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ON CONVERGENCE OF GRADIENT-DEPENDENT INTEGRANDS*

Martin Kružík, Praha

Dedicated to Jiří V. Outrata on the occasion of his 60th birthday

Abstract. We study convergence properties of {v(∇uk)}k∈N if v ∈ C(Rm×n), |v(s)| 6
C(1+ |s|p), 1 < p < +∞, has a finite quasiconvex envelope, uk → u weakly inW 1,p(Ω;Rm)
and for some g ∈ C(Ω) it holds that

∫
Ω

g(x)v(∇uk(x)) dx →
∫
Ω

g(x)Qv(∇u(x))dx as

k → ∞. In particular, we give necessary and sufficient conditions for L1-weak convergence
of {det∇uk}k∈N to det∇u if m = n = p.

Keywords: bounded sequences of gradients, concentrations, oscillations, quasiconvexity,
weak convergence

MSC 2000 : 49J45, 35B05

1. Introduction

Oscillations and/or concentrations appear in many problems in the calculus of

variations, partial differential equations, or optimal control theory, which admit

only Lp but not L∞ apriori estimates. While Young measures [31] successfully

capture oscillatory behavior (see e.g. [17], [23]) of sequences they completely miss

concentrations. There are several tools how to deal with concentrations. They can

be considered as generalization of Young measures, see for example Alibert’s and

Bouchitté’s approach [1], DiPerna’s and Majda’s treatment of concentrations [7], or

Fonseca’s method described in [10]. An overview can be found in [25], [28]. More-

over, in many cases, we are interested in oscillation/concentration effects generated

by sequences of gradients. A characterization of Young measures generated by gradi-

ents was completely given by Kinderlehrer and Pedregal [14], [16], cf. also [23], [24].

The first attempt to characterize both oscillations and concentrations in sequences

*This work was supported by the grants IAA 1075402 (GA AV ČR) and VZ6840770021
(MŠMT ČR).
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of gradients is due to Fonseca, Müller, and Pedregal [11]. They dealt with a special

situation of {gv(∇uk)}k∈N where v is positively p-homogeneous, uk ∈ W 1,p(Ω;Rm ),

and g continuous and vanishing on ∂Ω. Later on, a characterization of oscilla-

tion/concentration effects in terms of DiPerna’s and Majda’s generalization of Young

measures was given in [13] for arbitrary integrands.

The aim of our paper is to point out a few consequences of this characterization.

This leads to a slight generalization of Kinderlehrer’s and Pedregal’s results on weak

convergence of integrands [15]. They proved that if 0 6 v 6 C(1+|·|p) is quasiconvex,

uk → u weakly in W 1,p(Ω;Rm ), and
∫

Ω v(∇uk) dx →
∫

Ω v(∇u) dx then possibly for

a subsequence v(∇uk) → v(∇u) weakly in L1(Ω). Here we show that if we instead

assume that |v| 6 C(1 + | · |p) and a condition on {uk} which is too involved to be

stated here but which is fulfilled e.g. if uk = u on the boundary we get v(∇uk) →

v(∇u) weakly∗ in measures on Ω̄; cf. Theorem 2.3 and Corollary 2.4. We also give

necessary and sufficient conditions under which a nonnegative sequence of {det∇uk}

converges weakly to {det∇u} in L1 if uk → u in W 1,n(Ω;Rn ) for a smooth bounded

domain in Rn . Proposition 2.7 generalizes some results by Müller [22] and Hogan et

al. [12]. Finally, we show that while u 7→
∫

Ω v(∇u) dx does not have to be sequentially

weakly lower semicontinuous on W 1,p(Ω;Rm ) if |v| 6 C(1 + | · |p) is quasiconvex,

the weak lower semicontinuity can be recovered by removing an arbitrarily thin

“boundary layer” of Ω; cf. Theorem 2.11. The main tool of our analysis is a recently

proved characterization of generalized Young measures generated by gradients [13].

1.1. Basic notation

Let us start with a few definitions and with the explanation of our notation. Having

a bounded domain Ω ⊂ Rn we denote by C(Ω) the space of continuous functions:

Ω → R. Then C0(Ω) consists of functions from C(Ω) whose support is contained in Ω.

In what follows “rca(S)” denotes the set of regular countably additive set functions

on the Borel σ-algebra on a metrizable set S (cf. [8]), its subset, rca+
1 (S), denotes

regular probability measures on a set S. We write “γ-almost all” or “γ-a.e.” if we

mean “up to a set with the γ-measure zero”. If γ is the n-dimensional Lebesgue

measure and M ⊂ Rn we omit writing γ in the notation. Further, W 1,p(Ω;Rm ),

1 6 p < +∞ denotes the usual space of measurable mappings which are together

with their first (distributional) derivatives integrable in the pth power. The support

of a measure σ ∈ rca(Ω) is a smallest closed set S such that σ(A) = 0 if S ∩ A = ∅.

