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Abstract. The bioelectric current dipole model is important both theoretically and com-
putationally in the study of electrical activity in the brain and stomach due to the resem-
blance of the shape of these two organs to an ellipsoid. To calculate the magnetic field B
due to a dipole in an ellipsoid, one must evaluate truncated series expansions involving
ellipsoidal harmonics Em

n , which are products of Lamé functions. In this article, we extend
a strictly analytic model (G. Dassios and F. Kariotou, J. Math. Phys. 44 (2003), 220–241),
where B was computed from an ellipsoidal harmonic expansion of order 2. The present
derivations show how the field can be evaluated to arbitrary order using numerical pro-
cedures for evaluating the roots of Lamé polynomials of degree 5 or higher. This can be
accomplished using an optimization technique for solving nonlinear systems of equations,
which allows one to acquire an understanding of the truncation error associated with the
harmonic series expansion used for the calculation.
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1. Introduction

The ellipsoidal model is important in magneto- and electrogastrography (MGG,

EGG) and magnetoencephalography (MEG) due to the closer resemblance of this

geometric shape to the anatomy of both the brain and stomach compared to the

spherical and conoidal models. In the case of the brain, electrical activity can be

modeled using dipoles whose locations within the ellipsoid are almost unconstrained.

In gastric modelling, on the other hand, although the stomach interior does not

possess the same anatomical and physiological characteristics as the brain, one can

*Funding was provided by the National Institute of Health, Grant No. 1RO1 DK 58697
and by the Veterans’ Affairs Research Service.
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nevertheless use dipoles to model gastric electrical activity (GEA) provided that the

dipoles within the ellipsoid are sufficiently close to the inner surface of this idealized

body [16]. In this manner, one can use dipoles to simulate electrical activity in

the smooth muscle syncytium of the stomach and at the same time account for the

thickness of the gastric wall in a reasonable fashion that does not compromise the

anatomical constraints of the modeling problem.

In human brain studies [12], bioelectric activity has been quantified directly

via EEG and MEG [1], [24]. In MGG, the phenomenon studied is GEA, which is

generated by the periodic depolarization and repolarization of cells in the stom-

ach [3]. GEA has its origin in the gastric corpus and can be recorded as a slow

wave that propagates aborally towards the pylorus through the electric syncytium

of the stomach [20]. In the quasistatic approximation, one or several current dipoles

can be used to model this phenomenon. A current dipole Q is an approximation

for a current source recorded at a distant field point and represents a concentration

of impressed current density Ji to a point r0. Anomalies in the characteristics of

dipole propagation have been studied [20] and their relevance to the field of med-

ical diagnosis has been the focus of active research [9]. In particular, the use of

superconducting quantum interference device (SQUID) magnetometers, pioneered

by Cohen et al. in the 1970s [4], [5], [6], has proven to be very suitable for detecting

and studying the GEA both in healthy and diseased subjects [16]. One practical

advantage of using SQUIDs for recording biological data is the possibility of studying

gastrointestinal electromagnetic phenomena noninvasively. Studies of such nature

are encouraging because they offer the ability to characterize abnormal current

propagation, which is associated with pathological conditions such as gastroparesis

and ischemia [15].

The current dipole approximation has been widely employed in biomagnetism to

model biologic electrical activity [23]; for this purpose, the stomach has been sim-

ulated using cylinders, cones, conoids, ellipsoids and realistic models [7]. Among

others, Mirizzi et al. proposed a mathematical model to simulate the extracellular

electrical control activity where an annular band polarized by electric current dipoles

moves distally from the mid-corpus to the terminal antrum [21], [22]. Mintchev and

Bowes later constructed a conoidal dipole model of the electrical field produced by

the human stomach, where spontaneous depolarization and repolarization due to

ionic exchange were both simulated [19]. In 2003, Irimia and Bradshaw constructed

a model of the stomach in which an annular band of dipoles advances along a trun-

cated ellipsoid [14], thus simulating the electric potential and electric field recorded

by a nasogastric probe.

To compute the electric potential Φ and magnetic field B due to an electric current

dipole located in an ellipsoid, one must evaluate a truncated expansion of normal

ellipsoidal harmonic terms Em
n . This was first proposed by Kariotou [17] and Das-
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sios [8], who derived formulas for Φ up to order 2 in Em
n . In our most recent study [15],

the electric field due to a dipole in an ellipsoid was computed in a generalized ap-

proach where the corresponding expansion can be carried out to arbitrary degree. In

this article, we present a similar mathematical derivation for evaluating the magnetic

field B. In the next section, a minimal mathematical description of our formalism

is provided; we thereafter derive formulas for the magnetic field to arbitrary order

in the ellipsoidal harmonics. The reader is referred to [15] for a similar derivation of

the electric field and potential.

