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Abstract. In this paper we consider proper cycles of indefinite integral quadratic forms
F = (a, b, c) with discriminant ∆. We prove that the proper cycles of F can be obtained

using their consecutive right neighbors Ri(F ) for i > 0. We also derive explicit relations
in the cycle and proper cycle of F when the length l of the cycle of F is odd, using the
transformations τ (F ) = (−a, b,−c) and χ(F ) = (−c, b,−a).
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1. Introduction

A real binary quadratic form (or just a form) F is a polynomial in two variables x

and y of the type

F = F (x, y) = ax2 + bxy + cy2

with real coefficients a, b, c. We denote F briefly by F = (a, b, c). The discriminant

of F is defined by the formula b2−4ac and is denoted by ∆ = ∆(F ). F is an integral

form if and only if a, b, c ∈ Z, and is indefinite if and only if ∆(F ) > 0. An indefinite

quadratic form F = (a, b, c) with discriminant ∆ is said to be reduced if

(1.1)
∣

∣

√
∆ − 2|a|

∣

∣ < b <
√

∆.

Let GL(2,Z) be the multiplicative group of 2 × 2 matrices g =

(

r s

t u

)

such

that r, s, t, u ∈ Z and det g = ±1. Gauss (1777–1855) defined the group action of

GL(2,Z) on the set of forms by the following formula: Let F = (a, b, c) be a form
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and let g =

(

r s

t u

)

∈ GL(2,Z). Then the form gF is defined by

gF (x, y) = a(rx + ty)2 + b(rx + ty)(sx + uy) + c(sx + uy)2.

That is, gF is obtained from F by making the substitution x → rx+tu, y → sx+uy.

Moreover, ∆(F ) = ∆(gF ) for all g ∈ GL(2,Z). That is, the action of GL(2,Z) on

forms leaves the discriminant invariant. If F is indefinite or integral, then so is gF

for all g ∈ GL(2,Z).

Let F and G be two forms. If there exists a g ∈ GL(2,Z) such that gF = G,

then F and G are called equivalent. If det g = 1, then F and G are called properly

equivalent. If det g = −1, then F and G are called improperly equivalent.

Let ̺(F ) denote the normalization (i.e., replacing F by its normalization, for

further details see [1, p. 88]) of (c,−b, a). To be more explicit, we set

(1.2) ̺(F ) = (c,−b + 2cs, cs2 − bs + a),

where

s = s(F ) =















sign(c)
⌊ b

2|c|
⌋

for |c| >
√

∆,

sign(c)
⌊ b +

√
∆

2|c|
⌋

for |c| <
√

∆.

Note that, if F is reduced, then ̺(F ) is also reduced due to (1.1). In fact, ̺ is a

permutation of the set of all reduced indefinite forms.

Now consider the transformations

(1.3) χ(F ) = χ(a, b, c) = (−c, b,−a)

and

(1.4) τ(F ) = τ(a, b, c) = (−a, b,−c).

If

χ(F ) = F,

that is, F = (a, b,−a) for the transformation χ defined in (1.3), then F is called

symmetric. We assume that F = (a, b, c) is indefinite and integral throughout the

paper.

The cycle of F is the sequence ((τ̺)i(G)) for i ∈ Z, whereG = (k, l, m) is a reduced

form with k > 0 which is equivalent to F . Similarly, the proper cycle of F is the

sequence (̺i(G)) for i ∈ Z, where G is a reduced form which is properly equivalent
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to F . The cycle and the proper cycle of F are invariants of the equivalence class

of F . We represent the cycle or proper cycle of F by its period

F0 ∼ F1 ∼ . . . ∼ Fl−1

of length l. We explain how to compute the cycle and proper cycle of F by the

following lemma.

Lemma 1.1. Let F = (a, b, c) be a reduced quadratic form of discriminant ∆.