Finally, if σ ∈ rca(S) we write σs and dσ for the singular part and density of σ

defined by the Lebesgue decomposition, respectively. Finally, we denote by “w-lim”

the weak limit.
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If not said otherwise, we will suppose in the sequel that Ω ⊂ Rn is a bounded

domain with a Lipschitz boundary. Some generalizations to less regular domains are

possible, however they seem to be technically much more involved.

1.2. Quasiconvex functions

Let Ω ⊂ Rn be a bounded regular domain. We say that a function v : Rm×n → R
is quasiconvex [21] if for any s0 ∈ Rm×n and any ϕ ∈ W 1,∞

0 (Ω;Rm )

v(s0)|Ω| 6

∫

Ω

v(s0 + ∇ϕ(x)) dx.

If v : Rm×n → R is not quasiconvex we define its quasiconvex envelope Qv : Rm×n →R as

Qv = sup{h 6 v; h : Rm×n → R quasiconvex}

and if the set on the right-hand side is empty we put Qv = −∞. If v is locally

bounded and Borel measurable then for any s0 ∈ Rm×n (see [6])

(1.1) Qv(s0) = inf
ϕ∈W 1,∞

0
(Ω;Rm)

1

|Ω|

∫

Ω

v(s0 + ∇ϕ(x)) dx.

1.3. Young measures

For p > 0 we define the following subspace of the space C(Rm×n ) of all continuous

functions on Rm×n :

Cp(Rm×n ) = {v ∈ C(Rm×n ); v(s) = o(|s|p) for |s| → ∞}.

The Young measures on a bounded domain Ω ⊂ Rn are weakly∗ measurable

mappings x 7→ νx : Ω → rca(Rm×n ) with values in probability measures; and the

adjective “weakly∗ measurable” means that, for any v ∈ C0(Rm×n ), the mapping

Ω → R : x 7→ 〈νx, v〉 =
∫Rm×n v(λ)νx(dλ) is measurable in the usual sense. Let us

remind that, by the Riesz theorem, rca(Rm×n ), normed by the total variation, is a

Banach space which is isometrically isomorphic with C0(Rm×n )∗, where C0(Rm×n )

stands for the space of all continuous functions Rm×n → R vanishing at infinity.

Let us denote the set of all Young measures by Y(Ω;Rm×n ). It is known that

Y(Ω;Rm×n ) is a convex subset of L∞
w (Ω; rca(Rm×n )) ∼= L1(Ω; C0(Rm×n ))∗, where the

subscript “w” indicates the property “weakly∗ measurable”. A classical result [27],

[30] is that, for every sequence {yk}k∈N bounded in L∞(Ω;Rm×n ), there exists its

subsequence (denoted by the same indices for notational simplicity) and a Young

measure ν = {νx}x∈Ω ∈ Y(Ω;Rm×n ) such that

(1.2) ∀ v ∈ C0(Rm×n ) : lim
k→∞

v ◦ yk = vν weakly∗ in L∞(Ω),
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where [v ◦ yk](x) = v(yk(x)) and

(1.3) vν(x) =

∫Rm×n

v(λ)νx(dλ).

Let us denote by Y∞(Ω;Rm×n ) the set of all Young measures which are created

in this way, i.e. by taking all bounded sequences in L∞(Ω;Rm×n ). Note that (1.2)

actually holds for any v : Rm×n → R continuous.

A generalization of this result was formulated by Schonbek [26] (cf. also [2]): if

1 6 p < +∞, for every sequence {yk}k∈N bounded in Lp(Ω;Rm×n ) there exists its

subsequence (denoted by the same indices) and a Young measure ν = {νx}x∈Ω ∈

Y(Ω;Rm×n ) such that

(1.4) ∀ v ∈ Cp(Rm×n ) : lim
k→∞

v ◦ yk = vν weakly in L1(Ω).

We say that {yk} generates ν if (1.4) holds.

Let us denote by Yp(Ω;Rm×n ) the set of all Young measures which are created in

this way, i.e. by taking all bounded sequences in Lp(Ω;Rm×n ).

1.4. DiPerna-Majda measures

Let us take a complete (i.e. containing constants, separating points from closed

subsets and closed with respect to the Chebyshev norm) separable ring R of con-

tinuous bounded functions Rm×n → R. It is known [9, Sect. 3.12.21] that there

is a one-to-one correspondence R 7→ βRRm×n between such rings and metrizable

compactifications of Rm×n ; by a compactification we mean here a compact set, de-

noted by βRRm×n , into which Rm×n is embedded homeomorphically and densely.

For simplicity, we will not distinguish between Rm×n and its image in βRRm×n .

Similarly, we will not distinguish between elements of R and their unique continuous

extensions to βRRm×n .

Let σ ∈ rca(Ω̄) be a positive Radon measure on a bounded domain Ω ⊂ Rn .

