. Let xx = yy = · · · = u. Then,
putting y = z = x in the identity (C), we have (xx ·xx)x = x. That is, (uu)x = x

and so ux = x for all x ∈ Q. Therefore, u is a universal left identity.
Put x = u in the identity (C). Thence,

(4) (yz)y = z for all y, z ∈ Q.

From the identity (B), we get [(xy)(x · zy)](xy) = z(xy) by multiplying on the
right by xy. So, by (4),

x · zy = z · xy
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for all x, y, z ∈ Q. This is a balanced identity5 and so, by [5], (Q, ·) is a group.
It follows that the identity element u is two-sided6 and that every non-identity
element has order two. �

Similarly, the next theorem provides a humanly comprehensible proof that each
of the identities L4.2, L4.3 and L4.4 forces a quasigroup to be a group.

Theorem 5.5. A quasigroup (Q, ·) which satisfies any one of the identities (A)
x[y(xy · z)] = z (L4.2) or (B) y(xy · xz) = z (L4.3) or (C) (xy)(x · yz) = z (L4.4)
is a group.

Proof: The identity (A) can be written as LxyLyLx = Id which implies that
LxLxyLy = Id and that LyLxLxy = Id; so the identities (A), (B) and (C) are
equivalent.

The identity (B) implies that y(xy · xz) = z = y(wy ·wz) for all w, x, y, z ∈ Q.
By left cancellation of y, we get

(1) xy · xz = wy · wz.

In particular,

(2) xx · xx = wx · wx.

Put w = fx in (2). This gives,

(3) xx · xx = xx

and so, from (2), xx = wx · wx. For any v ∈ Q, there exists an element w such
that wx = v and so xx = vv for every v ∈ Q. Let xx = yy = · · · = u. Then,
putting y = z = x in the identity (B), we have x(xx ·xx) = x. That is, x(uu) = x

and so xu = x for all x ∈ Q. Therefore, u is a universal right identity.
Next, put z = x = u in the identity (B). We get y(uy · u) = u or y(uy) = u.

But yy = u and so uy = y for every y ∈ Q, whence u is also a universal left
identity.

Put x = u in the identity (B). Thence,

(4) y(yz) = z for all y, z ∈ Q.

From the identity (C), we get (xy)[(xy)(x · yz)] = (xy)z by multiplying on the
left by xy. So, by (4),

x · yz = xy · z

for all x, y, z ∈ Q. This is the associative law and so (Q, ·) is a group. �

5It appears to be different from those listed in Theorem 4.1 of [3]. In particular, it differs
from L9.2 because the elements of the LHS and RHS are not in the same cyclic order.

6This can also be shown directly from the identity (B) because (xx)(x · xx) = x and xx = u

together imply that u(xu) = x or that xu = x for all x ∈ Q.
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Finally, we consider a sample of the laws listed in Theorem 4.1 of [3] which are
not of the form LHS = z and are not balanced.

Theorem 5.6. A quasigroup (Q, ·) which satisfies either of the identities (A)
(xx·y)z = zy (L3.3) or (B) x(y·xy) = zz (L3.4) is necessarily a loop. A quasigroup

which satisfies (C) x(yx · z) = yz (L5.3) is a group.

Proof (A): Let w 6= x, where w = y or w = z if (Q, ·) has only three elements
as before. Then

(1) (xx · y)z = zy = (ww · y)z.

By right-cancelling z and then y in the equality (xx · y)z = (ww · y)z, we deduce
that xx = ww = u say for all x, w ∈ Q and so the quasigroup is unipotent and,
in particular, uu = u. Then, from (1),

(2) (uy)z = zy

for all y, z ∈ Q. Put y = u in (2). Thence,

(3) uz = zu

for all z ∈ Q. Put z = u in (2). We get (uy)u = uy. Since uy = yu from
(3), (uy)u = yu and so, by right cancellation of u, uy = y. Therefore, u is a
universal left identity. By virtue of (3), it is also a universal right identity. Thus,
the quasigroup is a loop and every non-identity element has order two. Moreover,
by (2), it is commutative.

Proof (B): Put z = x in (B). We get x(y · xy) = xx and so

(1) y · xy = x

for all x, y. Hence, from (B), xx = zz = · · · = u say, implying that the quasigroup
is unipotent7.

From (1), x ·xx = x. That is, xu = x for all x, so u is a universal right identity.
Put y = u and z = x in (B). This gives x(u ·xu) = xx. Cancelling x on the left

and replacing xu by x, we get ux = x and so u is also a universal left identity.
Thus, the quasigroup is a loop whose non-identity elements have order two and

which has the crossed inverse property (by virtue of the equality (1)).

Proof (C): Put x = z in (C). This gives z(yz · z) = yz. But, given z ∈ Q, we
may choose y ∈ Q such that yz = w for any element w ∈ Q. Thus, z(wz) = w for
all w, z ∈ Q. We note that

z(wz) = w ⇔ RzLz = Id ⇔ LzRz = Id ⇔ (zw)z = w.

7The form of the given identity (B) itself shows that all squares are equal.
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Now multiply (C) on the right by x. We get [x(yx · z)]x = (yz)x and so, using
the equality just proved, yx · z = yz · x. This equality is a balanced identity and
so (Q, ·) is a group. �

There exist similar humanly-comprehensible proofs for the remaining laws ex-
cepting only L1.1. The latter involves only two variables and requires a slightly
different argument with which we end this paper.

Theorem 5.7. A quasigroup (Q, ·) which satisfies the identity xx · y = x · yx

(L1.1) is necessarily a loop.

Proof: First put y = fx in L1.1. We get xx · fx = xx, so

(1) fx = exx.

Next, put x = ey in L1.1. We get eyey · y = eyy, so

(2) eyey = ey.

From (1) and (2), fxfx = exxexx = exx = fx.
Now put x = fx in L1.1. We get fxfx · y = fx · yfx. That is, fxy = fx · yfx

whence, by left cancellation, y = yfx. Thus, fx = ey for all x, y ∈ Q.
Since both x and y are arbitrary, this implies that all left local identities are

equal to all right local identities and so there is a universal two-sided identity.
Consequently, Q is a loop. �

Acknowledgment. The author wishes to thank the anonymous referee for a
number of helpful suggestions which have led to an increase in the scope and
usefulness of this paper.

References

[1] Belousov V.D., Balanced identities in quasigroups (in Russian), Mat. Sb. (N.S.) 70 (112)
(1966), 55–97.

[2] Belousov V.D., A theorem on balanced identities (in Russian), Mat. Issled. 71 (1983), 22–24.
[3] Fiala N.C., Short identities implying that a quasigroup is a loop or group, Quasigroups

Related Systems 15 (2007), 263–271.
[4] Sade A., Entropie demosienne de multigroupöıdes et de quasigroupes, Ann. Soc. Sci. Brux-
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