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Abstract. The paper presents the theory of the discontinuous Galerkin finite element
method for the space-time discretization of a linear nonstationary convection-diffusion-
reaction initial-boundary value problem. The discontinuous Galerkin method is applied
separately in space and time using, in general, different nonconforming space grids on dif-
ferent time levels and different polynomial degrees p and ¢ in space and time discretization,
respectively. In the space discretization the nonsymmetric interior and boundary penalty
approximation of diffusion terms is used. The paper is concerned with the proof of error
estimates in “L?(L?)”’- and “/zL?(H')"-norms, where £ > 0 is the diffusion coefficient.
Using special interpolation theorems for the space as well as time discretization, we find
that under some assumptions on the shape regularity of the meshes and a certain regularity
of the exact solution, the errors are of order O(hP + 7). The estimates hold true even in
the hyperbolic case when € = 0.

Keywords: nonstationary convection-diffusion-reaction equation, space-time discontinu-
ous Galerkin finite element discretization, nonsymmetric treatment of diffusion terms, error
estimates

MSC 2000: 65M60, 65M15, 65M12

1. INTRODUCTION

A number of complex problems from science and technology (aerospace engineer-
ing, turbomachinery, oil recovery, meteorology, environmental protection etc.) re-
quire to apply new efficient, robust, reliable and highly accurate numerical methods.
It is necessary to develop techniques that allow to realize numerical approximations of

This work was part of the project No. MSM 0021620839 financed by the Ministry of
Education of the Czech Republic and was partly supported under Grant No. 201/05/0005
of the Grant Agency of the Czech Republic.
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strongly nonlinear singularly perturbed systems in domains with complex geometry
whose solutions contain internal or boundary layers.

An excellent candidate to overcome these difficulties is the discontinuous Galer-
kin finite element (DGFE) method, which becomes more and more popular in the
solution of a number of problems.

The DGFE method uses piecewise polynomial approximations of the sought solu-
tion on a finite element mesh without any requirement on continuity between neigh-
bouring elements and can be considered a generalization of the finite volume and
finite element methods. It allows to construct higher order schemes in a natural
way and is suitable for approximation of discontinuous solutions of conservation
laws or solutions of singularly perturbed convection-diffusion problems having steep
gradients. This method exploites advantages of the finite element method and fi-
nite volume schemes with an approximate Riemann solver and can be applied on
unstructured grids which are generated for most complex geometries.

The original DGFE method was introduced in [36] for the solution of a neutron
transport linear equation and analyzed theoretically in [32] and later in [30]. Almost
simultaneously the DGFE techniques were developed for the numerical solution of
elliptic problems ([50]) and space semidiscretization of parabolic problems ([21], [1]),
using the interior penalty Galerkin methods. In these works the symmetric approx-
imation of the diffusion terms is used, called the SIPG (symmetric interior penalty
Galerkin) method. Quite popular is the NIPG (nonsymmetric interior penalty Galer-
kin) method which was first introduced in [40]. Theoretical analysis of various types
of the DGFE method applied to elliptic problems can be found, e.g., in [4], [2], [3]
and [41].

The DGFE method found very soon a number of applications. Let us mention in
particular the solution of nonlinear conservation laws ([11], [29], [19]) and compress-
ible flow ([5], [6], [7], [13], [15], [17], [24], [26], [48]). A survey of DGFE methods,
techniques and some applications can be found in [9] and [10].

In the discretization of nonstationary problems, one often uses the space semidis-
cretization, also called the method of lines. In this approach, the DGFE discretiza-
tion with respect to space variables only is applied, whereas time remains continuous.
This leads to a large system of ordinary differential equations which can be solved
numerically by a suitable ODE solver. (See, e.g., [38], [39], [18], [20], [16], [45], [46],
[47].) In CFD and conservation laws, usually Runge-Kutta methods are used, which
however are conditionally stable. Therefore, it is suitable to apply implicit or semi-
implicit methods. In [38] implicit §-schemes are analyzed, [16] is concerned with the
analysis of a semi-implicit linearized scheme for a nonlinear convection-diffusion prob-
lem and in [15] an efficient semi-implicit method for the solution of compressible Euler
equations was developed. However, these methods have low order of accuracy in time.
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Numerical simulation of strongly nonstationary transient problems requires the
application of numerical schemes of high order of accuracy in space as well as in
time. From this point of view, it appears suitable to use the discontinuous Galerkin
discretization with respect to both space and time. The discontinuous Galerkin time
discretization was introduced and analyzed, e.g., in [22] for the solution of ordinary
differential equations. In [23], [43], [44] and [49], the discontinuous Galerkin time
semidiscretization, combined with conforming space finite element discretization,
is applied to linear parabolic problems. On the other hand, the works [29] and
[48] apply the full DG discretization in the space-time domain. This requires to
construct a mesh in the space-time cylinder, which may be a quite complicated task
for 3D problems.

