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UNILATERAL DYNAMIC CONTACT OF VON KÁRMÁN PLATES

WITH SINGULAR MEMORY*

Igor Bock, Bratislava, Jiří Jarušek, Praha

Dedicated to Jiří V. Outrata on the occasion of his 60th birthday.

Abstract. The solvability of the contact problem is proved provided the plate is simply
supported. The singular memory material is assumed. This makes it possible to get a priori
estimates important for the strong convergence of gradients of velocities of solutions to the
penalized problem.
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1. Introduction and notation

Contact problems occur frequently in practical situations involving strings, beams,
membranes, plates and shells. An optimal control problem for a string in contact has
been solved in [8]. Especially, dynamic contact problems play a very important role in
the present investigations. Since the existence of solutions for purely elastic materials
is difficult to prove even in the simplest cases, some kind of physically admissible
viscosity helps a lot to solvability of such problems. Considering moderately large
deflections, we investigate the nonlinear von Kármán model for the material with a
singular memory. Dynamic problems for viscoelastic von Kármán system with the
emphasis on decay rates of solutions were treated in [10] where the viscosity does not
appear in the equation for the Airy stress function and no contact is considered. The
solvability of quasistatic contact problems for such model was solved in [2] and [3]
while the dynamic contact problem for short memory material has been studied in [1].

*The work presented here was partially supported by the Czech Academy of Sciences
under grant IAA1075402 and under the Institutional research plan AVOZ 10190503, and
by the grant 1/4214/07 of the Grant Agency of the Slovak Republic.
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The aim of the present paper is to prove the solvability of the dynamic contact
problem for von Kármán plates made of a material with a singular memory. We do it
with the help of penalization of the contact condition. The interpolation technique
and the compact imbedding theorem play a crucial role in the transition to the
original Signorini contact problem.
We consider a bounded convex polygonal or C3,1 domain Ω ⊂ R2 (cf. Remark 2.5)

with boundary Γ and a bounded time interval I ≡ (0, T ). The unit outer normal
vector is denoted by n = (n1, n2), τ = (−n2, n1) is the unit tangent vector. We de-
note by w ≡ (w1, w2, w3) the in-plane and perpendicular displacement. The further
notation is as follows:

∂

∂s
≡ ∂s,

∂2

∂s∂r
≡ ∂sr, ∂i = ∂xi , i = 1, . . . , N,

v̇ =
∂v

∂t
, v̈ =

∂2v

∂t2
, Q = I × Ω, S = I × Γ.

The strain tensor is defined as εij(w) = 1
2 (∂iwj + ∂jwi + ∂iw3∂jw3) − x3∂ijw3,

i, j = 1, 2, εi3 ≡ 0, i = 1, 2, 3.
We denote by δij the Kronecker symbol and employ the Einstein summation con-

vention. The constitutional law has the form

σij(w) =
1

1 − ν2
E
(

(1 − ν)εij(w) + νδijεkk(w)
)

(1)

+
E

1 − ν2

(

(1 − ν)εij(w) + νδijεkk(w)
)

.

Here the Young modulus of elasticity E is a positive constant,

(2) E : v 7→

∫ t

0

K(t − s)
(

v(t, ·) − v(s, ·)
)

ds.

The kernel K of the singular memory term is assumed to be integrable over R+ and
to have the form

K : t 7→ t−2αq(t) + r(t), t ∈ R+ ≡ (0, +∞) with α ∈
(

0,
1

2

)

,(3)

K : t 7→ 0, t 6 0.

Both q and r belong to C1(R+ ); they are non-negative and non-increasing functions.
Moreover, q(t) > 0 for t in a right neighbourhood of the origin.
We set

a =
h2

12
, b =

h2

12̺(1 − ν2)
,
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where h is the the plate thickness and ̺ is the density of the material. We denote

(4) [u, v] ≡ ∂11u∂22v + ∂22u∂11v − 2∂12u∂12v.

We use the following notation of the function spaces: by W k
p (M) with k > 0

and p ∈ [1,∞] the Sobolev (for a noninteger k the Sobolev-Slobodetskii) spaces
are denoted provided they are defined on a domain or an appropriate manifold M .
By W̊ k

p (M) we denote the spaces with zero traces on ∂M . If p = 2 we use the nota-
tion Hk(M), H̊k(M). For the anisotropic spaces W k

p (M), k = (k1, k2) ∈ R2
+ , k1 is

related to the time while k2 to the space variables (with the obvious consequences
for p = 2) provided M is a time-space domain. The duals to H̊k(M) are denoted
by H−k(M).

