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Abstract. This paper deals with the spectral study of the streaming operator with general
boundary conditions defined by means of a boundary operator K. We study the positivity
and the irreducibility of the generated semigroup proved in [M. Boulanouar, L’opérateur
d’Advection: existence d’un C0-semi-groupe (I), Transp. Theory Stat. Phys. 31, 2002, 153–
167], in the case ‖K‖ > 1. We also give some spectral properties of the streaming operator
and we characterize the type of the generated semigroup in terms of the solution of a
characteristic equation.
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1. Introduction

In this paper, we are concerned with the study of some properties of the streaming

operator with general boundary conditions. Let X ⊂ Rn be a smoothly bounded

open subset and dµ be a Radon measure on Rn with bounded support V . In this

context, we introduce the streaming operator by

(1.1) TKϕ(x, v) = −v · ∇xϕ(x, v), (x, v) ∈ X × V,

supplemented with the following boundary conditions

(1.2) ϕ|Γ− = K(ϕ|Γ+
),
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where ϕ|Γ+
and ϕ|Γ− present respectively the outgoing and the incoming fluxes and

K is a bounded linear operator. These boundary conditions generalize in a natu-

ral way all well-known boundary conditions such as vacuum, specularly reflective,

diffusely reflective and periodic boundary conditions. For the convenience of the

reader and more explanations, we refer for instance to [2], [7, Chapter XI and XII],

[8, Chapter 21], [13] and [14].

The existence of a strongly continuous semigroup generated by the streaming op-

erator has been investigated by several authors and several important results have

been clarified. Beals and Protopopescu [2] and Greenberg, van der Mee and Pro-

topopescu [7] have given two approaches (method of characteristics and semigroup

method) to discuss the case ‖K‖ < 1. For the same case, the semigroup approach

has been also used by Dautray and Lions [8, Chapter 21], Sentis [12], Ukai [13] and

Voigt [14]. The case ‖K‖ = 1 with K > 0 has been treated in [2], [7], [13] by approx-

imating from the case ‖K‖ < 1. The case ‖K‖ > 1 has been studied by Borgioli and

Totaro [4] for two-dimensional spatial domains and in [3] for three-dimensional spa-

tial domains. We have also studied the case ‖K‖ > 1 in [5] by using some geometrical

restrictions on X and V .

In the case ‖K‖ < 1, the positivity and the irreducibility of the generated semi-

group and the spectral properties of the streaming operator have been developed for

instance in [7, Chapter XII]. In [1], we have also found that the spectral bound of

the streaming operator is negative.

The motivation of the present work is to deal with the positivity and the irre-

ducibility of the generated semigroup when ‖K‖ > 1. In this work we also study in

this case the spectrum of the streaming operator. In the next section we recall some

facts concerning the generation of the semigroup of the streaming operator we are

concerned with. In the third section we study the positivity and the irreducibility

of the generated semigroup. In the last section we give the characterization of the

type of the generated semigroup by means of a relation we call a characteristic equa-

tion. We note that all of these results are obtained under suitable hypotheses on the

boundary operator K.

2. Statement of the problem

We consider the Banach space Lp(X × V ) (1 6 p <∞) with its natural norm

(2.1) ‖ϕ‖p =

[
∫

X×V

|ϕ(x, v)|p dxdµ(v)

]1/p

,

and the partial Sobolev space

W p(X × V ) = {ϕ ∈ Lp(X × V ), v · ∇xϕ ∈ Lp(X × V )},
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with the norm ‖ϕ‖W p(X×V ) = [‖ϕ‖p
p + ‖v · ∇xϕ‖p

p]
1/p. We let n(x) be the outer unit

normal at x ∈ ∂X , where ∂X is the boundary of X equipped with the measure dγ.

We denote

Γ = ∂X × V,

Γ0 = {(x, v) ∈ Γ, v · n(x) = 0},

Γ+ = {(x, v) ∈ Γ, v · n(x) > 0},

Γ− = {(x, v) ∈ Γ, v · n(x) < 0},

and suppose that dγ(Γ0) = 0. For (x, v) ∈ X ×V , the time which a particle starting

at x with velocity −v needs until it reaches the boundary ∂X of X is denoted by

t(x, v) = inf{t, x− tv 6∈ X}.