In this paper we are concerned with the space-time discontinuous Galerkin dis-
cretization applied separately in space and in time for the numerical solution of a
nonstationary convection-diffusion-reaction equation. We follow and extend the re-
sults from [25], where the discontinuous Galerkin space semidiscretization of this
problem was analyzed. In the present paper the time interval is split into subinter-
vals and on each time level a different space mesh may be used in general. This
approach is suitable particularly in the case when the space mesh adaptivity is per-
formed in the course of increasing time. Moreover, the triangulations used for the
space discretization may be nonconforming with hanging nodes. In the discontinuous
Galerkin formulation we use the nonsymmetric version of discretization of the diffu-
sion terms and the interior and boundary penalty (i.e., the NIPG method). For the
space and time discretization, piecewise polynomial approximations of different or-
ders p and ¢, respectively, are used. An important ingredient is the use of upwinding
in the space discretization which consists, roughly speaking, in considering only the
information that is brought from the position opposite to the streamwise direction.
Under the assumption that the triangulations on all time levels are uniformly shape
regular, h ~ 7 (space and time steps are comparable) and the exact solution has some
regularity properties, error estimates are derived for this space-time DGFE method
which are uniform with respect to the diffusion coefficient € — 0+ and are valid even
in the hyperbolic case when ¢ = 0.

The structure of the paper is as follows: First, the continuous problem is formu-
lated and the main assumptions are introduced. Further, the discontinuous Galerkin
discretization in space and time is described. In the next section, some auxiliary
results concerning properties of forms appearing in the definition of the approximate
solution are obtained. Then the error estimates of the DG space-time discretization
are proved. These results are compared with numerical experiments. In Appendix,
rather technical proofs of some estimates are presented.
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2. CONTINUOUS PROBLEM

Let Q C R? (d = 2 or 3) be a bounded polyhedral domain and 7' > 0. We consider
the following initial-boundary value problem: Find u: Qpr = Q x (0,7) — R such
that

(2.1) %Jr'erufEAqucu:g in Qr,
(2.2) u=up on IN~ x(0,T),

0
(2.3) s% —uy on 9t x (0,7T),
(2.4) u(z,0) = u’(z), z €.

We assume that 0Q = 0Q~ U QT and

v(z,t) -n(z) <0 on 9N,
(2.6) v(x,t) -n(x) >0 on QT for all t € [0,7].

Here n(z) is the unit outer normal to the boundary 9 of ©, 9Q~ is the inflow
boundary and 997 is the outflow boundary. In the case ¢ = 0 we put uy = 0 and
ignore the Neumann condition (2.3).

We use the standard notation of function spaces. If w is a bounded domain, then
we define the Lebesgue spaces

L*(w) = {measurable functions ¢: |||y = {essup,¢,|p(z)] < oo},

1/2
L} (w) = {measurable functions ¢: [|||L2w) = (/ 0|2 da:) < oo}

and the Sobolev space

1/2
HE () = {s@ € 12(w): ol = (Z ||Dw||%z<w>) < oo}

la| <k

with the seminorm

1/2
|l () = (Z ||Da$0||2m(w)) .

la|=k
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We also use the Bochner spaces. Let X be a Banach space with a norm || - || x and

a seminorm | - |x and let s be an integer. Then we define:

C([0,7T); X) = {(p: [0,T] — X, continuous, |¢|lc(o,m;x) = S[up] le®)|lx < oo},
te[0,T

L*0,T; X) = {gp: (0,T) — X, strongly measurable,

T
el = [ IOl de < oo},
6(1
(0,3 X) = { € 12(0,T; X): an e 1%(0,T;X), a=1,....s},

where the derivatives 0%¢/0t* are considered in the sense of distributions on (0, 7).
The norm in H*(0,T; X) is defined as

(27) el = ([ ZH e

Moreover, we set

|80|C([0,T];X)= sup |<P|X,
t€(0,T

T 1/2
lelz2(0,7:x) = (/ lol% dt) )
0
T, s 1/2
0%p |2
|l fs0,m5x) = (/ dt) .
0 X

ots

Assumptions on data (A)

We assume that the data satisfy the following conditions:

a) g € C([0,T]; L*(Q)),
b) ug € L3(),

¢) up is the trace of some u* € C([0,T]; H'(2)) N L=(Qr) on 92~ x (0,T),
d) v € C([0,T); W1>(Q)), v, divv bounded by a constant C,, a.e. in Qr,
)
)
)

e CGC([U T} L=(), le(z,t)] < Cc ace. in Qr,

f) c— 5 le’U > 70 > 0 in Qr with a constant o,

g) un 6 C([0,T); L?(091)),

h) e > 0.
With the aid of techniques from [37] and [33], it is possible to prove that there exists
a unique weak solution. Moreover, it satisfies the condition Ou /0t € L?(Q7). We will

assume that the weak solution u is sufficiently regular, so that it satisfies problem
(2.1)-(2.4) pointwise.
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3. DISCRETIZATION OF THE PROBLEM

Let 7, = U K; (in € {0,1,2,...} is a suitable index set) be a triangulation
of the closureeoifz the domain €2 into a finite number of closed triangles (d = 2) or
tetrahedra (d = 3). If two elements K;, K; € 7, contain a nonempty open part of
their sides, we call them neighbours. In this case we put I'j; = I}j; = 0K; N 0Kj.
For i € i), we set s,(i) = {j € ip; K is a neighbour of K;}. The boundary 02 is
formed by a finite number of faces of elements Kj; adjacent to 0F). We denote all
these boundary faces by S; where j € iy, C Z~ = {—1,-2,...} and set v,(i) = {j €
ipn; Sj is a face of K}, Ii; = S for K; € 7p, such that S C 0K;, j € ipy. For K;
not containing any boundary face S; we put v, (i) = 0. Obviously, s5(7) Ny, (i) = 0
for all ¢ € ij,. Now, writing Sy (i) = s,(7) U v, (4), we have

(3.1) 0K;= |J Ly, ok;noa= [J Ty
JESK(7) JE€YR(3)