2. Mathematical formalism

The standard equation of the ellipsoid in the Cartesian coordinate system

(x1, x2, x3) = (x, y, z) is given by

(1)
x2

1

α2
1

+
x2

2

α2
2

+
x2

3

α2
3

= 1,

where 0 < α3 < α2 < α1 < +∞ are the ellipsoidal semiaxes. The ellipsoidal sys-

tem [17], [13], on the other hand, has coordinates (̺, µ, ν) with semifocal distances h1,

h2 and h3, defined as

h2
1 = α2

2 − α2
3,(2)

h2
2 = α2

1 − α2
3,(3)

h2
3 = α2

1 − α2
2.(4)

Conversion between the two systems is made using

x1 =
̺µν

h2h3
,(5)

x2 =

√

̺2 − h2
3

√

µ2 − h2
3

√

h2
3 − ν2

h1h3
,(6)

x3 =

√

̺2 − h2
2

√

h2
2 − µ2

√

h2
2 − ν2

h1h2
,(7)

where ̺ ∈ [h2,+∞), µ ∈ [h3, h2] and ν ∈ [−h3, h3]. In the ellipsoidal system, the

Laplace equation assumes the form

(8) (µ2 − ν2)
∂2Φ

∂β2
+ (̺2 − ν2)

∂2Φ

∂ϕ2
+ (̺2 − µ2)

∂2Φ

∂χ2
= 0,

where Φ is the electric potential and β, γ and χ can be written as definite elliptic

integrals of ̺, µ and ν, respectively.
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To calculate the electric potential Φ for an ellipsoid, separation of variables for

the Laplace equation in ellipsoidal coordinates leads to the Lamé equation, which

involves Lamé polynomials that form the normal interior harmonic function

(9) Em
n (̺, µ, ν) = Em

n (̺)Em
n (µ)Em

n (ν)

where n = 0, 1, 2, . . . and m = 1, 2, . . . , 2n + 1. There are four classes or species of

Lamé functions, denoted by K(ηi), L(ηi), M(ηi) and N(ηi), respectively, where ηi is

any of the coordinates ̺, µ or ν. These are referred to as Lamé functions of the first

(as opposed to the second) kind; they can be written as

K(ηi) =

r+1
∑

k=0

akη
n−2k
i ,(10)

L(ηi) =
√

η2
i − h2

3

n−r
∑

k=0

akη
n−(k+1)
i ,(11)

M(ηi) =
√

h2
2 − η2

i

n−r
∑

k=0

akη
n−(k+1)
i ,(12)

N(ηi) =
√

(η2
i − h2

3)(η
2
i − h2

2)

r
∑

k=0

akη
n−2(k+1)
i .(13)

The index r in the above summations is given by

(14) r =

{

1
2n for n even,

1
2 (n− 1) for n odd,

where n is the degree of the ellipsoidal harmonic Em
n . For a harmonic of degree n,

2m + 1 associated Lamé functions exist; thus there are r + 1 functions of type K,

n− r functions of type L, n− r functions of type M and r functions of type N for

a total of 2m+ 1 Lamé functions of degree n.

Surface ellipsoidal harmonics are products of the form Em
n (µ)Em

n (ν) and they refer

to the ellipsoidal surface ̺ = ̺0. The normalization functions γ
m
n associated with

these harmonics are written as

(15) γm
n =

∮

̺=̺0

[Em
n (µ)Em

n (ν)]2
√

(̺2
0 − µ2)(̺2

0 − ν2)
dS,

where

(16) dS = dµ dν(µ2 − ν2)

√

(̺2 − µ2)(̺2 − ν2)

(µ2 − h2
3)(h

2
2 − µ2)(h2

3 − ν2)(h2
2 − ν2)
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is the ellipsoidal surface element [2]. Lamé showed that the roots of the functions

bearing his name must all be real, distinct and located in the interval (−α2
1, α

2
3). In

ellipsoidal coordinates, the harmonics can be written as

(17) Em
n (r) = Lij

m
∏

k=1

Ψk,

where Lij denotes the appropriate entry in the table L given in ellipsoidal coordi-

nates, where

(18) L =











̺
√

̺2 − h2
3

√

̺2 − h2
2

√

(̺2 − h2
3)(̺

2 − h2
2)

1 µ
√

µ2 − h2
3

√

h2
2 − µ2

√

(µ2 − h2
3)(h

2
2 − µ2)

ν
√

h2
3 − ν2

√

h2
2 − ν2

√

(h2
3 − ν2)(h2

2 − ν2)











and

(19) Ψk = (̺2 − ψ2
k)(µ2 − ψ2

k)(ν2 − ψ2
k).