2. Formulation of the problem for a simply supported plate

First we introduce the classical formulation of the problem to be solved. Applying
the approach of [4] and the constitutive law (1) we arrive at the following system for
the deflection u and the Airy stress function v:

(5)

ü − a∆ü + b(E∆2u + E∆2u) − [u, v] = f + g,

u > 0, g > 0, ug = 0,

∆2v + E[u, u] + E[u, u] = 0











on Q

with the boundary condition

(6) u = u0, M(u) = 0, v = ∂nv = 0 on S,

and the initial condition

(7) u(0, ·) = u0, u̇(0, ·) = u1 on Ω.

HereM(u) = b[Em(u)+Em(u)], where m(u) = ∆u+(1− ν)(2n1n2∂12u−n2
1∂22u−

n2
2∂11u).
For u, y ∈ L2(I; H2(Ω)) we define the following bilinear form

(8) A : (u, y) 7→ b
(

∂kku∂kky + ν(∂11u∂22y + ∂22u∂11y) + 2(1 − ν)∂12u∂12y
)

almost everywhere on Q and introduce a cone C as

(9) C :=
{

y ∈ u0 + (L2(I; V ) ∩ H1(Q)); y > 0
}

,
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where

(10) V = H2(Ω) ∩ H̊1(Ω).

Then the variational formulation of the problem (5)–(7) has the following form: Look
for {u, v} ∈ C × L2(I; H̊2(Ω)) such that u̇ ∈ L2(I; H1(Ω)) and

∫

Q

(

A(Eu + Eu, y1 − u) − a∇u̇ · ∇(ẏ1 − u̇) − u̇(ẏ1 − u̇) − [u, v](y1 − u)
)

dxdt(11)

+

∫

Ω

(

a∇u̇ · ∇(y1 − u) + u̇(y1 − u)
)

(T, ·) dx

>

∫

Ω

(

a∇u1 · ∇(y1(0, ·) − u0

)

+ u1

(

y1(0, ·) − u0)
)

dx +

∫

Q

f(y1 − u) dxdt,

∫

Ω

(

∆v∆y2 + (E[u, u] + E[u, u])y2

)

dx = 0 ∀ (y1, y2) ∈ C × H̊2(Ω).(12)

We define the bilinear operator Φ: H2(Ω)2 → H̊2(Ω) by means of the variational
equation

(13)
∫

Ω

∆Φ(u, v)∆ϕdx =

∫

Ω

[u, v]ϕdx, ϕ ∈ H̊2(Ω).

The equation (13) has a unique solution, because [u, v] ∈ L1(Ω) →֒ H2(Ω)∗. The
well-defined operator Φ is evidently compact and symmetric. The domain Ω fulfils
the assumptions enabling us to apply Lemma 1 from [9] due to which Φ: H2(Ω)2 →

W 2
p (Ω), for any p ∈ (2,∞), and

(14) ‖Φ(u, v)‖W 2
p (Ω) 6 c‖u‖H2(Ω)‖v‖W 1

p (Ω) ∀ (u, v) ∈ H2(Ω)2.

With its help we reformulate the system (11), (12) into the following variational
inequality:

P r o b l e m P . We look for u ∈ C such that u̇ ∈ L2(I; H1(Ω)) and the inequality
∫

Q

(

A(Eu + Eu, y − u) − a∇u̇ · ∇(ẏ − u̇) − u̇(ẏ − u̇)
)

dxdt(15)

+

∫

Q

[u, EΦ(u, u) + EΦ(u, u)](y − u) dxdt

+

∫

Ω

(

a∇u̇ · ∇(y − u) + u̇(y − u)
)

(T, ·) dx

>

∫

Ω

(

a∇u1 · (∇y(0, ·) −∇u0) + u1(y(0, ·) − u0)
)

dx

+

∫

Q

f(y − u) dxdt

holds for any y ∈ C.
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In the sequel we assume

(16) u0 ∈ H2(Ω), u0 > U on Ω, u1 ∈ H1(Ω), f ∈ L2(I; H−1Ω))

for a certain positive constant U . Furthermore, a certain “smallness” of the memory
will be needed:

(17)
∫ +∞

0

K(s) ds < E.