In what follows, we shall call I;; faces. As we see, we admit nonconforming triangu-
lations with hanging nodes.
For K € 7}, by hi and ok we denote the diameter of K and the diameter of the

largest ball inscribed in K, respectively. We set h = max hi.
KeTy,

We introduce the so-called fractional Sobolev space
(3.2) HE(Q,T) = {95 ¢l € HYK) VK € T}

and define the seminorm

1/2
(3.3) el .70 (Z |<P|Hk(K)) :

KeTy,

For ¢ € H'(Q2,7;) we introduce the following notation:

(3.4) ¢|r,; = the trace of |k, on I},

(3.5) ¢|r;, = the trace of |k, on I';,

(36) (Phr,, = 5(elr, + elr.),

3.7) [Plr,; = elr; — ¢l

(3.8) n;; = the unit outer normal to JK; on the face I;;.

Further, for i € i), we set

(3.9) 0K (t) = {x € 0K;: v(x,t) -n(z) <0},
(3.10) 0K (t) = {x € OK;: v(z,t) - n(x) > 0}.
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(n denotes here the unit outer normal to JK;). In the sequel we often drop the
dependence of K" and 0K, on time in our notation.

In the paper [25] we derived and analyzed the following space-semidiscretization
of our problem: Find u;, € C*([0,7T7]; S¥) such that

ou
(3.11) (6—:73%) + Ap(un(t), on) = ln(en)(t) Ve e S) Vte (0,7),
(3.12) (un(0), on) = (u® 0n) Von €S},
where
(313) Ah(u7 50) = ap (’U,, (P) + bh(u7 50) + Ch(u, 50) + EJh (’U,, (p)a
(3.14) SP = {p € L*(Q); glx € PP(K) YK € T},
(3.15) PP(K) = set of polynomials of degree at most p on K,

and p > 1 is an integer. The bilinear forms (-, ), an, bn, ¢, Jp are defined as follows:

(3.16) (u, ) = /wpdx
(3.17) (u, ) —EZ/ Vu-Vedzx

1€

—ey Y / (V) - nijlo] — (Vo) - ngju]) dS

1€1n jESK (1), j<t

782/ ((Vu-n)p — (Ve -n)u)ds,

i< palatilo)
(3.18) (u, @) Z/ v-Vu)pdr — Z/ (v-n)updS
i icn Joxnon
>/ g as,
o Jox; \asz

(3.19) ch(u,ga):/ﬂcucpd:r,
(320)  Ju(u, )= Y diam(T;;)"" /F [u][¢] d.S

1€ip jESsK (1) ij
i€ip j: [;;COQ™ Lij
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3.21)  In()(t) = / @dx+Z/KWQ B ds

1€

+€Z Z diam(Fij)fl/F up(t)pdS

1€ty j: I CON™ 4

We discretize problem (3.11)—(3.12) also in time using the discontinuous Galerkin
method (see, e.g., [44]). For this purpose, we consider a partition 0 = tg < t; < ... <
tar = T of the time interval [0,7] and denote I, = (tm—1,tm), Lm = [tm—1,tm],
Tm =tm —tm—1, m=1,..., M. We have

(3.22) 0, 7=\ ) Im, InmNIL, =0 for m#n.

=

i=1

For a function ¢ defined on |J (-1, tm) we introduce the notation

i=1

+ _ _ .
(3.23) Pm = p(tmE) = 1im o(t),
(3.24) {£}m = om — -
For each time interval I,,,, m = 1,..., M, we will consider, in general, a different

triangulation 73, n, = {Ki}icq, ,, of the domain Q (in general, with hanging nodes).
Therefore, for different intervals I,,, we have different sy, ,,, S,}Z ms @hyms Onms Jhom,
lh,m, An,m, etc. Hence, we set

(3.25) Sh o =1 € L*(); ¢k € PP(K) VK € Thm},
(3.26) anm(u,p)=c¢ Z / Vu-Vede
i€in,m Y K

=Y X[ (Tuengld - (99 nifas

1€Lh,m JESK,m (1),j<i J

—€ Z / (Vu-n)p — (Ve -n)u)ds,
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(3.27)  bpm(u, @) Z / -Vu)pdr — Z / (v-n)updS
zEzh lElh BK nos
- Z / Mu]p dsS,
icino KT \asz
(3.28)  cnm(u, ) = / cup dz,
Q
(3.29)  Jnm(u,p) Z Z diam(T;;) / [u][p] dS
i€in,m FESH,m (i) Lij
+ Z Z diam(Fij)fl/ up dS,
i€in,m j: Ty CON— Lij
(330 ban@® = [giedot Y [ untypds
Q iCin ., Y OK noq
+ed ) diam(Ty) / (t)pdS
i€in j: Ty COQ- Lij
+e / up(t)(Vy -n)dS
EZ 0K, N ()( )
1€th ,m K2
/ (v-n)up(t)epds,
i€ip . 0K, NoQ
and
(3.31) Anm(u, 0) = anm(u, ) + bhm(u; 0) + chm(u, ©) + eJnm(u,
We set
(3.32) hm = max hg, h= max h, and 7= max
KeTy,m m=1,....M m=1,...
Let ¢ > 1 be an integer. The approximate solution is defined as a function