Similarly, if (x, v) ∈ Γ+ we set

τ(x, v) = inf{t, x− tv 6∈ X}.

In the sequel we need

Definition 2.1. A pair (X,V ) is called regular if and only if

τ(X,V )
def
= inf

(x,v)∈Γ+

τ(x, v) > 0.

We also consider the trace spaces Lp(Γ±) equipped with the norm

‖ϕ‖Lp(Γ±) =

[
∫

Γ±

|ϕ(x, v)|p dξ

]1/p

,

where dξ = |v · n(x)| dγ dµ. In this case we have

Lemma 2.1 (see [5]). If (X,V ) is a regular pair then the trace mappings

γ+ : W p(X × V ) −→ Lp(Γ+) and γ− : W p(X × V ) −→ Lp(Γ−)

are continuous.

In this context we consider the boundary operator

(2.2) K ∈ L(Lp(Γ+), Lp(Γ−)),

and by the previous lemma we can give sense to the streaming operator TK as follows
{

TKϕ = −v · ∇xϕ on the domain,

D(TK) = {ϕ ∈ W p(X × V ), γ−ϕ = Kγ+ϕ}.

If K = 0 the operator T0 has some properties which we summarize as follows.
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Lemma 2.2 (see [8, Chapter 21]). The operator T0 generates, on L
p(X × V ), a

positive strongly continuous semigroup {U0(t)}t>0. Moreover, for all λ > 0 and all

ϕ ∈ Lp(X × V ), the operator (λ − T0)
−1 ∈ L(Lp(X × V )) given by

(λ − T0)
−1ϕ(x, v) =

∫ t(x,v)

0

e−λsg(x− sv, v) ds, (x, v) ∈ X × V

and γ+(λ− T0)
−1 ∈ L(Lp(X × V ), Lp(Γ+)) given by

γ+(λ − T0)
−1ϕ(x, v) =

∫ τ(x,v)

0

e−λsg(x− sv, v) ds, (x, v) ∈ Γ+

are positive operators. Furthermore, we have

(2.3) γ+(λ− T0)
−1

(

(Lp(X × V ))+ \ {0}
)

⊂ (Lp(Γ+))+ \ {0}.

R em a r k 2.1. In the sequel until the end of this paper we suppose that (X,V ) is

a regular pair and we denote by Aψ(x, v) = ψ(x − τ(x, v), v) the Albedo operator

associated to the following problem

{

v · ∇xu = 0,

γ−u = ψ ∈ Lp(Γ−).

Note the positivity of A and ‖A‖L(Lp(Γ−),Lp(Γ+)) = 1. We also suppose that ‖K‖ =

‖K‖L(Lp(Γ+),Lp(Γ−)) > 1.

Now we recall the generation result for the streaming operator under consideration.

Lemma 2.3 (see [5]). The operator TK generates, on L
p(X×V ), a C0-semigroup

{UK(t)}t>0. Moreover, for all λ > τ(X,V )−1 ln ‖K‖ we have

(λ− TK)−1ϕ(x, v) = ελ(x, v)(I −Kλ)−1Kγ+(λ− T0)
−1ϕ(x− t(x, v)v, v)(2.4)

+ (λ− T0)
−1ϕ(x, v),

where Kλ ∈ L(Lp(Γ−)) is given by Kλψ = K(θλAψ), ελ(x, v) = e−λt(x,v) and

θλ(x, v) = (γ+ελ)(x, v) = e−λτ(x,v).

3. Positivity and irreducibility of the generated semigroup

In this section, we study the positivity and the irreducibility of the generated

semigroup under some suitable hypothesis on the boundary operator K. We begin

this section by discussing the positivity of the generated semigroup.
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Theorem 3.1. If K is a positive operator, the semigroup {UK(t)}t>0 is also

positive.

P r o o f. Let λ > 1/(τ(X,V )) ln ‖K‖ and ϕ ∈ (Lp(X × V ))+. Note that (I −

Kλ)−1 is invertible because

‖Kλ‖L(Lp(Γ−)) 6 e−λτ(X,V )‖K‖‖A‖ 6 e−λτ(X,V )‖K‖ < 1.