A mapping ν̂ : x 7→ ν̂x belongs to the space L∞
w (Ω̄, σ; rca(βRRm×n )) if it is

weakly∗ σ-measurable (i.e., for any v0 ∈ C0(Rm×n ), the mapping Ω̄ → R : x 7→
∫

βRRm×n v0(s)ν̂x(ds) is σ-measurable in the usual sense). If additionally ν̂x ∈

rca+
1 (βRRm×n ) for σ-a.a. x ∈ Ω̄ the collection {ν̂x}x∈Ω̄ is the so-called Young

measure on (Ω̄, σ) [31], see also [2], [25], [27], [29], [30].

DiPerna and Majda [7] showed that having a bounded sequence in Lp(Ω;Rm×n )

with 1 6 p < +∞ and Ω an open domain in Rn , there exists its subsequence

(denoted by the same indices) a positive Radon measure σ ∈ rca(Ω̄) and a Young

measure ν̂ : x 7→ ν̂x on (Ω̄, σ) such that (σ, ν̂) is attainable by a sequence {yk}k∈N ⊂
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Lp(Ω;Rm×n ) in the sense that ∀ g ∈ C(Ω̄) ∀ v0 ∈ R:

(1.5) lim
k→∞

∫

Ω

g(x)v(yk(x)) dx =

∫

Ω̄

∫

βRRm×n

g(x)v0(s)ν̂x(ds)σ(dx),

where

v ∈ Υp
R(Rm×n ) := {v0(1 + | · |p); v0 ∈ R}.

In particular, putting v0 = 1 ∈ R in (1.5) we can see that

(1.6) lim
k→∞

(1 + |yk|
p) = σ weakly∗ in rca(Ω̄).

If (1.5) holds, we say that {yk}k∈N generates (σ, ν̂). Let us denote by DMp
R(Ω;Rm×n )

the set of all pairs (σ, ν̂) ∈ rca(Ω̄)×L∞
w (Ω̄, σ; rca(βRRm×n )) attainable by sequences

from Lp(Ω;Rm×n ); note that, taking v0 = 1 in (1.5), one can see that these sequences

must inevitably be bounded in Lp(Ω;Rm×n ). The explicit description of the elements

from DMp
R(Ω;Rm×n ), called DiPerna-Majda measures, for unconstrained sequences

was done in [19, Theorem 2].

Let us recall that for any (σ, ν̂) ∈ DMp
R(Ω;Rm×n ) there is precisely one (σ◦, ν̂◦) ∈

DMp
R(Ω;Rm×n ) such that

(1.7)

∫

Ω

∫Rm×n

v0(s)ν̂x(ds)g(x)σ(dx) =

∫

Ω̄

∫Rm×n

v0(s)ν̂
◦
x(ds)g(x)σ◦(dx)

for any v0 ∈ C0(Rm×n ) and any g ∈ C(Ω̄) and (σ◦, ν̂◦) is attainable by a sequence

{yk}k∈N such that the set {|yk|
p; k ∈ N} is relatively weakly compact in L1(Ω);

see [19], [25] for details. We call (σ◦, ν̂◦) the nonconcentrating modification of (σ, ν̂).

We call (σ, ν̂) ∈ DMp
R(Ω;Rm×n ) nonconcentrating if

∫

Ω̄

∫

βRRm×n\Rm×n

ν̂x(ds)σ(dx) = 0.

There is a one-to-one correspondence between nonconcentrating DiPerna-Majda

measures and Young measures; cf. [25].

We wish to emphasize the following fact: if {yk} ∈ Lp(Ω;Rm×n ) generates (σ, ν̂) ∈

DMp
R(Ω;Rm×n ) and σ is absolutely continuous with respect to the Lebesgue measure

it generally does not mean that {|yk|p} is weakly relatively compact in L1(Ω). Simple

examples can be found e.g. in [20], [25].

Having a sequence bounded in Lp(Ω;Rm×n ) generating a DiPerna-Majda measure

(σ, ν̂) ∈ DMp
R(Ω;Rm×n ) it also generates an Lp-Young measure ν ∈ Yp(Ω;Rm×n ).

It easily follows from [25, Theorem 3.2.13] that

(1.8) νx(ds) = dσ◦(x)
ν̂◦

x(ds)

1 + |s|p
for a.a. x ∈ Ω.
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Note that (1.8) is well-defined as ν̂◦
x is supported on Rm×n . As pointed out in [19,

Remark 2] for almost all x ∈ Ω

(1.9) dσ(x) =

(
∫Rm×n

ν̂x(ds)

1 + |s|p

)−1

.