(3.33) U(a, t) € S0

i=0
satisfying
M M
339 3 [ (@) + Aun U)X (Uhcref) + (0 0)
m=1 m=2

a
= {(p € L*(Qr); ¢l1, = Zti%, with p; € S . m=1,.. .,M}

= Z/ Inm () dt + (uo,pg) Vo € Shz-
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Here and in the sequel the symbols f’ and f” will mean the first and second order
time derivatives of f. If we denote

(3.35) B(u,v) = Z/I ((u',0) + Apn (u,0)) db+ Y~ {uhm1, 08 1) + (ug o),
m=1"+"m m=2

L0 = 3 [ )+ (a0

we can write (3.34) in the form
(3.36) B(U,¢)=L(p) YpesSpl

It is possible to show that the regular exact solution u satisfies the identity B(u,¢) =
L(p) for all ¢ € 57" and, thus, we have

(3.37) B(U,¢) = B(u,p) Ve S

By u and U we shall always denote the exact solution of problem (2.1)—(2.4) and the
approximate solution obtained from (3.36), respectively. We denote

(3.38) e=U—u,

the error of the method. Our goal is the analysis of error estimates of the space-
time DGFE method (3.36). To this end, we assume in the sequel that the system
of triangulations 7, ,,, m = 1,..., M, h € (0, ho), is shape regular: there exists a
constant C7 independent of K, m and h such that

h
(3.39) K <Cr, KeThm m=1,....M, he (0, h).
0K

Moreover, we assume that there exists a constant C'p > 0 such that
(3.40) hKi <Cp diam(l"ij), K, € %,m» Fij COoK;, m=1,....M, he (07]10).

This means that I';; do not degenerate with respect to hg, if A — 0+4. (This as-
sumption will play an important role in the proof of (6.41)). It is obvious that
diam([};) < hg,.

Important tools in the derivation of the error estimates are the multiplicative trace
inequality (see [18], Lemma 3.1)

(3:41)  |vlZ20m) < Car(l0ll L2 [0l mr (x) + i 101172 (1))
ve HY(K), K € Tym, m=1,...,M, h € (0,ho),
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and the inverse inequality (see [8], proof of Theorem 3.2.6)

(3.42) vl () < Crhg vl L2y,
vES) . KE€Tym, m=1,...,M, he(0,hg).

In what follows, by C' we shall denote a generic constant, independent of h and

m, assuming in general different values at different places.

4. PROPERTIES OF THE FORMS A, B

In this section we prove some basic properties of the forms A and B (Lemmas 1,
2, 3).
Lemma 1. We can express B in the form

M—-1

(4.1) (u,v) Z / "+ Apm(u,v))dt — Z(u;,{v}m)Jr(u;/[,v;/[).

m=1

Proof. Integration by parts yields (see (3.35))

S [ )t 3 (s + (0 0)

M M
_ Z/I (—u, o) dt+ 3 ((upyvp) = (ufy_y vt _))

m=2
M M-—1
=3 [ Cu)dtr 3 v, - v + (i vig)
m=1 Im m=1

Lemma 2. We have

(4.2) =3 [ Anm(v0)dt+ ol

m=1"1m

where

1, _
(4.3) ||U||% = ||U0 ||L2 @ T35 Z ||{U}mHL2(Q §H“M||2L2(sz)-
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Proof. If we put u:=wv in (3.35) and in (4.1), we get

B(v,v) Z/ V') 4+ Ap (v, v) dE + Z {v}m,vh) + (vg ,vd),
i
B(v,v) Z/ —0,0") + Apm(v,v) dt + Z Uy {0 m) + (v, V3g)-

We arrive at (4.2) by adding these identities and dividing by two. O

In the sequel we shall use the notation
||v|\12,1< = / lv-nfv?dS for T' C 0K, K € Tj,m.
r

Lemma 3. The forms Ay, ,, are coercive:

(4'4) Ah,m(vvv) > HUHQE,mv v e Hl(Qvﬁl,m)v
where
(4.5) [0l %,m = elvlin .7, + 001 7200) +Thm(v,0)
1
T 2 Z ( [v ]H'v DK \asz)
1€%h,m

Proof. Using a processsimilar to that in (5.5)—(5.8) from [25] and following [14],
we find that

1.
(4.6) Apm(v,v) = 5|v|§{1(ﬂ)7hym) + /Q<c ~3 le’U)’U2 dz + eJp(v,v)

1
+5 2. (il omnoe + 1013 pxvo): v € B Tam),

P€TH,m

which together with assumption (A) f) yields (4.4). O
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5. ABSTRACT ERROR ESTIMATE

In the derivation of error estimates we make use of a space-time interpolation of
the exact solution, defined similarly to [43]:

(5.1) mu € Sy,

(5.2) / (ru—u, " )dt =0 Ve~ eSpq Lom=1,....M,
I,

(5.3) mu(tm—) = Upu(t,m—), m=1,....,M,

where II,,, is the L2-projection to S,’;m in space. This means that taking v € L?(Q),
we have Il,,v € S | and (Il,,v —v,¢) = 0 for all p € S}

Lemma 4. The projection mu is determined by (5.1)—(5.3) uniquely.

Proof. Let f,g € S}'? be two m-projections of u. Then for ¢ = f — g we have

/I(%w*)dt:o Ver €SP ot —) = 0.

m

Since ¢’ € Sﬁ’g_l, integration by parts with respect to time yields

1 —
0= [ (e dt=lelumliz,

m

Hence, ¢(t;—1+) = 0. Since also ¢" € SP'1~ ', we find that

0= / (") dt = ~ [/ s e

This and the condition ¢(t,,—) = 0 imply that ¢ = 0, which we wanted to prove. O

In what follows, we derive error estimates in terms of the m-interpolation error

(Lemmas 5, 6, 7, 8).