Then the cycle of F is F0 ∼ F1 ∼ F2 ∼ . . . ∼ Fl−1 of length l, where F0 = F =

(a0, b0, c0),

(1.5) si = |s(Fi)| =
⌊bi + ⌊

√
∆⌋

2|ci|
⌋

and

(1.6) Fi+1 = (ai+1, bi+1, ci+1) =
(

|ci|,−bi + 2si|ci|,−(ai + bisi + cis
2
i )

)

for 1 6 i 6 l − 2. The proper cycle of F is

F0 ∼ τ(F1) ∼ F2 ∼ τ(F3) ∼ . . . ∼ τ(Fl−2) ∼ Fl−1(1.7)

∼ τ(F0) ∼ F1 ∼ τ(F2) ∼ . . . ∼ Fl−2 ∼ τ(Fl−1)

of length 2l if l is odd, and is

(1.8) F0 ∼ τ(F1) ∼ F2 ∼ τ(F3) ∼ . . . ∼ Fl−2 ∼ τ(Fl−1)

of length l if l is even. In this case the equivalence class of F is the disjoint union of

the proper equivalence class of F and the proper equivalence class of τ(F ) ([1]).

The right neighbor of F = (a, b, c), denoted by R(F ), is the form (A, B, C) deter-

mined by the conditions

(i) A = c,

(ii) b + B ≡ 0 (mod 2A) and
√

∆ − 2|A| < B <
√

∆,

(iii) B2 − 4AC = ∆.

It is clear from the definition that

(1.9) R(F ) = (A, B, C) =

(

1 0

δ 1

) (

0 −1

1 0

)

(a, b, c) =

(

0 −1

1 −δ

)

(a, b, c),

where

(1.10) b + B = 2cδ.

Therefore F is properly equivalent to its right neighbor R(F ) (see [2]).
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2. Proper cycles of indefinite quadratic forms and

their right neighbors

In this section we will consider the proper cycles of indefinite reduced quadratic

forms F = (a, b, c). We will show that the proper cycle of F can be given by using

its consecutive right neighbors Ri(F ) for i > 0. We also derive some relations in the

cycle and proper cycle of F .

Theorem 2.1. Let F0 ∼ F1 ∼ . . . ∼ Fl−1 be the cycle of F of length l, and let

Ri(F0) be the consecutive right neighbors of F0 for i > 0. Then

(1) If l is odd, then the proper cycle of F is

F0 ∼ R1(F0) ∼ R2(F0) ∼ . . . ∼ R2l−2(F0) ∼ R2l−1(F0)

of length 2l.

(2) If l is even, then the proper cycle of F is

F0 ∼ R1(F0) ∼ R2(F0) ∼ . . . ∼ Rl−2(F0) ∼ Rl−1(F0)

of length l.

P r o o f. (1) Let l be odd. Then we know from (1.7) that the proper cycle of F

is

F0 ∼ τ(F1) ∼ F2 ∼ τ(F3) ∼ . . . ∼ Fl−2 ∼ τ(Fl−1)

of length 2l. Let Fi and Fi+1 be two forms in the cycle of F . Then

si =
⌊bi + ⌊

√
∆⌋

2|ci|
⌋

by (1.5). For the right neighbor R(Fi) of Fi we have

δi =
bi + Bi

2ci

by (1.10). On the other hand, bi + Bi ≡ 0 (mod 2Ai) and
√

∆ − 2|Ai| < Bi <
√

∆

by the definition. Hence it is easily seen that

si =

{

−δi if i is even,

δi if i is odd.

410



Hence we can write si = |δi|. Therefore |δi| coincides with si. For the quadratic form

F0 = (a0, b0, c0) we have from (1.5) and (1.6)

F1 = (|c0|,−b0 + 2s0|c0|,−a0 − b0s0 − c0s
2
0)(2.1)

= (−c0,−b0 − 2s0c0,−a0 − b0s0 − c0s
2
0).

The first right neighbor of F0 = (a0, b0, c0) is

R1(F0) =

(

0 −1

1 −δ0

)

(a0, b0, c0)(2.2)

= (c0,−b0 + 2δ0c0, a0 − b0δ0 + c0δ
2
0)

due to (1.9). Replacing δ0 by −s0 in (2.2) we get

(2.3) R1(F0) = (c0,−b0 − 2s0c0, a0 + b0s0 + c0s
2
0)

since s0 = −δ0. Applying (1.4) we get from (2.1)

(2.4) τ(F1) = (c0,−b0 − 2s0c0, a0 + b0s0 + c0s
2
0).