The columns in L correspond to each of the function types K, L, M and N , while

the rows refer to the coordinates in the chosen system, i.e. ̺, µ or ν. To evaluateEm
n , one must select appropriate entries in L for each coordinate and multiply the

resulting quantity by the product
∏

k

Ψk. To determine the values of i and j based

on the value of n, one can make use of the fact that the first r + 1 functions are of

type K, the following n− r are of type L, etc., as explained before.

In the above equations, ψk are the roots of the corresponding function Ψk(̺, µ, ν)

expressed in ellipsoidal coordinates. The normal unit vector with respect to the

ellipsoidal surface is defined as

(20) n̂ = Dn ˆ̺

with

(21) Dn =
α2α3

√

(α2
1 − µ2)(α2

1 − ν2)
.
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3. Derivation of the magnetic field B

The mathematical theory of ellipsoidal harmonics is of great interest in a variety

of scientific areas, including gravitational astrophysics [26], physical geodesy [10] and

numerical analysis, e.g. for obtaining solutions to the ellipsoidal Stokes problem [25].

In biophysics, it is useful for computing the electric potential, electric field and

magnetic field due to one or several quasistatic current dipoles located in an organ

whose shape is approximately ellipsoidal, such as the human brain or stomach.

Consider a point r′ located inside a body of volume V , where a primary current

dipole source with moment Q is also located. The physics of this problem [28], [11]

allows one to model the phenomenon at hand as a concentration of the impressed

current Ji to a point r0 using the Dirac delta functional δ(r − r0) via the algebraic

expression

(22) Ji(r) = Qδ(r − r0).

The electric field E induced by the impressed current creates an induction current

(23) Jd(r) = σE(r),

where σ is the tissue conductivity. Since anatomical and physiological characteristics

of the human body allow for such currents to be considered quasistatic [12], [18], [28],

[29], the electric field is irrotational and Poisson’s equation can be used to find the

electric potential Φ.

Deriving a generalized expression for the magnetic field B is somewhat more te-

dious. Because much of the underlying theory required for this task has already been

derived by Sarvas [28], we only summarize it here. The magnetic field due to some

current density J is given by the law of Biot and Savart:

(24) B(r) =
µ0

4π

∮

Ω

J(r′) ×
r − r′

|r − r′|3
d3r′,

where Ω is the support of J and µ0 is the permeability of free space. An important

detail concerning the above formula and the remainder of this section pertains to

the difference between r′ and r0. The variable r′ refers to the integration space Ω,

whereas r0 is related to the position of the dipole. Thus, r
′ is used in association

with the current density J over the entire volume of the ellipsoid, whereas r0 is used

for the current dipole that approximates this density. The conceptual differences

associated with this aspect of the theory will be explained below in more detail. In

the quasistatic approximation−which is justified here [28], [17], [8]—one of Maxwell’s

equation reads

(25) J = Ji + Jd = Ji + σE,
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where σE is the Ohmic induction current previously described. Replacing J in Eq. 24

by the quantities on the right-hand side above and using E− = −∇Φ− yields the

magnetic field as an integral over the volume V of the ellipsoid:

(26) B(r) =
µ0

4π

∮

V

[Ji(r
′) − σ∇Φ−(r′)] ×

r − r′

|r − r′|3
d3r′.

Using the definition of a current dipole Q located at r0 given before, i.e.

(27) Ji(r) = Qδ(r − r0),

it can be shown (see [28] for details) that the magnetic field is given by

(28) B(r) =
µ0

4π

Q×
r − r0

|r − r0|3
− σ

µ0

4π

∮

V −

∇Φ−(r′) ×
r− r′

|r − r′|3
d3r′.

From the above formula, one can see that the variable r0 is associated with the

dipole location, whereas r′ is used in the integral over the entire ellipsoidal volume,

hence the difference between the two. One can apply Stokes’ theorem to convert this

integral into a surface integral, with the result

(29) B(r) =
µ0

4π

Q×
r − r0

|r − r0|3
− σ

µ0

4π

∮

S

Φ−(r′)n̂ ×
r − r′

|r − r′|3
dS′.