To be able to solve this problem we penalize it first.
For the limit procedures required in the proof of the existence results the following

theorems and corollaries from [5, Chapter 2] will be crucial:

Theorem 2.1 (Embedding theorem). Let M ⊂ RN be a bounded domain with

a Lipschitz boundary. Let p, q ∈ (1,∞), γ ∈ [0, 1] and α ∈ (γ, 1] be numbers such

that the inequality

(18)
1

α

(N

p
−

N

q
+ γ

)

6 1

holds. Then the Sobolev-Slobodetskii space Wα
p (M) is continuously embedded

into W γ
q (M). If the inequality (18) is strict, then the embedding is compact for any

real q > 1. For q = ∞ this is true under the convention 1/q = 0.

Corollary 2.2. LetM and I be as above. Let pi, qi belong to (1, +∞), αi belong

to (0, 1] and γi to [0, αi), i = 1, 2. Assume that (18) holds with i = 1 and N replaced

by 1 and that it simultaneously holds for i = 2. Then Wα1
p1

(I; Wα2
p2

(M)) can be

imbedded into W γ1
q1

(I; W γ2
q2

(M)). If both inequalities are strict, the imbedding is

compact. The last assertion still holds if qi is infinite, provided we use the convention

1/qi = 0, i = 1, 2.

Theorem 2.3 (Interpolation theorem). Let M be as above, let k1, k2 belong to

[0, 1], let p1, p2 belong to (1, +∞) and Θλ to [0, 1]. Then there exists a constant c

such that for all u ∈ W k1
p1

(M) ∩ W k2
p2

(M) the following estimate holds:

‖u‖W k
p (M) 6 c‖u‖Θλ

W
k1
p1

(M)
‖u‖1−Θλ

W
k2
p2

(M)

with k = Θλk1 + (1−Θλ)k2 and 1/p = Θλ/p1 + (1−Θλ)/p2. The assertion remains

true if k1 = k2 = 0 and p1, p2 belong to [1, +∞].
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Corollary 2.4 (Generalization). Let M , k1, k2, p1, p2 be as above. Let I be a

bounded interval in R, let κ1, κ2 belong to [0, 1], let q1, q2 belong to (1, +∞) and

Θλ to [0, 1]. Then there exists a constant c such that for all u ∈ Wκ1
q1

(I; W k1
p1

(M)) ∩

Wκ2
q2

(I; W k2
p2

(M)) it holds

‖u‖W κ
q (I;W k

p (M)) 6 c‖u‖Θλ

W
κ1
q1

(I;W
k1
p1

(M))
‖u‖1−Θλ

W
κ2
q2

(I;W
k2
p2

(M))
,

where k = Θλk1 + (1 − Θλ)k2, κ = Θλκ1 + (1 − Θλ)κ2, 1/q = Θλ/q1 + (1 − Θλ)/q2

and 1/p = Θλ/p1 + (1 − Θλ)/p2. If κ1 = κ2 = 0 and q1, q2 belong to [1, +∞], the

assertion still holds.

R em a r k 2.5. In order to apply Lemma 1 from [8] containing the estimate (14)
we need the regularity v ∈ H3(Ω) for a weak solution of the Dirichlet problem

∆2v = g on Ω, v = ∂nv = 0 on Γ, g ∈ H−1(Ω).

The regularity result for a C3,1 domain Ω is due to Theorem 2.2, Chapter 4 from [11].
In the case of a convex polygonal domain we apply Theorem 2.1 from [12]. It is
probable that the requirement can be weakened.

3. Penalized problem

We penalize the unilateral contact condition in the standard way replacing the
second row in (5) by the condition g = −u−/η. Thus we arrive at the penalized

P r o b l e m Pη. Look for u ∈ L2(I; V ) + u0 such that ü ∈ L2(Q), the equation

∫

Q

(

üz − aü∆z + A(Eu, z) + EA(u, z)(19)

+ [u, EΦ(u, u) + EΦ(u, u)]z − η−1u−z
)

dxdt =

∫

Q

fz dxdt

holds for any z ∈ L2(I; V ) and the conditions (7) remain valid. In fact, a solution
of Pη should be denoted by uη, but in this section we drop the index η for the sake
of simplicity.

We shall verify the existence and the uniqueness of a solution to the penalized
problem.
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Theorem 3.1. Let f ∈ L2(I; H−1(Ω)), u0 ∈ H2(Ω), u1 ∈ H1(Ω), i = 0, 1. Then

there exists a unique solution u of the problem Pη.