AsK is a positive operator,Kλ is also positive and therefore the positivity announced

in Lemma 2.2 yields that

(λ− TK)−1ϕ(x, v) > ελ(x, v)(I −Kλ)−1Kγ+(λ− T0)
−1ϕ(x− t(x, v)v, v)

= ελ(x, v)
∑

n>0

Kn
λKγ+(λ − T0)

−1ϕ(x− t(x, v)v, v) > 0

for a.e. (x, v) ∈ X ×V . Thus (λ−TK)−1 is a positive operator and hence [6, Propo-

sition 7.1] implies the result. �

R em a r k 3.1. Under the hypothesis of the previous theorem and the rela-

tion (2.4) we get that (λ − TK)−1 > (λ − T0)
−1 for λ > 1/(τ(X,V )) ln ‖K‖, which

implies by the Exponential formula that UK(t) > U0(t), for all t > 0.

Theorem 3.2. Suppose that K is a positive operator and there exists λ >

τ(X,V )−1 ln ‖K‖ such that (I −Kλ)−1K is strongly positive. Then the semigroup

{UK(t)}>0 is irreducible.

P r o o f. Let λ > 1/(τ(X,V )) ln ‖K‖ and ϕ ∈ (Lp(X × V ))+ with ϕ 6= 0. From

Lemma 2.2 we get that γ+(λ − T0)
−1ϕ > 0 with γ+(λ − T0)

−1ϕ 6= 0 and by the

strong positivity of (I −Kλ)−1K we obtain

(3.1) (I −Kλ)−1Kγ+(λ− T0)
−1ϕ(x− t(x, v)v, v) > 0,

a.e. (x, v) ∈ X × V which implies

(3.2) ελ(x, v)(I −Kλ)−1Kγ+(λ− T0)
−1ϕ(x − t(x, v)v, v) > 0,

a.e. (x, v) ∈ X×V . By Lemmas 2.2 and 2.3 we get (λ−TK)−1ϕ(x, v) > 0, a.e. (x, v) ∈

X × V and we achieve the proof by applying [6, Proposition 7.6]. �

R em a r k 3.2. Note that the strong positivity of the boundary operator K is

sufficient to guarantee the irreducibility of the generated semigroup. In fact, this

follows from the previous theorem and the inequality

(I −Kλ)−1K =
∑

n>0

Kn
λK > K.
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R em a r k 3.3. As the geometry of X is arbitrary, it is difficult to obtain the

irreducibility of the generated semigroup without imposing some suitable conditions

on the boundary operatorK. Nevertheless, in some particular cases we can overcome

this difficulty. For instance, if X × V = ]0, 1[ × ]a, b[ (0 6 a < b < ∞), then

τ(X,V ) = 1/b and the Albedo operator is reduced to the identity operator on the

trace spaces Lp(]a, b[, v dv). Thus Kλψ = K[θλψ] where ψ ∈ Lp(]a, b[v dv) and

θλ(v) = e−1/v. In this case, the positivity and the irreducibility of K are sufficient

to guarantee the irreducibility of the generated semigroup. In fact, let λ > b ln ‖K‖.

If a > 0 (resp. a = 0), by Lemma 3.1 (resp. Remark 3.4) we obtain the irreducibility

of Kλ and therefore the strong positivity of (I −Kλ)−1K by

(3.3) (I −Kλ)−1K =
∑

n>0

KλK > Kn
λ , n > 0.

Now we finish this head by the following lemma we will need in the next section.

Lemma 3.1. If K is positive and such that KA is irreducible, then Kλ is irre-

ducible for all λ > 0.

P r o o f. The case λ = 0 is clear. Let λ > 0 and M be a closed ideal of the trace

space Lp(Γ+) such that Kλ(M) ⊂M . Using the characterization of a closed ideal in

Lp-like spaces (see [9, p. 309]), there exists a measurable subset ω ⊂ Γ+ such that

M = {ψ ∈ Lp(Γ+) : ψ(x, v) = 0, for a.e. (x, v) ∈ ω}.