Our task is now to express the above equation for B in terms of normal ellipsoidal

harmonic functions Em
n . Let I

m
n be elliptic integrals of the form

(30) Im
n (̺) =

∫

∞

̺

dt

[Em
n (t)]2

√

t2 − h2
2

√

t2 − h2
3

with n = 0, 1, 2, . . ., and m = 1, 2, . . . , 2n+ 1. One can use the identity

(31) ∇
′

1

|r − r′|
=

r − r′

|r − r′|3

together with the result

(32)
1

|r − r′|
=

∞
∑

n=0

2n+1
∑

m=1

4π

γm
n

Im
n (̺)Em

n (r′)Em
n (r)

derived in [8] to conclude that

(33)
r− r′

|r − r′|3
=

∞
∑

n=0

2n+1
∑

m=1

4π

γm
n

Im
n (̺)Em

n (r)∇′Em
n (r′).
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We can also compute the useful quantity

p ≡ n̂ ×
r − r′

|r− r′|3
(34)

= Dn(r′)

∞
∑

n=0

2n+1
∑

m=1

4π

γm
n

Im
n (̺)Em

n (r)[ ˆ̺′ × ∇
′Em

n (r′)].(35)

The unit vector ˆ̺′ comes from the definition of n̂ in ellipsoidal coordinates given in

Eq. 20. This unit vector refers to the surface of the ellipsoid being integrated over

in Eq. 29; because the integration variable there is dS′ as a function of (̺′, µ′, ν′),

the unit normal n̂ is also a function of the primed variables. This is the motivation

for writing ˆ̺′ rather than ˆ̺ in the above expression.

Before evaluating the integral over the closed surface in Eq. 29, we note that its

variable of integration is r′. It was shown by Kariotou [17] that the exterior electric

potential due to a dipole in the ellipsoid can be written as

Φ−(r) = g1
0 +

∞
∑

n=1

2n+1
∑

m=1

1

σγm
n

[Q · ∇r0
Em

n (r0)]Em
n (r)(36)

×

[

Im
n (̺) − Im

n (α1) +
1

α2α3Em
n (α1)

(dEm
n

dα1

)

−1
]

,

where g1
0 is a constant. The only quantities in Φ−(r′) and p that are dependent on

this variable are, respectively, Em
n (r′) (from making the substitution r → r′ in Eq. 36)

and Dn(r′)[̺′ × ∇
′Em

n (r′)]. Thus the constants and functions involving only r can

be factored out from the integral. To ease our calculation, let us define the following

functions:

am
n (r) =

4π

γm
n

Im
n (̺)Em

n (r),(37)

bmn (r′) = Dn(r′)[ ˆ̺′ × ∇
′Em

n (r′)],(38)

cmn (r0) =
1

σγm
n

Q · ∇r0
Em

n (r0),(39)

dt
s(̺;αi) = It

s(̺) − It
s(α1) +

1

α2α3Et
s(α1)

(dEt
s

dα1

)

−1

.(40)

This allows us to write

Φ−(r, r′, r0) = b10 +

∞
∑

n=0

2n+1
∑

m=0

Em
n (r′)cmn (r0)d

m
n (̺;αi),(41)

p(r, r′) =

∞
∑

n=0

2n+1
∑

m=0

am
n (r)bmn (r′).(42)
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The integrand over the surface of the ellipsoid in Eq. 29 can now be written as

Φ−p = b10

∞
∑

n=0

2n+1
∑

m=0

am
n (r)bmn (r′)(43)

+

∞
∑

n=0

2n+1
∑

m=0

am
n (r)bmn (r′)

∞
∑

s=0

2s+1
∑

t=0

E t
s (r′)cts(r0)d

t
s(̺;αi).

From a computational perspective, it is useful to assign the value 0 to the constant b10
because this allows one to drop one infinite summation from the above equation.

Carrying out the integration over the ellipsoidal surface for which ̺ = ̺0, we obtain

(44)

∮

̺0

Φ−p dS′ =

∞
∑

n=0

2n+1
∑

m=0

∞
∑

s=0

2s+1
∑

t=0

am
n (r)cts(r0)d

t
s(̺0;αi)

∮

̺0

bmn (r′)E t
s (r′) dS′.