P r o o f. (i) Existence. Let us denote by {wi ∈ V ; i ∈ N} an orthonormal basis
of H̊1(Ω) with respect to the inner product

(·, ·)a : (v, w) 7→

∫

Ω

(a∇v · ∇w + vw) dx

fulfilling the eigenvalue problem

∫

Ω

A(wi, v) dx =

∫

Ω

λi(a∇wi · ∇v + wiv) dx ∀ v ∈ V.

We construct the Galerkin approximation um of a solution in the form

um(t) =

m
∑

i=1

αi(t)wi + u0, αi(t) ∈ R, i = 1, . . . , m, m ∈ N
given by the solution of the approximate problem

∫

Ω

(

a∇üm(t) · ∇wi + üm(t)wi + A(Eum(t) + Eum(t), wi)(20)

+ [um(t), wi](EΦ(um, um)(t) + EΦ(um, um)(t)) − η−1um(t)−wi

)

dx

=

∫

Ω

f(t)wi dx, i = 1, . . . , m,

um(0) = u0m, u̇m(0) = u1m, uim → ui in H2−i(Ω), i = 0, 1.(21)

The matrix A = (aij), aij =
∫

Ω
(a∇wi · ∇wj + wiwj) dx is positive definite. The

system (20) can then be expressed in the form

α̈i = Fi(t, α1, . . . , αm), i = 1, . . . , m.

Its right-hand side satisfies the conditions for the local existence of a solution fulfilling
the initial conditions corresponding to the functions u0m, u1m. Hence there exists
a Galerkin approximation um(t) defined on some interval [0, tm], 0 < tm 6 T . To
derive the a priori estimates for solutions of (20), (21), we multiply the equation (20)
by α̇i(t), sum over i and integrate on the interval [0, s], s 6 tm.
Taking into account the property

(22)
∫

Ω

[u, v]y dx =

∫

Ω

[u, y]v dx
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if at least one element of {u, v, y} belongs to H̊2(Ω), cf. [4], and using the standard
integration by parts and the properties of the kernel function K we get

∫

Qs

(

1

2
∂t

(

a|∇u̇m|2 + |u̇m|2 + EA(um, um) +
E

2
(∆Φ(um, um))2 + η−1(u−

m)2
)

(23)

+
K(s − t)

2

(

A
(

um(s) − um(t), um(s) − um(t)
)

+
1

2

(

∆(Φ(um, um)(s) − Φ(um, um)(t))
)2

)

)

dxdt

−
1

2

∫

Qs

∫ t

0

K ′
t(t − r)A

(

um(t) − um(r), um(t) − um(r)
)

dr dt dx

−
1

4

∫

Qs

∫ t

0

K ′
t(t − r)

(

∆Φ(um, um)(t) − ∆Φ(um, um)(r)
)2

dr dt dx

=

∫

Qs

fu̇m dxdt.

By virtue of (3) and what follows, the identity (23) leads to the a priori estimates
independent of the penalty parameter η, of m ∈ N as well as of tm ∈ I:

‖um‖2
Hα(I;H2(Ω)) + ‖u̇m‖2

L∞(I;H1(Ω)) + ‖um‖2
L∞(I;H2(Ω))(24)

+ ‖Φ(um, um)‖2
Hα(I;H2(Ω)) 6 c ≡ c(f, u0, u1),

where for a Banach space X

‖v‖2
Hα(I;X) ≡

∫

I

‖v‖2
X dt +

∫

I

∫

I

‖v(t) − v(s)‖2
X

|t − s|1+2α
ds dt.

Moreover, the estimate (14) implies

(25) ‖Φ(um, um)‖2
L2(I;W 2

p (Ω)) 6 cp ≡ cp(f, u0, u1) ∀p > 2

and naturally the solution um exists on the whole interval [0, T ].
The estimate (25) further implies

[um, Φ(um, um)] ∈ L2(I; Lr(Ω)), r =
2p

p + 2
,(26)

‖[um, Φ(um, um)]‖L2(I;Lr(Ω)) 6 cr ≡ cr(f, u0, u1).