Note that M ⊂ θλM and if g ∈ KA(M) ⊂ KA(θλM), then there exists ψ ∈M such

that g = KAθλψ = Kλψ ∈ Kλ(M) ⊂ M , which implies that KA(M) ⊂ M . Thus

the irreducibility of KA implies the irreducibility of Kλ. �

R em a r k 3.4. Note that, if 0 6∈ V , then τ(x, v) 6 d/v0 < ∞ (d is the diameter

of X and v0 is the minimum speed), thus Kλ > e−λd/v0KA, and therefore the

irreducibility of KA implies that of Kλ.

4. Spectral properties

In this section, we give a characterization of the spectral bound s(TK) of the

streaming operator. This characterization is possible under some hypothesis on the

boundary operator K. We first begin with the localization of the essential spectrum

of the streaming operator. We set C− = {λ, ℜ(λ) 6 0} and C+ = {λ, ℜ(λ) > 0}.
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Lemma 4.1. If K is a compact operator, then we have σess(TK) ⊂ C− .

P r o o f. Let λ > 1/(τ(X,V )) ln ‖K‖. As K is compact operator then the

operator

ϕ −→ ελ(I −Kλ)−1Kγ+(λ− T0)
−1ϕ(· − t(·, ·)·, ·)

is also compact from Lp(X × V ) into itself which implies, by the relation (2.4), the

compactness of the operator (λ − TK)−1 − (λ − T0)
−1 from Lp(X × V ) into itself.

Now, [11, Theorem 4.7, p. 17] and the contractiveness of the semigroup {U0(t)}t>0

(see Lemma 2.2) imply σess(TK) = σess(T0) ⊂ C− . �

R em a r k 4.1. Note that if 0 6∈ V then σess(TK) = σess(T0) = ∅. This follows

from the fact that the semigroup generated by T0 is compact for all t > d/v0.

Lemma 4.2. Let λ ∈ C+ . Then we have

(4.1) λ ∈ σp(TK) ⇐⇒ 1 ∈ σp(Kλ).

P r o o f. Let λ ∈ C+ . If λ ∈ σp(TK), then there exists ϕ ∈ D(TK) with ϕ 6= 0

such that λϕ = TKϕ. As ϕ is given by

ϕ(x, v) = ελ(x, v)ψ(x − t(x, v)v, v)

where ψ ∈ Lp(Γ−), then the fact that ϕ ∈ D(TK) implies that

ψ = γ−ϕ = Kγ+ϕ = K[θλAψ] = Kλψ

and therefore 1 ∈ σp(Kλ).

Conversely, if 1 ∈ σp(Kλ), then there exists ψ ∈ Lp(Γ+) with ψ 6= 0 such that

ψ = Kλψ. As ϕ(x, v) = ελ(x, v)ψ(x − t(x, v)v, v) with ϕ 6= 0 solves the equation

λϕ = TKϕ, then λ ∈ σp(TK). �

Lemma 4.3. Suppose that K is a positive and compact operator such that KA is

irreducible, then the following mapping

(4.2) 0 6 λ 7→ r(Kλ)

is continuous and strictly decreasing.

P r o o f. Let λ > 0 and µ > 0. From the hypothesis of the lemma, we get

that Kλ is a positive and compact operator and by Lemma 3.1 it is also irreducible.

By [10], it follows that r(Kλ) > 0 and there exists ψλ a quasi-interior point of
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(Lp(Γ−))+ (resp. strictly positive eigenvector ψ
∗
λ ∈ Lq(Γ−)) of the operator Kλ

(resp. K∗
λ which is the adjoint operator of Kλ) associated with eigenvalue r(Kλ),

where q is the harmonic conjugate of p, i.e. p−1 + q−1 = 1. The same properties hold

for r(Kµ) and we obtain

r(Kµ) =

〈

K∗
µψ

∗
µ, ψλ

〉

〈

ψ∗
µ, ψλ

〉 =

〈

ψ∗
µ,Kµψλ

〉

〈

ψ∗
µ, ψλ

〉(4.3)

=

〈

ψ∗
µ,Kλψλ

〉

〈

ψ∗
µ, ψλ

〉 −

〈

ψ∗
µ, (Kλ −Kµ)ψλ

〉

〈

ψ∗
µ, ψλ

〉 = r(Kλ) − α(λ, µ),

where

α(λ, µ) =

〈

ψ∗
µ, (Kλ −Kµ)ψλ

〉

〈

ψ∗
µ, ψλ

〉 .