Lemma 5. We have

M
(5.4) B(U — mu,U — u) = Z/ Apm(u—mu, U — wu) dt
m=1

I,
M-1
—Z mu—u) U — mulm).
m=1
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Proof. From (3.37) and (4.1) we get

B(U — 7u,U — wu) = B(u — mu, U — 7u)
M

M
== Z/ (u = mu, (U — mu)’) dt + Z/ Apm(u —mu, U — wu) dt
4 m=1 Im

m=1 m

C 3 ((u— wu) (U — mud) + (1 — w)yp, (U — mu)yy).

m=1

The first term on the second line vanishes due to (5.2). The second term on the last

line is also zero, because we have

(5:5) ((u = 7mu)pp ) = ((u = Marw)yy, @) + (Maru — 7))

for ¢ € S 5, and both terms on the right-hand side of (5.5) vanish (the first term
because of the properties of the L2-projection and the other due to (5.3)). O

The sum on the last line in (5.4) does not vanish because, in general, {U —u},, ¢
qP

h,m?
Under the notation

as we use different triangulations of €2 on different time levels.

(5.6) §=U—mu (€87,

n=mnu—u (interpolation error),

we have e = £ + 7 and (5.4) can be rewritten as

(5.8) BEO ==Y [ Aunlned- S (i (E}m).

The quantities u, U, n, £ depend, of course, on x, ¢t but usually we do not emphasize
this dependence by notation, for the sake of simplicity.

Lemma 6. Let us denote
(5.9)  omn;hye) = |nllgm + Vehlnlu .z,

1/2 1/2
# (S ey + (3 R pan)

1€0m, 1€Lh,m
Then there exists a constant C' 4 independent of u, U, h, € such that

(5-10) |Ah,m(777€)| < CA||§||E,mUm(77§ha5)-
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Proof. We use the estimates already derived in [14] and [25]. We begin with
the form ay, ., (see [14], proof of Lemma 3.8):

anm(n,€) < enlm .z, .)llm @7, + €ClEl (.70 )\ Thom (1:7)

reyfInte ) )

Now, by the multiplicative trace inequality (3.41) and Young’s inequality,

<Cu Y (

1€LH,m

(k) T+ HVUHZH(K,-))

€10, m P€TH,m
3CM 2 C'M
< 2 Z |n|H1(K1‘)+ 2 Z
€L, m €L, m
Hence,

(6.11) anm(n,€)
1/2
C{\/5|77|H1(Q,Th,,m) +Ver/Tnm(n,n) + \/5< > h%ghlﬁp(xi)) }
€10, m
X {\/5|€|H1(sz,7h,m) + ﬁ\/Jh,m(faf)}
< Clélemnllzm + Vehnlaz,.,.))-

Due to [25], (5.18), for the form by, ,, we have

Z/ (v-VE)da| +

lElh

S ([ wmmas [ @menas [ womas)]

iCinm OK; NIQ K \oQ

(5.12)  [bn.m(n,8)l

Z / né divo dx

lElh

+

The first term in (5.12) is estimated with the aid of the Cauchy inequality and the
inverse inequality:

Z/ (v-VE)d

zEzh

1/2
(Z h;émim) .

1€%h,m

(5.13)

The second term is estimated by

Z / nédivodx| <

lElh

(5.14)

Collnllz2 Il 220
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and the third term is rearranged as in [25], (5.20):

515 ¥ ([ (o omenas+ | Ki\m{(’v'n)én(v~n)£[n]}d5)

iGthm

->(/ s [ g 1s),

1€%h,m

‘We obtain

(5.16) b (n,€)
1/2
< c(mm) i ( 3 h;5||n||iz<K,.)) )nznm(m

i€im
+ Z H§|v,aijaQH77| v, oK noo T Z ||[§]||v,aK;\aQ||77_||v,aK;\aQ

i€in,m i€in,m

c - 1/2
< £ (va(ine + (E milte ) )

/LE/L’V?’L

1/2 1/2
2 — 112
(3 M ron) (X ron) )

1€TH,m 1€LH,m

1/2 1/2
< (Ve + ( X 16 acnon )+ (X N o r0) )

1€, m 1€Lh,m

1/2 1/2
17 / + D 12 /
MZ2(x) M My ok \00 :

ieih,m

< cngnE,m(mE,m + (Z hi

i€
Further, we have
Cc
(5.17) cn(n,§) < %\/%H”HLQ(Q)\/%‘KHLQ(Q),

(5.18) T (1) < T (1) (€,6):

On the basis of the above estimates for aj, m, bn,m, c¢n and Jp,_., we deduce (5.10). O

From the estimates for by ,, and c;, we see that it is necessary to have v > 0 as
assumed in (A) f). However, this assumption is not restrictive, as shown in [25].

Lemma 7. The following estimate holds:

M M M—-1
6.09) 30 [ el e+ el <405 3 [ ahmheyat+8 3 Il
m=1 m m=1 m m=1
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Proof. From Lemma 2 and formula (5.8) we get

M
G20) Y / Apn(€,€)dt + €]

M-—1
Z/ A, €) A= (s {E D).

By Lemma 3,

and by Lemma 6,

(5.22) [An,m (1, O < Calléllmom (15 h, €).