Note the dependence of dt
s on ̺0 as a constant rather than on ̺ as a variable since the

value of this coordinate is constant on the surface. A simplification to the equation of

the magnetic field given above comes from contracting the two infinite summations

over n and s in the same equation using the convolution method for sequences that

one can derive from Cauchy’s product formalism [27]. This method, although typi-

cally used in the context of complex analysis for power series, is nevertheless perfectly

applicable to real sequences. Therefore, recalling the Cauchy product formula

(45)

( ∞
∑

n=1

an

)

·

( ∞
∑

s=1

bs

)

=

∞
∑

n=1

n
∑

p=1

an−pbp,

we can relabel the subscripts in Eq. 48 appropriately, and simplify our notation by

defining the function

(46) ζmt
ns ≡ am

n−s(r)c
t
s(r0)d

t
s(̺0;αi)

∮

̺0

bmn−s(r
′)E t

s(r′) dS′.

This leads us to the following expression for our integral:

(47)

∮

̺0

Φ−p dS′ =

∞
∑

n=0

n
∑

s=0

2(n−s)+1
∑

m=0

2s+1
∑

t=0

ζmt
ns .

In addition to making the notation more compact and easier to follow, this formu-

lation removes the additional and unnecessary degree of freedom s from the double

infinite summation for B. The expression involving the magnetic field is given by

1

µ0
B(r) =

∞
∑

n=0

2n+1
∑

m=1

1

γm
n

Im
n (̺)Em

n (r)[Q × ∇r0
Em

n (r0)](48)

−

∞
∑

n=0

n
∑

s=0

2(n−s)+1
∑

m=0

2s+1
∑

t=0

ζmt
ns .
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This can also be written in the elegant factorized form

(49)
1

µ0
B(r) =

∞
∑

n=0

2n+1
∑

m=1

[

1

γm
n

Im
n (̺)Em

n (r)Q × ∇r0
Em

n (r0) −

n
∑

s=0

2(n−s)+1
∑

t=1

ζmt
ns

]

,

which completes our derivation of the magnetic field.

A final remark is in place concerning the computational complexity of evaluat-

ing B. Upon examining the formulas for Φ and B, it is not difficult to realize

that calculating the magnetic field is the most computationally-intensive task (since

it effectively involves two infinite summation even though the Cauchy summation

formula can be used to remove one of them). Let u represent the degree of the

highest term used in each expansion, i.e. the highest selected value of n, and let

τ represent the time needed to compute either one of Φ or B for some particular

set of values for n and m. Using Big-Oh notation, computing Φ and E requires
u
∑

n=1
(2n + 1)τ = (u2 + 2u)τ , i.e. the algorithm is O(u2). In the case of comput-

ing the magnetic field, there are two degrees of freedom because n and s can be

chosen arbitrarily. If the assumption is made that the two are equal, we can let

τ ′ ≡ (u2 + 2u)τ in the above equation and the algorithm is then found to be O(u4).

Thus the calculation of the magnetic field is significantly more intensive.

Fig. 1 depicts the results of a simple numerical study regarding the accuracy of

the expansion in Eq. 49. Physical parameter values (as specified in the caption) were

selected so that the situation described resembles closely the experimental protocol

of MGG or MEG (the case discussed is identical to that in [16], where images are

also provided). What the figure demonstrates is that, for points located farther and

farther away from the ellipsoid, the contribution of higher and higher order terms

decreases. Close to the surface of the ellipsoid, however, these terms can have a

significant contribution. In conclusion, for applications where reasonable numerical

precision is needed for the calculation of B, a large expansion (n > 10) may be

required. What this implies is that, if the ellipsoidal approximation to the brain or

stomach is to be used effectively in similar simulation studies, low-order expansions

(e.g. n < 3) may be insufficient.

Acknowledgements.

I am grateful to C.A. Brau for his review of the manuscript.

140



Figure 1. Numerical accuracy results for the expansion in Eq. 49. The independent vari-
able nmax refers to the size of the expansion over n in Eq. 49, i.e. B/µ0 =
nmax∑

n=0

(. . .). Let B(i) refer to the value of the magnetic field computed for an

expansion over n = 0, . . . , i. The quantity on the vertical axis was computed ac-
cording to the formula [B(nmax)−B(i)]/B(nmax). In other words, it represents
the percentage difference between B(i) and the most accurate value of B that
was computed for this numerical example, namely B(nmax). The results pre-
sented are for an ellipsoid of dimensions (α1, α2, α3) = (7.5, 5.0, 4.0) cm located
at the origin (this is identical to the case discussed in [16], where images are also
provided). The three curves represent values computed for a point A located
on the Cartesian z axis at a distance of 1 cm, 10 cm and 1m, respectively, from
the upper extremity of the ellipsoid (i.e. the point on the surface of the ellipsoid
closest to A).
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