In fact, that (1.7) can even be improved to

(1.10)

∫

Ω

∫Rm×n

v0(s)ν̂x(ds)g(x)σ(dx) =

∫

Ω̄

∫Rm×n

v0(s)ν̂
◦
x(ds)g(x)σ◦(dx)

for any v0 ∈ R and any g ∈ C(Ω̄). The one-to-one correspondence between Young

and DiPerna-Majda measures, in particular (see (1.8) and (1.10))

∫Rm×n

v(s)νx(ds) = dσ(x)

∫Rm×n

v0(s)ν̂x(ds)

whenever v ∈ Υp
R(Rm×n ), finally yields that ∀ g ∈ C(Ω̄) ∀ v ∈ Υp

R(Rm×n ):

lim
k→∞

∫

Ω

g(x)v(yk(x)) dx =

∫

Ω

∫Rm×n

v(s)

1 + |s|p
ν̂x(ds)dσ(x)g(x) dx(1.11)

+

∫

Ω̄

∫

βRRm×n\Rm×n

v(s)

1 + |s|p
ν̂x(ds)g(x)σ(dx),

where ν ∈ Yp(Ω;Rm×n ) and (σ, ν̂) ∈ DMp
R(Ω;Rm×n ) are Young and DiPerna-

Majda measures generated by {yk}k∈N, respectively. We will denote the elements

from DMp
R(Ω;Rm×n ) which are generated by {∇uk}k∈N for some bounded {uk} ⊂

W 1,p(Ω;Rm ) by GDMp
R(Ω;Rm×n ).

The following proposition from [19] explicitly characterizes elements of DMp
R(Ω;Rm×n ).

Proposition 1.1. Let Ω ⊂ Rn be a bounded open domain, R a separable

complete subring of the ring of all continuous bounded functions on Rm×n and

(σ, ν̂) ∈ rca(Ω̄) × L∞
w (Ω̄, σ; rca(βRRm×n )) and 1 6 p < +∞. Then the following

two statements are equivalent to each other:

(i) the pair (σ, ν̂) is a DiPerna-Majda measure, i.e. (σ, ν̂) ∈ DMp
R(Ω;Rm×n ),

(ii) the following properties are satisfied simultaneously:

1. σ is positive,

2. σν̂ ∈ rca(Ω̄) defined by σν̂(dx) = (
∫Rm×n ν̂x(ds))σ(dx) is absolutely contin-

uous with respect to the Lebesgue measure (dσν̂
will denote its density),
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3. for a.a. x ∈ Ω it holds

∫Rm×n

ν̂x(ds) > 0, dσν̂
(x) =

(
∫Rm×n

ν̂x(ds)

1 + |s|p

)−1 ∫Rm×n

ν̂x(ds),

4. for σ-a.a. x ∈ Ω̄ it holds

ν̂x > 0,

∫

βRRm×n

ν̂x(ds) = 1.

The following two theorems were proved in [13].

Theorem 1.2. Let Ω ⊂ Rn be a bounded domain with Lipschitz boundary,

1 < p < +∞ and (σ, ν̂) ∈ DMp
R(Ω;Rm×n ). Then then there is u ∈ W 1,p(Ω;Rm )

and a bounded sequence {uk − u}k∈N ⊂ W 1,p
0 (Ω;Rm ) such that {∇uk}k∈N generates

(σ, ν̂) if and only if the following three conditions hold:

(1.12) for a.a. x ∈ Ω : ∇u(x) = dσ(x)

∫

βRRm×n

s

1 + |s|p
ν̂x(ds),

for almost all x ∈ Ω and for all v ∈ Υp
R(Rm×n ) the following inequality is fulfilled

(1.13) Qv(∇u(x)) 6 dσ(x)

∫

βRRm×n

v(s)

1 + |s|p
ν̂x(ds),

and for σ-almost all x ∈ Ω̄ and all v ∈ Υp
R(Rm×n ) with Qv > −∞ it holds that

(1.14) 0 6

∫

βRRm×n\Rm×n

v(s)

1 + |s|p
ν̂x(ds).

The next theorem addresses DiPerna-Majda measures generated by gradients of

maps with possibly different traces.

Theorem 1.3. Let Ω be an arbitrary bounded domain, 1 < p < +∞ and

(σ, ν̂) ∈ GDMp
R(Ω;Rm×n ) be generated by {∇uk}k∈N such that w- lim

k→∞
uk = u

in W 1,p(Ω;Rm ). Then the conditions (1.12), (1.13) hold, and (1.14) is satisfied for

σ-a.a. x ∈ Ω.

R e m a r k 1.4. (i) It can happen that under the assumptions of Theorem 1.3 the

formula (1.14) does not hold on ∂Ω. See an example in [3] showing the violation of

weak sequential continuity of W 1,2(Ω;R2 ) → L1(Ω): u 7→ det∇u if Ω = (−1, 1)2.
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(ii) On the other hand, having 1 < p < +∞ we can ask what condition besides

quasiconvexity must v ∈ C(R2×2 ), |v| 6 C(1+ | · |p) satisfy so that W 1,p(Ω;R2 ) → R :

u 7→ I(u) :=
∫

Ω
v(∇u(x)) dx is sequentially weakly lower semicontinuous. Suppose

that v ∈ C(R2×2 ) is positively p-homogeneous, i.e. v(λs) = λpv(s) for all s ∈ R2×2 ,

λ > 0, and take arbitrary u ∈ W 1,p
0 ((−1, 1)2;R2 ) and extend it by zero to R2 . Define

further for all k ∈ N uk(x) = k2/p−1u(kx). Then ∇uk(x) = k2/p∇u(kx). Clearly,

uk → 0 weakly in W 1,p((−1, 1)2;R2 ). Take Ω := (−1, 0)2. A simple calculation

shows that if I is weakly lower semicontinuous then for all u ∈ W 1,p
0 ((−1, 1)2;R2 ) it

holds

(1.15)

∫

(−1,0)2
v(∇u(x)) dx > 0.