Using the Cauchy inequality, we get

|Z (61 < 2 Z 7 e )/@MZ ||{f}miz<m)1/2,

m=1
M 12 , M 1/2
S [ lemonics (3 [ ota) (S [ el
m=1 Im m=1 I, m=1 I
From the above estimates, the definition (4.3) of the norm || - ||z and from (5.20) we
get
M M 1/2
Z/l €% dt + [1€]1% < \/5(2/] IENE, m dt + ||€||2T)
m=1 m m=1 m
M 1/2 M—1 1/2
<(ea(X [ otar) + (2 Imlie) )
m=1 m m=1
This and the inequality (a + b)? < 2(a? + b?) already imply (5.19). O

From the inequality |e|* < 2(||¢]|* + ||n]|?), Lemma 7 and definitions (4.5), (5.9)

of | - || g,m and o, we deduce the following abstract error estimate.

Lemma 8. We have

M
629 3 [ el el
- M-1

<c Z [ a0 3 il + 210l

m=1
M-1

(5:24) Z/ el < OZ/ () dt +C 3 (o

m=1

213



6. APPROXIMATION PROPERTIES OF THE INTERPOLATION 7

In order to obtain an estimate of e in terms of h and 7, we shall investigate the
approximation properties of the operator 7, using the technique applied in [43].

Lemma 9. We have
(6.1) mulr,, = m(Inu)lr, -

Proof. Since I, is the space L?-projection, it follows from (5.2) that

/ (ru — I u, @) dt = / (mu —u, ") =0
I, Im

for every p* € S,’;:g_l. This means that (5.2) is satisfied for I,,,u. Condition (5.3) is
satisfied because I, (IT,,u) = IT,,u. O

The analysis of approximation properties of the operator m with respect to time
is based on the transformation of time integrals over the intervals I,, to integrals
over (—1,1) with the aid of an affine mapping @, of (—1,1) onto I,,, and the use
of approximations by Legendre orthogonal polynomials defined on (—1,1).

Definition 1. The Legendre polynomials on (—1,1) are defined by

LO(C) = 17
Li(¢) = ¢,
20+ 1 )
L; = Li(()— ——L;_ .
+1(¢) = 5 ¢LilQ) = s Lia(©)
Polynomials L;, i = 0,1,..., form an orthogonal basis in L?(—1,1) and satisfy
Li(1) = 1.
Definition 2. Let us set
q
(6.2) S,’;fn = {gp* € L*(—1,1;Q); ¢* = Zglkp;‘ with ¢ € S,’;,m}.
i=0

The projection defined in the same way as m, but on the reference interval (—1, 1),
will be denoted by 7,,. More accurately,

(6.3) fmw € SPA,
1

(6.4) / (Fmw — w0, ") dC =0 Vi € §PI,
1

(6.5) fmw(1—) = Tw(1-)

for w € C([-1,1]; L*(Q)).
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It is possible to find that

where
(6.6) 71U = (T (uo Qm)) o Q1

with the mapping Q.,: (—=1,1) — I, = (t;n—1, tm) such that

(67) Qu(Q) = Gltm +tm1 + ) =1, (€ (-1,1),
(6.8) Q-1(t) = Ti(zt b —tm1) = C, tE L.

Lemma 10. The projection 7, can be expressed with the aid of the Legendre
polynomials in the following way. Forw € C([—1,1]; L*(2)) and any m € {1,..., M}

we have
q—1 qg—1
(6.9) mw =Y _w;L; + (Hmw(l) - wi>Lq,
i=0 i=0
where
(6.10) I, w = ZwiLi, w; € S}Zi,m.
i=0

Proof. a) Similarly to Lemma 4 it is possible to prove that there exists at
most one function 7w satisfying conditions (6.3)—(6.5). (Another proof can be found
in [43], Lemma 1.1.)

b) Further, let w € C([-1,1]; L*(?)). Then IL,w € C([-1,1];57 ) can be
expressed in the form (6.10). Let w € S} and k < ¢ — 1. Then wLj € ,SA,}an*l. By
the definition of II,,w we have /

(6.11) (w, wLy,) = (Mpw, Ly).
Let us set
g—1 q—1
(6.12) Fmw = wiLi+ (Hmw(l) - wi)Lq.
1=0 =0
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It follows from (6.12) and (6.11) that

1
(6.13) /(ﬁw—w,u?Lk)dﬁ
~1
1 ,9—1 q—1
/m<§:wﬂd+<ﬂmwﬂ)E:wOLquwﬂﬂ%>dﬂ
—1\i=o i=0

Now, denoting w = II,w(l1—) — Z w; and using (6.10) and the orthogonality of the
=0
polynomials L;, we find that

1 1 [e%s}
(6.14) / (Tw — w,wLy)dY = / (— E w; L; + qu,’lI}Lk) dd = 0.
-1

This implies that condition (6.4), where we write T instead of 7, is satisfied.
Moreover, by (6.10) and (6.12) and the relation L;(1) = 1 we easily show that
(6.5), where 7 is replaced by 7, holds.
From both parts a) and b) of the proof we conclude that # = 7, which we wanted
to prove. ([

Now we shall seek estimates of the norms ||7(/z2(;,,;x), where = v — 7u and
X denotes the spaces appearing on the right-hand side of (5.24), e.g. X = L?(K;),
X = HYQ,Th.m), etc.—see definitions (4.5), (5.9). Let us set v, = u 0 Q.
(Due to the regularity assumption (6.24) on the exact solution u introduced later,
vm € C([-1,1]; L3(£2). Moreover, I1,,,v,, = vy,.) The relation