Consequently, (2.3) and (2.4) yield that

R1(F0) = (c0,−b0 − 2s0c0, a0 + b0s0 + c0s
2
0) = τ(F1).

Similarly it can be shown that

R2(F0) = F2,

R3(F0) = τ(F3),

. . .

Rl−1(F0) = Fl−1,

Rl(F0) = τ(F0),

Rl+1(F0) = F1,

. . .

R2l−2(F0) = Fl−2,

R2l−1(F0) = τ(Fl−1).

Therefore

F0 ∼ R1(F0) ∼ R2(F0) ∼ . . . ∼ R2l−2(F0) ∼ R2l−1(F0)

is the proper cycle of F of length 2l.

The second assertion can be proved in the same way. �

411



E x am p l e 2.1. The cycle of F = (1, 5,−4) is

F0 = (1, 5,−4) ∼ F1 = (4, 3,−2) ∼ F2 = (2, 5,−2)

∼ F3 = (2, 3,−4) ∼ F4 = (4, 5,−1)

of length 5 which is an odd number. Therefore the proper cycle of F is

F0 ∼ R1(F0) ∼ R2(F0) ∼ R3(F0) ∼ R4(F0) ∼ R5(F0)

∼ R6(F0) ∼ R7(F0) ∼ R8(F0) ∼ R9(F0)

of length 10 since

R1(F0) = (−4, 3, 2) = τ(F1),

R2(F0) = (2, 5,−2) = F2,

R3(F0) = (−2, 3, 4) = τ(F3),

R4(F0) = (4, 5,−1) = F4,

R5(F0) = (−1, 5, 4) = τ(F0),

R6(F0) = (4, 3,−2) = F1,

R7(F0) = (−2, 5, 2) = τ(F2),

R8(F0) = (2, 3,−4) = F3,

R9(F0) = (−4, 5, 1) = τ(F4).

E x am p l e 2.2. The cycle of F = (1, 8,−5) is

F0 = (1, 8,−5) ∼ F1 = (5, 2,−4) ∼ F2 = (4, 6,−3)

∼ F3 = (3, 6,−4) ∼ F4 = (4, 2,−5) ∼ F5 = (5, 8,−1)

of length 6 which is an even number. Therefore the proper cycle of F is

F0 ∼ R1(F0) ∼ R2(F0) ∼ R3(F0) ∼ R4(F0) ∼ R5(F0)

of length 6 since

R1(F0) = (−5, 2, 4) = τ(F1),

R2(F0) = (4, 6,−3) = F2,

R3(F0) = (−3, 6, 4) = τ(F3),

R4(F0) = (4, 2,−5) = F4,

R5(F0) = (−5, 8, 1) = τ(F5).

From Theorem 2.1 we can deduce the following corollary.
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Corollary 2.2. Let F0 ∼ F1 ∼ . . . ∼ Fl−1 be the cycle of F of length l.

(1) If l is odd, then

Ri(F0) =

{

Fi if i is even,

τ(Fi) if i is odd

for 1 6 i 6 l − 1, and

Ri(F0) =

{

Fi−l if i is even,

τ(Fi−l) if i is odd

for l 6 i 6 2l − 1.

(2) If l is even, then

Ri(F0) =

{

Fi if i is even,

τ(Fi) if i is odd

for 1 6 i 6 l − 1.

Theorem 2.3. If l is odd, then in the cycle F0 ∼ F1 ∼ . . . ∼ Fl−1 of F ,

χ(Fi) = Fl−1−i

for 0 6 i 6 l − 1 and F(l−1)/2 is a symmetric form.

P r o o f. Let F = (a, b, c) be a quadratic form. Then applying (1.5) and (1.6) we

get

F0 = (a0, b0, c0),(2.5)

F1 = (a1, b1, c1),

F2 = (a2, b2, c2),

F3 = (a3, b3, c3),

. . .