2. Convergence of integrands

We start with a remark on (1.14).

R e m a r k 2.1. Condition (1.14) for x ∈ ∂Ω is satisfied if {uk−u} ⊂ W 1,p
0 (Ω;Rm )

but the same trace for all terms in the sequence is far from being necessary

for (1.14) to hold on ∂Ω. As Ω is supposed to be Lipschitz {uk} can be extended to

{ũk}k∈N ⊂ W 1,p(B;Rm ) for some ball Rn ⊃ B ⊃ Ω. Moreover, {ũk} is uniformly

bounded in W 1,p(B;Rm ). Then (1.14) holds if {|∇ũk|p} is weakly relatively compact

in L1(B \ Ω). If {∇uk} satisfies this condition for some ball B ⊂ Rn we say that it

has a p-equiintegrable extension.

We put

(2.1) Vp = {v ∈ C(Rm×n ); ∃C > 0: |v| 6 C(1 + | · |p), Qv > −∞}.

As shown in [18] if v ∈ Vp then Qv ∈ Vp as well.

Theorem 2.2. Let v ∈ Vp and uk → u weakly in W 1,p(Ω;Rm ), 1 < p < +∞.

Suppose that there is g0 ∈ C(Ω̄), g0(x) = 0 if x ∈ ∂Ω and g0(x) > 0 if x ∈ Ω such

that for k → ∞

(2.2)

∫

Ω

g0(x)v(∇uk(x)) dx →

∫

Ω

g0(x)Qv(∇u(x)) dx.

Then there is a subsequence of {uk}k∈N (not relabeled) such that for k → ∞

(2.3) v(∇uk) → Qv(∇u) weakly∗ in rca(Ω),

i.e., we can replace g0 in (2.2) by all g ∈ C0(Ω).

536



P r o o f. We take a separable subring R such that v/(1 + | · |p) ∈ R. As

noted in [13], this is always possible. Taking a subsequence of {∇uk} generating

(σ, ν̂) ∈ GDMp
R(Ω;Rm×n ) and exploiting Theorem 1.3 we have by (2.2) and (1.11)

that for g0

∫

Ω

g0(x)Qv(∇u(x)) dx = lim
k→∞

∫

Ω

g0(x)v(∇uk(x)) dx

=

∫

Ω

∫Rm×n

v(s)

1 + |s|p
ν̂x(ds)dσ(x)g0(x) dx

+

∫

Ω

∫

βRRm×n\Rm×n

v(s)

1 + |s|p
ν̂x(ds)g0(x)σ(dx)

>

∫

Ω

Qv(∇u(x))g0(x) dx

+

∫

Ω

∫

βRRm×n\Rm×n

v(s)

1 + |s|p
ν̂x(ds)g0(x)σ(dx)

>

∫

Ω

g0(x)Qv(∇u(x)) dx.

Hence,
∫

Ω

∫

βRRm×n\Rm×n

v(s)

1 + |s|p
ν̂x(ds)g0(x)σ(dx) = 0

and because g0 > 0 in Ω and for σ-a.a. x ∈ Ω

∫

βRRm×n\Rm×n

v(s)

1 + |s|p
ν̂x(ds) > 0

by (1.14) we get that for σ-a.a. x ∈ Ω

(2.4)

∫

βRRm×nRm×n

v(s)

1 + |s|p
ν̂x(ds) = 0.

Moreover, as g0 > 0 in Ω we get that for a.a. x ∈ Ω

(2.5) dσ(x)

∫Rm×n

v(s)

1 + |s|p
ν̂x(ds) = Qv(∇u(x)).

The assertion (2.3) follows by (2.4), (2.5), and (1.11). �
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Theorem 2.3. Let v ∈ Vp and uk → u weakly in W 1,p(Ω;Rm ), 1 < p < +∞.

Suppose that there is g0 ∈ C(Ω̄), g0 > 0 such that for k → ∞

(2.6)

∫

Ω

g0(x)v(∇uk(x)) dx →

∫

Ω

g0(x)Qv(∇u(x)) dx.

Suppose further that {∇uk} generates a DiPerna-Majda measure (σ, ν̂) ∈ GDMp
R(Ω;Rm×n ) such that for σ-a.a. x ∈ ∂Ω

(2.7)

∫

βRRm×n\Rm×n

v(s)

1 + |s|p
ν̂x(ds) > 0.

Then

(2.8) v(∇uk) → Qv(∇u)

weakly∗ in rca(Ω̄) if k → ∞, i.e., (2.6) holds for all g ∈ C(Ω̄) in place of g0.