N1, = (mu—w)|5, =71, u—pu+ Myu—ulr, = 7lnu—pu+ pu —ulp,
and the substitution theorem imply that
(6.15)  [Inllz2(1,5x) < lu =Tl L2z, x) + [Thnw — Tlhnul 221, x)

= |lu — Wl z2(1,,: x)

+ [T = (Fn (w0 Q) © @t | 21,0 x)

= |lu = Ipnull 121, X)+\/ = || vm — TmUml| L2(~1,1;%)

Let us denote by P the L2-time-projection to P9(—1,1) (space of all polynomials
depending on ¢ € (—1,1) of degree at most ¢). Let us expand the function v,, using

Legendre polynomials as v, = Y. 0;L;, 0; € Sy, . Since
i=0 ’

1 [e%e}
/‘(E:ﬁﬁQLMR:Q k=0,...,q,
-1 i=q+1
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we have

o
Um — P’Um = E 171L1
i=q+1

Now, by Lemma 10 applied to w = v,,, we find that

oo q—1
(6.16) U = Fomm = Y 0iLi — (Hmvm(l) - Zf}i)Lq
1=q

=0

= i oL — ( i 171‘)Lq
i=q+1

i=q+1

= Uy — Pvm — ( Z f}i>Lq.
1=q+1

Lemma 11. The following inequality holds:

(6.17) Z vil| < Cq”U;nHL?(—Ll;X)-
i=q+1 X
Proof. See [43], p. 23.
Lemma 12. We have
Tm
(6.18) lvmllz2(—1,15x) = 7\\(Hmu)/HL2(1m;X)-

Proof. Using the substitution ¢ = @,,(¢), we find that

||v':nH%2(—1,1;X) = [[(ILpuo Qm)/||2L2(—1,1;X)
Tm 2

2

m

Lemma 13. Let us define P, as the L?-time-projection to P4(1,,). Then

(619) HU — 7TUHL2([m;X) < ||’LL — Hmu”Lz([m;X) + ||Hmu — PmHmu||L2(Im;X)

Tm
+ Cq?H(HmU)/ - wIHLz(Im:,X) Vi e Sﬁ:?—'

Tm
=5/, I (Tw)’ ()% dt( 7II(HmU)’IIL2<1m;X))-
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Proof. Foranyv € L%(I,,) we have P,,v = (P(voQ,,))oQ;,'. We successively
get

7m||vm - P’U’mHLz(fl,l;X)
Tm .
= 7|‘Hmu 0 Qm — P(Ilyuo Qu)llr2(—1,1;x)

— %nHHmu 0Qm — ((P(Hmu o Qm)) o Q:nl) o QmHLz(—l,l;X)

) 1/2
_ (%m/ ||(Hmu—PmHmu)on|§(dC)

-1
= |Mnu — PpIlnull L2, x)-

This and (6.15)—(6.18) imply that
(6.20) [lu —mull2(1,,:x) < lu = Hmullpe(r,,x) + [[Hmu — Pollnull e, x)
Jqu H( mu) HL2(Im:,X)'

Substituting w := u — 1 in (6.20), z/J € Sp%, and taking into account that

(6.21) Mty = Y1, = Prnllnt,

(6.22) (M) = (Y1),

(6.23) mp = 1h,

we arrive at (6.19). O

We will assume that the exact solution u satisfies the regularity condition
(6.24) weH=H0,T; H(Q)) N C(0,T; H*(Q))
for some integers p,q > 1.

Lemma 14. There exist constants Cp and Cp such that

(6.25)  [[v(t) — Mmv(t)|| L2(r) < CulB o) gova () VK € Ty, aca. t € (0,T),
(6.26)  |v(t) = Ipv(t)| g () < CuhP|o(t)| ey VK € Ty, aca. t € (0,T),
(6.27)  [[v(t) — ILnv(t)| r2(0) < CuhdiHo(t) | go+1(q) for a.a. t € (0,T),
(6.28)[v(t) — v (t) | g1(Q,75,0) < Cuh?|v(t)|gr+1 () for a.a. t € (0,T),
(6.29)|v(t) — Lo (t) | 20,75,y < Crh? ™ u(t)| o+ (q) for a.a. t € (0,T),

(6.30) [Jv(z) — Pov(2)|r2(1,,) < CpTE ()| prasr (1, for a.a. z € €,

(6.31)  |v(x) — Pno()|gi(r,,) < Cprh|v()|gati(r,,) for a.a. x € Q

form=1,....M and v € H.
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Proof. For the proof of estimates (6.25)—(6.29), see [25], Lemma 4.1. The last
two estimates (6.30), (6.31) can be proved in a similar way using the transforma-
tions )y, and standard scaling arguments. |

Lemma 15. We have

< llz2x)y,
< OB|vlg (k)

forve HY(Q, Thm), K € Thm, m = 1,..., M, with a constant Cg independent of v,
K, m.

Proof is easily carried out on the basis of results from [8]. O

Now we attack the derivation of the error estimates. We start from estimate (5.24).
Thus, we need to estimate the expression

M-1

M
(6.34) Z/I ol () dt+ > lInllFzay,
m=1 m m=1

where
(6.35) o = {smﬁm,fh,m) T ollagen + ednm(m, )

1/2
1
+5 3 (oscon + D11 oxcoyon) |

€10, m

1/2
IRCIITTEIRES 5 D SV

€0, m

Taking into account inequality (6.19) where we set ¢ = P,,I1,,,u, we need to estimate
the norms of the expressions

(6.36) u— pu, My — Ppllyu, (Iyu — Ppllyu).