Moreover, using (24) we arrive at the important dual estimate

(27) ‖üm‖2
L2(Q) 6 cη, m ∈ N.
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Indeed, we have just proved that the sequence of remainders a∆üm − üm is bounded
in L2(I; V ∗) and via integration by parts we get

(28) ‖üm‖L2(Q) = sup
‖f‖L2(Q)61

(üm, f)Q 6 c sup
‖v‖L2(I;V )61

(üm, v − a∆v)Q 6 k,

where we employ also the properties of the Green operator for the elliptic problem
v − a∆v = f with homogeneous Dirichlet boundary value condition and the right-
hand side in L2(Ω) for Ω of the class C2 or convex polygonal as well as the fact that
η > 0 is fixed.
We proceed with the convergence of the Galerkin approximation. Applying the

estimates (24)–(27) we obtain for any p ∈ [1,∞], a subsequence of {um} (denoted
again by {um}), and a function u the following convergences

u̇m ⇀∗ u̇ in L∞(I; H1(Ω)),(29)

um ⇀ u in Hα(I; H2(Ω)),

üm ⇀ ü in L2(Q),

u̇m → u̇ in Lq(I; W 1
2+θ(Ω)) for any 2 6 q ∈ R

and a small θ ≡ θ(α) > 0,

um → u in L2+θ(I; W 1
q (Ω)) ∩ C0(I; W 1

2+θ(Ω))

for any real q > 2 and a small θ ≡ θ(α) > 0,

Φ(um, um) ⇀ Φ(u, u) in L2(I; W 2
p (Ω)) ∩ Hα(I; H2(Ω)).

To get the fourth convergence we first interpolate the second and third one via Corol-
lary 2.4 with Θλ = 2/(2−α) + θ, 0 < θ arbitrarily small and we apply Corollary 2.2
to the result. Then we interpolate this result once again with the first convergence,
where we replace ∞ by an arbitrarily large real p̃. The first part of the fifth con-
vergence follows from the second one and the second part from the fourth one via
Corollary 2.2. The last convergence is a consequence of (14) and the second and the
fifth convergence. Indeed, taking a functional F ∈ L2(I; W 2

p (Ω))∗ (with the norm
denoted by ‖ · ‖∗) we obtain

〈F, Φ(um, um) − Φ(u, u)〉 = 〈F, Φ(um − u, u)〉 + 〈F, Φ(um, um − u)〉.

We have

|〈F, Φ(v, u)〉| 6 ‖F‖∗‖u‖C0(I;W 1
p (Ω))‖v‖L2(I;H2(Ω)) ∀ v ∈ L2(I; H2(Ω))

with p = 2 + θ, θ from (29). The second convergence in (29) then implies

〈F, Φ(um − u, u)〉 → 0.
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Further, we have the estimate

|〈F, Φ(um, um − u)〉| 6 ‖F‖∗‖um‖L2(I;H2(Ω))‖um − u‖C0(I;W 1
p (Ω)).

The boundedness of the sequence {um} in L2(I; H2(Ω)) and the strong convergence
um → u in C0(I; W 1

p (Ω)) for p = 2 + θ then imply the convergence

〈F, Φ(um, um − u)〉 → 0

and the last convergence in (29) follows.

Let µ ∈ N and zµ =
m
∑

i=1

ϕi(t)wi, ϕi ∈ D(0, T ), i = 1, . . . , µ. We have for arbitrary

m ∈ N and t ∈ I the relation
∫

Ω

(

a∇üm(t) · ∇zµ(t) + üm(t)zµ(t) + A((Eum + Eum)(t), zµ(t))

+ [um(t), zµ(t)](EΦ(um, um)(t) + EΦ(um, um)(t)) − η−1um(t)−zµ(t)
)

dx

=

∫

Ω

f(t)zµ(t) dx.

The convergence process (29) and the property (22) imply that the function u fulfils
∫

Ω

(

a∇ü · ∇zµ + üzµ + A(Eu, zµ) + EA(u, zµ)

+ [u, EΦ(u, u) + EΦ(u, u)]zµ − η−1u−zµ

)

dxdt =

∫

Q

fz dxdt.

The functions {zµ} form a dense subset of the set L2(I; H2(Ω)), hence the function u

fulfils the identity (19). The initial conditions (7) follow due to (21) and the proof
of the existence of a solution is complete.
(ii) Uniqueness. Let u, û be two solutions of Problem Pη and let w = u − û. We

have for arbitrary s ∈ I the relations
∫

Qs

(

a∇ẅ · ∇z + ẅz + A(Ew, z) + EA(w, z)

+ ([u, EΦ(u, u) + EΦ(u, u)] − [û, EΦ(û, û) + EΦ(û, û)])z

− η−1(u− − û−)z
)

dxdt = 0, ∀ z ∈ L2(I; H2(Ω)),

w(0, ·) = ẇ(0, ·) = 0 on Ω.