Thus

|r(Kλ) − r(Kµ)| = |α(λ, µ)| =

∣

∣

∣

∣

〈

ψ∗
µ, (Kλ −Kµ)ψλ

〉

〈

ψ∗
µ, ψλ

〉

∣

∣

∣

∣

(4.4)

6
‖ψ∗

µ‖Lq(Γ−)
〈

ψ∗
µ, ψλ

〉 ‖(Kλ −Kµ)ψλ‖Lp(Γ−).

As we have

‖(Kλ −Kµ)ψλ‖
p
Lp(Γ−) 6 ‖K‖p

∫

Γ−

|θλ(x, v) − θµ(x, v)|p|ψλ(x, v)|p dξ,(4.5)

|θλ − θµ|
p|ψλ|

p 6 2p|ψλ|
p ∈ L1(Γ+),

and

lim
λ→µ

|θλ(x, v) − θµ(x, v)|p|ψλ(x, v)|p = 0,

a.e. (x, v) ∈ Γ+, then lim
λ→µ

|α(λ, µ)| = 0, and therefore the continuity asked for is

proved.

Let 0 6 λ < µ and ψ ∈ (Lp(Γ−))+. Writing

Kλψ > e(µ−λ)τ(X,V )Kµψ

it follows that

r(Kλ) > e(µ−λ)τ(X,V )r(Kµ) > r(Kµ).

The proof is finished. �

Now we state the main theorem of this section as follows.
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Theorem 4.1. Suppose that K is a positive and compact operator such that

KA is irreducible. If r(AK) > 1, then ω(UK(t)) is the unique solution of the char-

acteristic equation

(4.6) r(Kλ) = 1.

Moreover, ω(UK(t)) > 0.

P r o o f. Note that r(K0) = r(KA) > 1 and

lim
λ→∞

r(Kλ) 6 lim
λ→∞

‖Kλ‖ 6 lim
λ→∞

e−λτ(X,V )‖K‖‖A‖ = 0.

Thus, by the previous lemma, there exists a unique λ0 > 0 such that r(Kλ0
) = 1.

Moreover, the positivity of Kλ0
implies that 1 = r(Kλ0

) ∈ σp(Kλ0
) which implies,

by Lemma 4.2, that λ0 ∈ σp(TK).

Let λ ∈ C+ . If λ ∈ σ(TK), then by Lemma 4.2, there exists ψ ∈ Lp(Γ−) with ψ 6= 0

such that Kλψ = ψ. Since K and the Albedo operator A are positive operators (see

Remark 2.1) then

Kℜλ|ψ| = K[εℜλA|ψ|] > K[|ελAψ|] > |Kλψ| = |ψ|

which implies Kn
ℜλ|ψ| > |ψ| for all integer n. Consequently r(Kℜλ) > 1. Since

the mapping (4.2) is strictly decreasing, we conclude that ℜλ 6 λ0, and therefore,

s(TK) 6 λ0.

Conversely. Since r(Kλ0
) = 1 and by virtue of [10], there exists ψ ∈ (Lp(Γ−))+

with ψ 6= 0 such that Kλ0
ψ = ψ. Defining ϕ = ελ0

Aψ and noting that ϕ 6= 0 because

of ψ > 0, it is easy to see that −v · ∇xϕ = λ0ϕ. Furthermore, as θλ = (γ+ελ) (see

Lemma 2.3), it follows that γ−ϕ = ψ = Kλ0
ψ = K[(γ+ελ0

)Aψ] = Kγ+[ελ0
Aψ] =

Kγ+ϕ. Thus, λ0 ∈ σp(TK) ⊂ σ(TK), and therefore, λ0 6 s(TK). We finish the proof

by applying [15]. �

R em a r k 4.2. Note that the previous theorem holds only for ‖K‖ > 1, because

1 < r(KA) 6 ‖K‖‖A‖ = ‖K‖. For the case ‖K‖ = 1, it is sufficient to consider

r(KA) = 1. In this case we have r(Kλ) = 1 = r(K0) = r(KA), which implies

λ0 = s(TK) = ω(UK(t)) = 0.