F(l−3)/2 =
(

a(l−3)/2, b(l−3)/2, c(l−3)/2

)

,

F(l−1)/2 =
(

a(l−1)/2, b(l−1)/2, c(l−3)/2

)

,

F(l+1)/2 =
(

−c(l−3)/2, b(l−3)/2,−a(l−3)/2

)

,

. . .

Fl−3 = (−c2, b2,−a2),

Fl−2 = (−c1, b1,−a1),

Fl−1 = (−c0, b0,−a0).
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It is clear from (2.5) that

χ(F0) = (−c0, b0,−a0) = Fl−1,

χ(F1) = (−c1, b1,−a1) = Fl−2,

χ(F2) = (−c2, b2,−a2) = Fl−3,

. . .

χ
(

F(l−3)/2

)

=
(

−c(l−3)/2, b(l−3)/2,−a(l−3)/2

)

= F(l+1)/2,

χ
(

F(l−1)/2

)

=
(

a(l−1)/2, b(l−1)/2, c(l−3)/2

)

= F(l−1)/2,

χ
(

F(l+1)/2) =
(

a(l−3)/2, b(l−3)/2, c(l−3)/2

)

= F(l−3)/2,

. . .

χ(Fl−3) = (a2, b2, c2) = F2,

χ(Fl−2) = (a1, b1, c1) = F1,

χ(Fl−1) = (a0, b0, c0) = F0.

So χ(Fi) = Fl−1−i for 0 6 i 6 l − 1 and F(l−1)/2 is a symmetric form since

χ(F(l−1)/2) = F(l−1)/2 by (1.3). �

From Theorem 2.3, we can obtain the following result.

Corollary 2.4. The cycle of F is

F0 ∼ F1 ∼ F2 ∼ . . . ∼ F(l−3)/2 ∼ F(l−1)/2 ∼ χ(F(l−3)/2) ∼ . . .

∼ χ(F2) ∼ χ(F1) ∼ χ(F0).

Now we can give the cycle of χ(F ) by the following theorem.

Theorem 2.5. If l is odd, then the cycle of χ(F ) is

χ(Fl) ∼ χ(Fl−1) ∼ χ(Fl−2) ∼ . . . ∼ χ(F1)

of length l.

P r o o f. Let F0 ∼ F1 ∼ F2 ∼ . . . ∼ Fl−1 be the cycle of F . Then Fl = F0, Fl+1 =

F1, . . . , F2l = Fl−1. We know from Theorem 2.3 that

χ(Fi) = Fl−1−i

for 0 6 i 6 l − 1. So χ(Fl−1) = F0. In particular, χ(Fl−2) = F1, χ(Fl−3) =

F2, . . . , χ(F0) = Fl−1. Consequently, the cycle of χ(F ) is

χ(Fl) ∼ χ(Fl−1) ∼ χ(Fl−2) ∼ . . . ∼ χ(F1)

of length l. �
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E x am p l e 2.3. The cycle of F = (1, 7,−6) is

F0 = (1, 7,−6) ∼ F1 = (6, 5,−2) ∼ F2 = (2, 7,−3) ∼ F3 = (3, 5,−4)

∼ F4 = (4, 3,−4) ∼ F5 = (4, 5,−3) ∼ F6 = (3, 7,−2)

∼ F7 = (2, 5,−6) ∼ F8 = (6, 7,−1)

of length 9. Note that

χ(F0) = (6, 7,−1),

χ(F8) = (1, 7,−6),

χ(F7) = (6, 5,−2),

χ(F6) = (2, 7,−3),

χ(F5) = (3, 5,−4),

χ(F4) = (4, 3,−4),

χ(F3) = (4, 5,−3),

χ(F2) = (3, 7,−2),

χ(F1) = (2, 5,−6).

Therefore the cycle of χ(F ) = (6, 7,−1) is

χ(F9) = (6, 7,−1) ∼ χ(F8) = (1, 7,−6) ∼ χ(F7) = (6, 5,−2)

∼ χ(F6) = (2, 7,−3) ∼ χ(F5) = (3, 5,−4) ∼ χ(F4) = (4, 3,−4)

∼ χ(F3) = (4, 5,−3) ∼ χ(F2) = (3, 7,−2) ∼ χ(F1) = (2, 5,−6)

of length 9.
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