After setting z = ẇ we get

1

2

(

a‖∇ẇ‖2
L2(Ω) + ‖ẇ‖2

L2(Ω) + E

∫

Ω

A(w, w) dx

)

(s) +

∫

Qs

A(Ew, ẇ) dxdt

=

∫

Qs

(

[û, EΦ(û, û) + EΦ(û, û)] − [u, EΦ(u, u) + EΦ(u, u)] + η−1(u− − û−)
)

ẇ dxdt.
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Using the estimate (26) with u and û instead of um and the imbedding Lq(Ω) →֒

H1(Ω), q = 2p/(p − 2) we obtain the inequality

‖ẇ‖2
H1(Ω)(s) 6

c

η

∫ s

0

‖ẇ‖2
H1(Ω)(t) dt for every s ∈ I.

The Gronwall lemma implies

‖ẇ‖H1(Ω)(s) = 0 for every s ∈ I

and the uniqueness of the solution follows due to the zero initial conditions for
w ≡ u − û. �

Let us remark that the solution u satisfies again the η-independent a priori esti-
mates (24).

4. Existence of solutions to the original problem

Our task now is to perform the limit process η ց 0. To get it, we need a new
η-independent dual estimate for the solutions uη of the problems Pη. For this we
need an η-independent estimate of the penalty term. To get it, we put z = uη − u0

into (19), where we rewrite u by uη. From the validity of (24) and the strict positivity
of u0 we easily derive the penalty estimate

(30) ‖η−1u−
η ‖L1(Q) 6 c

which is η independent and we recall the obvious imbedding

L1(Q) →֒ L1(I; H−1−θ(Ω)) ∀ θ ∈
(

0,
1

2

)

.

As earlier this gives the estimate of üη −∆üη, but here in L1(I; V ∗)) only. However,
an appropriate analogue of the estimate (28) leads to the dual estimate

(31) ‖üη‖L1(I;L2(Ω)) 6 c

with c independent of η. Hence u̇η is bounded in W 1−θ
1+θ′(I; L2(Ω)) for any θ ∈ (0, 1)

and for θ′ ≡ θ′(θ) ց 0 if θ ց 0. Interpolating this space with the space Lp(I; H1(Ω))

for some real p > 2 big enough, we get that

(32) ‖u̇η‖H1/2−θ(I;H1/2(Ω)) 6 C with 0 < θ arbitrarily small.
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Interpolating the result in (32) with the fact that uη is bounded in Hα(I, H2(Ω)),
we get that uη is again bounded in some H1+θ1(I; H1+θ2(Ω)) for some θ1, θ2 > 0

dependent on α, i.e. u̇η is bounded in Hθ1(I; H1+θ2(Ω)). This space is compactly
imbedded in L2(I, W 1

s (Ω)) for some s > 2.
Hence there exist sequences ηk ց 0 and uηk

≡ uk and a function u such that the
following convergences

uk ⇀ u in Hα(I; H2(Ω)),(33)

u̇k → u̇ in L2(I; W 1
s (Ω)),(34)

uk → u in C0(I; W 1
s (Ω)),(35)

Φ(uk, uk) ⇀ Φ(u, u) in L2(I; W 2
p (Ω))(36)

are valid. These convergences are sufficient to prove that u is a solution of Problem P .
Indeed, we perform the integration by parts in the terms in (19) where ük occurs.
Then for these terms the strong convergences (34) and (35) are sufficient for the limit
process. Moreover, we add A(−Eu−Eu, z) to both sides of (19), setting z = uk −u.
The estimate for Φ, the non-negativeness of the kernel K and the condition (17)
yield

(37) uk → u ∈ L2(I; H2(Ω)).

For the limit process in the terms with Φ we employ the obvious strong conver-
gence uk → u in L∞(Q) and the weak convergence [uk, Φ(uk, uk)] ⇀ [u, Φ(u, u)] in
(L∞(Q))∗ which follows from (36) and (37). Hence the following theorem holds.

Theorem 4.1. Let the relation (3) for some α ∈ (0, 1/2) and the assump-

tions (16) and (17) be satisfied. Then there exists a solution to Problem P .

R em a r k 4.2. The boundary conditions for the simply supported plate played a
key role in deriving the dual estimates (27) and (31). The dynamic contact problem
for a viscoelastic clamped plate with a short memory has been solved in [1] but the
same problem for the clamped plate with a long memory remains unsolved.
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