R em a r k 4.3. There is another way to characterize the spectral bound s(TK).

In fact, introducing the following boundary operator

Kλψ = θλAKψ,
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from Lp(Γ+) into itself, it is easy to see that

‖Kn
λ‖ 6 ‖K‖‖A‖‖K

(n−1)

λ ‖,

and

‖K
n

λ‖ 6 ‖K‖‖A‖‖K
(n−1)
λ ‖,

for all λ > 0 and all integers n > 0 and therefore, r(Kλ) = r(Kλ).

The previous theorem is given in a general context. The case 0 6∈ V can be treated

in L1(X × V ) only, under the hypothesis (4.9) and assuming the positivity of the

boundary operator K. Before stating this result, we recall some facts developed

in [5]. Define on L1(X × V ) the following norm

(4.7) |||ϕ|||1 =

∫

X×V

|(fϕ)(x, v)| dxdµ(v),

where, f(x, v) = ‖K‖t(x,v)/(τ(x+t(x,−v)v,v)) which satisfies 1 6 f(x, v) 6 ‖K‖, for all

(x, v) ∈ X × V . The norms (2.1) and (4.7) are equivalent on L1(X × V ) because

(4.8) ‖ϕ‖1 6 |||ϕ|||1 6 ‖K‖‖ϕ‖1.

Theorem 4.2. Suppose that 0 6∈ V . If K is positive operator such that

(4.9) ‖Kψ‖L1(Γ−) > ‖ψ‖L1(Γ+)

for all ψ ∈ (L1(Γ+))+, then the type of the generated semigroup on L
1(X × V )

satisfies

ω(UK(t)) >
v0
d

ln ‖K‖,

where d is the diameter of X and v0 is the minimum speed.

P r o o f. Let λ be a large enough real and let g ∈ (Lp(X×V ))+. By Lemma 2.3,

there exists a unique solution of the equation

(4.10) λϕ = TKϕ+ g,

given by ϕ = (λ − TK)−1g. By virtue of Theorem 3.1 and [6, Proposition 7.1], we

get that ϕ = (λ − TK)−1g ∈ (Lp(X × V ))+. Now, multiplying the equation (4.10)

by f and integrating on X × V we obtain

λ|||ϕ|||1 =

∫

X×V

(fv · ∇xϕ)(x, v) dxdµ(v)(4.11)

+

∫

X×V

(fg)(xv) dxdµ(v) = I + |||g|||1.
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Using Green’s Formula, the boundary conditions and the relation (4.9), the term I

becomes

I = −

∫

X×V

v · ∇x(fϕ)(x, v) dxdµ(v) +

∫

X×V

[(v · ∇xf)ϕ](x, v) dxdµ(v)

= −

∫

Γ+

γ+(fϕ)(x, v) dξ +

∫

Γ−

γ−(fϕ)(x, v) dξ

+ ln ‖K‖

∫

X×V

1

τ(x + t(x,−v)v, v)
(fϕ)(x, v) dxdµ(v)

> ‖Kγ+ϕ‖L1(Γ−) − ‖γ+ϕ‖L1(Γ+) + ln ‖K‖
v0
d

∫

X×V

(fϕ) dxdµ(v)

> ln ‖K‖
v0
d
|||ϕ|||1,

because τ(x + t(x,−v)v, v) 6 d/v0. Now the relation (4.11) becomes

(

λ− ln ‖K‖
v0
d

)

|||(λ− TK)−1g|||1 > |||g|||1,

which implies
(

λ− ln ‖K‖
v0
d

)n

|||[(λ − TK)−1]ng|||1 > |||g|||1,

for all large integers n and if λ = n/t with t > 0 then

[

(

1 −
t

n
ln ‖K‖

v0
d

)

]n∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[n

t

(n

t
− TK

)−1]n

g

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

> |||g|||1.

Now the Exponential formula and the relation (4.8) imply that

‖K‖‖UK(t)g‖1 > ev0t/d ln ‖K‖‖g‖1

which implies ω(UK(t)) > v0/d ln ‖K‖ > 0 and achieves the proof. �

R em a r k 4.4. Note that the previous Theorem holds for ‖K‖ > 1 because of the

relation (4.9).
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