P r o o f. The proof is almost the same as the proof of Theorem 2.2. Notice that

due to (2.7) and Theorem 1.3 formula (1.4) holds for σ-a.a. x ∈ Ω̄. �

In view of Remark 2.1 and Theorem 1.2 we have the following consequence of

Theorem 2.3.

Corollary 2.4. Let v ∈ Vp and uk → u weakly in W 1,p(Ω;Rm ), 1 < p < +∞,

{uk − u}k∈N ⊂ W 1,p
0 (Ω;Rm ). Suppose that

(2.9)

∫

Ω

v(∇uk(x)) dx →

∫

Ω

Qv(∇u(x)) dx.

Then there is a subsequence of {uk} (not relabeled) such that

(2.10) v(∇uk) → Qv(∇u) weakly∗ in rca(Ω̄).

The convergence in rca(Ω̄) can be strengthened if v(∇uk) > 0 for all k ∈ N. The

following theorem was proved for v > 0 quasiconvex and g0 = 1 in [15].
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Theorem 2.5. Let v ∈ Vp, uk → u weakly in W 1,p(Ω;Rm ), 1 < p < +∞, and for

all k ∈ N let v(∇uk) > 0 almost everywhere in Ω. Suppose that there is g0 ∈ C(Ω̄),

g0 > 0 such that for k → ∞

(2.11)

∫

Ω

g0(x)v(∇uk(x)) dx →

∫

Ω

g0(x)Qv(∇u(x)) dx.

Then there is a subsequence of {∇uk} (not relabeled) such that

(2.12) v(∇uk) → Qv(∇u)

weakly in L1(Ω) if k → ∞, i.e., (2.11) holds for all g ∈ L∞(Ω) in place of g0.

We will need the following lemma.

Lemma 2.6. Let f ∈ Vp, f > 0, and f/(1 + | · |p) ∈ R. Let further {yk}k∈N ⊂

Lp(Ω;Rm×n ) generate (σ, ν̂) ∈ DMp
R(Ω;Rm×n ). Then {f(yk)}k∈N is weakly rela-

tively compact in L1(Ω) if and only if

(2.13)

∫

Ω̄

∫

βRRm×n\Rm×n

f(s)

1 + |s|p
ν̂x(ds)σ(dx) = 0.

P r o o f. This lemma was proved in [25, Lemma 3.2.14 (i)] for f = 1 + | · |p. The

proof for general f is analogous. �

P r o o f of Theorem 2.5. As v(∇uk) > 0 we can replace v by |v| and take R such

that |v|/(1 + | · |p) ∈ R. Moreover, Q|v| > Qv because |v| > v.

We have for a subsequence of {∇uk} (not relabeled) generating (σ, ν̂):
∫

Ω

g0(x)Qv(∇u(x)) dx = lim
k→∞

∫

Ω

g0(x)|v|(∇uk(x)) dx

=

∫

Ω

∫Rm×n

|v|(s)

1 + |s|p
ν̂x(ds)dσ(x)g0(x) dx

+

∫

Ω̄

∫

βRRm×n\Rm×n

|v|(s)

1 + |s|p
ν̂x(ds)g0(x)σ(dx)

>

∫

Ω

Qv(∇u(x))g0(x) dx

+

∫

Ω̄

∫

βRRm×n\Rm×n

|v|(s)

1 + |s|p
ν̂x(ds)g0(x)σ(dx)

>

∫

Ω

g0(x)Qv(∇u(x)) dx.

Taking into account that g0 > 0 and Lemma 2.6 we get that {|v|(∇uk)} = {v(∇uk)}

is weakly relatively compact in L1(Ω). Applying [24, Theorem 6.2] we conclude that

a subsequence has the weak limit Qv(∇u). �
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2.1. Applications to determinants

Suppose now that p = n > 1 and consider v = det. Clearly, v ∈ Vn and because

the determinant is quasiaffine (i.e. det as well as − det are both quasiconvex) (1.13)

as well as (1.14) hold as equalities.

Combining (1.14) with Lemma 2.6 and Theorem 2.5 we have the following propo-

sition.

Proposition 2.7. Let uk → u weakly in W 1,n(Ω;Rn ), let {∇uk}k∈N generate
(σ, ν̂) ∈ GDMn(Ω;Rn×n ), and let det /(1+ | · |n) ∈ R. Let for all k ∈ N det∇uk > 0

almost everywhere in Ω. Then {det∇uk}k∈N is weakly relatively compact in L1(Ω)

if and only if

(2.14)

∫

∂Ω

∫

βRRn×n\Rn×n

det s

1 + |s|n
ν̂x(ds)σ(dx) = 0.

If (2.14) holds then

det∇uk → det∇u weakly in L1(Ω).

Notice that (2.14) is satisfied if σ(∂Ω) = 0, if uk = u on ∂Ω, or if {∇uk} has a

p-equiintegrable extension; cf. Theorem 1.2. Hence, Proposition 2.7 generalizes [15,

Theorem 4.1] and [22, Corollary 1.2].

Dropping the requirement det∇uk > 0 we have the following consequence of

Theorem 2.3.

Proposition 2.8. Let uk → u weakly in W 1,n(Ω;Rn ), let {∇uk}k∈N generate
(σ, ν̂) ∈ GDMn(Ω;Rn×n ), and let det /(1 + | · |n) ∈ R. If (2.14) holds then

(2.15) det∇uk → det∇u weakly∗ in rca(Ω̄).

In particular, (2.15) is satisfied if uk = u on ∂Ω, if σ(∂Ω) = 0, or if {∇uk} has a

p-equiintegrable extension.

Finally, we may even give up (2.14) to hold and by Theorem 1.6 with g0 =

dist(·, ∂Ω) we obtain the following fact mentioned already in [3].

Proposition 2.9. Let uk → u weakly in W 1,n(Ω;Rn ). Then possibly for a

subsequence it holds

(2.16) det∇uk → det∇u weakly∗ in rca(Ω).
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2.2. Biting lemma for quasiconvex integrands

It is well known that boundedness of a sequence in L1(Ω;Rm ) is not sufficient for

the existence of a weakly converging subsequence. Nevertheless, Brooks and Chacon

showed that removing nested sets of vanishing Lebesgue measure we can recover

weak L1 convergence.

Lemma 2.10 ([5]). Let {yk} ⊂ L1(Ω;Rm×n ) be bounded. Then there is y ∈

L1(Ω;Rm×n ) and measurable sets {Ωj}j∈N, Ωj+1 ⊂ Ωj ⊂ Ω, j ∈ N, |Ωj | → 0 such

that for k → ∞

yk → y weakly in L1(Ω \ Ωj) for every fixed j ∈ N.

Ball and Zhang [4] showed that if v ∈ C(Rm×n ), |v| 6 C(1 + | · |p) is quasiconvex

and uk → u weakly in W 1,p(Ω;Rm ) then there are measurable sets {Ωj}j∈N, Ωj+1 ⊂

Ωj ⊂ Ω, j ∈ N, |Ωj | → 0 such that for any j ∈ N
lim inf
k→∞

∫

Ωj

v(∇uk(x)) dx >

∫

Ωj

v(∇u(x)) dx.

The next theorem shows that Ωj can be chosen as arbitrarily thin “boundary

layers” of Ω.

Theorem 2.11. Let Ω ⊂ Rn be a bounded domain with a Lipschitz boundary

such that 0 ∈ Ω. Let uk → u weakly in W 1,p(Ω;Rm ) and let v ∈ Vp. Then for every

0 < ε < 1 there is a subsequence of {uk} which we do not relabel and ε < δ < 1 such

that

(2.17) lim
k→∞

∫

δΩ

v(∇uk(x)) dx >

∫

δΩ

Qv(∇u(x)) dx,

where δΩ = {y ∈ Rn ; y/δ ∈ Ω}.

P r o o f. Take ε ∈ ]0, 1[. We will assume that {∇uk} generates (σ, ν̂) ∈

GDMp
R(Ω;Rm×n ). Notice that δΩ ⊂ Ω. Using [13, Lemma 3.6] we get that

σ(∂δΩ) > 0 only for at most countably many values of δ. Thus we take δ > ε

such that σ(∂δΩ) = 0. Then using [13, Lemma 3.2] we have that the restriction

of {uk} on δΩ has the property that {∇uk|δΩ} generates (σ, ν̂)|δΩ. Then (2.17) fol-

lows by (1.11) in view of Theorem 1.2. �

Acknowledgment. I am indebted to Agnieszka Ka lamajska for fruitful discus-

sions.

541



References

[1] J. J. Alibert, G. Bouchitté: Non-uniform integrability and generalized Young measures.
J. Convex Anal. 4 (1997), 129–147. zbl

[2] J. M. Ball: A version of the fundamental theorem for Young measures. In: PDEs and
Continuum Models of Phase Transition. Lect. Notes Phys. 344 (M. Rascle, D. Serre,
M. Slemrod, eds.). Springer-Verlag, Berlin, 1989, pp. 207–215. zbl

[3] J. M. Ball, F. Murat: W 1,p-quasiconvexity and variational problems for multiple inte-
grals. J. Funct. Anal. 58 (1984), 225–253. zbl

[4] J. M. Ball, K.-W. Zhang: Lower semicontinuity of multiple integrals and the biting
lemma. Proc. R. Soc. Edinb. 114 A (1990), 367–379. zbl

[5] J. K. Brooks, R. V. Chacon: Continuity and compactness of measures. Adv. Math. 37

(1980), 16–26. zbl
[6] B. Dacorogna: Direct Methods in the Calculus of Variations. Springer-Verlag, Berlin,
1989. zbl

[7] R. J. DiPerna, A. J. Majda: Oscillations and concentrations in weak solutions of the
incompressible fluid equations. Commun. Math. Phys. 108 (1987), 667–689. zbl

[8] N. Dunford, J. T. Schwartz: Linear Operators. Part I. Interscience, New York, 1967. zbl
[9] R. Engelking: General Topology. 2nd ed. PWN, Warszawa, 1976. (In Polish.) zbl
[10] I. Fonseca: Lower semicontinuity of surface energies. Proc. R. Soc. Edinb. 120 A (1992),

99–115. zbl
[11] I. Fonseca, S. Müller, P. Pedregal: Analysis of concentration and oscillation effects

generated by gradients. SIAM J. Math. Anal. 29 (1998), 736–756. zbl
[12] J. Hogan, C. Li, A. McIntosh, K. Zhang: Global higher integrability of Jacobians on

bounded domains. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 17 C (2000), 193–217. zbl
[13] A. Ka lamajska, M. Kružík: Oscillations and concentrations in sequences of gradients.

ESAIM Control Optim. Calc. Var. To appear; IMA preprint 2069, Minneapolis (2005).
[14] D. Kinderlehrer, P. Pedregal: Characterization of Young measures generated by gradi-

ents. Arch. Ration. Mech. Anal. 115 (1991), 329–365.
[15] D. Kinderlehrer, P. Pedregal: Weak convergence of integrands and the Young measure

representation. SIAM J. Math. Anal. 23 (1992), 1–19. zbl
[16] D. Kinderlehrer, P. Pedregal: Gradient Young measures generated by sequences in

Sobolev spaces. J. Geom. Anal. 4 (1994), 59–90. zbl
[17] M. Kočvara, M. Kružík, and J. V. Outrata: On the control of an evolutionary equilibrium

in micromagnetics. Optimization with multivalued mappings. Springer Optim. Appl.,
Vol. 2. Springer-Verlag, New York, 2006, pp. 143–168.

[18] J. Kristensen: Lower semicontinuity in spaces of weakly differentiable functions. Math.
Ann. 313 (1999), 653–710. zbl

[19] M. Kružík, T. Roubíček: On the measures of DiPerna and Majda. Math. Bohem. 122

(1997), 383–399. zbl
[20] M. Kružík, T. Roubíček: Optimization problems with concentration and oscillation ef-

fects: Relaxation theory and numerical approximation. Numer. Funct. Anal. Optimiza-
tion 20 (1999), 511–530. zbl

[21] C. B. Morrey: Multiple Integrals in the Calculus of Variations. Springer-Verlag, Berlin,
1966. zbl

[22] S. Müller: Higher integrability of determinants and weak convergence in L1. J. Reine
Angew. Math. 412 (1990), 20–34. zbl

[23] S. Müller: Variational models for microstructure and phase transisions. Lect. Notes
Math. 1713. Springer-Verlag, Berlin, 1999, pp. 85–210. zbl

[24] P. Pedregal: Parametrized Measures and Variational Principles. Birkäuser-Verlag, Basel,
1997. zbl

542



[25] T. Roubíček: Relaxation in Optimization Theory and Variational Calculus. W. de Gruy-
ter, Berlin, 1997. zbl

[26] M. E. Schonbek: Convergence of solutions to nonlinear dispersive equations. Comm.
Partial Differ. Equations 7 (1982), 959–1000. zbl

[27] L. Tartar: Compensated compactness and applications to partial differential equa-
tions. In: Nonlinear Analysis and Mechanics. Heriot-Watt Symposium IV. Res. Notes
Math. 39 (R. J. Knops, ed.). San Francisco, 1979. zbl

[28] L. Tartar: Mathematical tools for studying oscillations and concentrations: From Young
measures to H-measures and their variants. In: Multiscale problems in science and
technology. Challenges to mathematical analysis and perspectives. Proceedings of the
conference on multiscale problems in science and technology, held in Dubrovnik, Croatia,
September 3–9, 2000 (N. Antonič et al., eds.). Springer-Verlag, Berlin, 2002, pp. 1–84. zbl

[29] M. Valadier: Young measures. In: Methods of Nonconvex Analysis. Lect. Notes
Math. 1446 (A. Cellina, ed.). Springer-Verlag, Berlin, 1990, pp. 152–188. zbl

[30] J. Warga: Optimal Control of Differential and Functional Equations. Academic Press,
New York, 1972. zbl

[31] L. C. Young: Generalized curves and the existence of an attained absolute minimum in
the calculus of variations. C. R. Soc. Sci. Lett. Varsovie, Classe III 30 (1937), 212–234. zbl

Author’s address: M. Kružík, Institute of Information Theory and Automation,
Academy of Sciences of the Czech Republic, Pod vodárenskou věží 4, CZ-182 08 Praha 8,
Czech Republic, e-mail: kruzik@utia.cas.cz (corresponding address); Faculty of Civil
Engineering, Czech Technical University, Thákurova 7, CZ-166 29 Praha 6, Czech Republic.

543


		webmaster@dml.cz
	2020-07-02T12:08:04+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