Lemma 16. Let u € H and assume that there exist constants C'g, C‘S such that

1
(6.37) % hg < T < Cshg, K €Thm m=1,...,M.
S
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We denote C~'q =1+ icg with C, from Lemma 11. Then

(6.38) /|77|H1 O, T ) At < 30Hh2p|u|L2(I HPH1(Q))

m

+3CHCRC T (Ul a1, a1 )

(6:39) [ ey dt < 3CRua i oy

m

+3020 72q+2|u|§{q+1(1 L2(Q))
040) [ 30 midliliace ot < SCER s o
szZh

+ 36%01236(17-3;1|u|%lq+1(lm;L2(Q))7
(6.41) [ I, dt < 6CUCRODI ul 1, 1001
+ 3CMC%éqCDTr%zq(303|u|§{q+1(1m;L2(Q))
+0123731|U|§{q+1(1m;1{1(9)))»
(6.42) / > Uli3 ox.n00 + 1112 ok —\oo) 4t
Inm i

< 3CMC’12[th2p+1|u|i2(lm;Hp+l(Q))
3 .
+ §CMC'1%CqCv733H{3CS|U|§{q+1(1m;L2(sz))
+ C%;}Wm|U|%{q+1(1m;H1(sz))}7

(6.43) / nl3r2 0.7, ) At < 30121}12@71)|U|%2(1m;m+1(sz))

+3CHCTCRCCET Ul T (1, 11 (0
M-—1
(6.44) [ 172 () < CHCSThQPHHUHC( (0,T); HP+1(Q))"

m=1

Proof of this lemma is rather technical. For the sake of completeness of the

exposition, we will prove it in Appendix.

Now, using the abstract error estimate from Lemma 8, relation (6.35) and esti-

mates from Lemma 16, we finally arrive (for h, 7 < 1) at the main result:

Theorem 1. Let assumptions (A) a)-h), (3.39), (3.40) and (6.37) be satisfied. Let
u be the exact solution of problem (2.1)—(2.4) satisfying the condition u € H, where

the space H is defined by (6.24), and let U denote the approximate solution obtained
with the aid of the method (3.36). Then there exists a constant C' independent of h,
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7 and ¢ such that the error e = U — u satisfies the estimate

M
(6.45) Z /1 el m dt < CR*P{ulT2 (o pmro+1 (0 + [WlE 075041 (0}
m=1 m

+ CT?qﬂUﬁ{qﬂ(o,T;Lz(sz)) + |u|§{q+1(O,T;H1(SZ))}'

This estimate is also valid for € = 0, i.e. in the hyperbolic case.

7. NUMERICAL EXPERIMENTS

In this section we present some numerical experiments with the space-time DGFE
method described and analyzed in the previous sections. We solve equation (2.1)
in Qr = (0,1)% x (0,1) with v; = v = 1, ¢ = 0.5 and two choices of &: ¢ = 0.005
(parabolic case) and £ = 0 (hyperbolic case). The right-hand side g and the boundary
and initial conditions are chosen in such a way that they conform to the exact solution

Uex (21, 2, 1) = (1 — e ™) (22 + 2y — 2y + 2(1 — eV (B D/V) (1 — gr2(@2=1)/vy)

where v = 0.05 is the constant determining the steepness of the boundary layer in
the exact solution. The problem is solved on a sequence of non-nested nonuniform
space meshes 7p,, 7p,,.... On all time levels, the same triangulations are used.
Figs. 1 and 2 show the coarsest mesh 75, and the mesh 7, , respectively. We inspect

Figure 1. Coarse mesh. Figure 2. Fine mesh.

the experimental order of convergence (EOC) with respect to 7 and h, which vary
simultaneously due to condition (6.37). For successive pairs (7,h) and (7/,h') we
evaluate the experimental order of convergence in space and time defined as

_ log(l[ezrnl) = log(llexnll)

1 ) —1
EOCspace = EOCiime = og(llexn ) — log(llexnl|)

logh/ — log h ’ log7 —log T

)
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where €., = uex — U is the error of the method when the exact solution wuey is
approximated by the DG approximate solution U computed with the aid of a space
triangulation of size h and a time interval partition of size 7. As || - || we use the
norm || - [|z2(g,)-norm (i.e., L?(L?)-norm) and the seminorm +/z| - |L2(0,15H (0,73))
(i.e., v/eL?(H?')-seminorm). Moreover, we compute the global orders of convergence.
We approximate

He.th ~ Clhr + CQTS

by the method of least squares, using the MINPACK package [34]. The results are
shown in Tabs. 1-4, where EOC? EOC?, . and EOC! EOC},,.. denote the

space’ time space’ time
experimental orders of convergence in L?(L?)-norm and \/zL?*(H')-seminorm, re-

spectively.

h 7| llernlizzeey | lernll eramy | EOChace | EOCHme | EOCiace | EOCiine
0.2838 0.2500 |4.5853F — 02| 1.9970F — 01 - - - -
0.2172 0.2000 | 3.5474FE — 02| 1.5372F — 01 0.96 1.15 0.98 1.17
0.1540 0.1667 |2.2387F — 02| 1.2782F — 01 1.34 2.52 0.54 1.01
0.1035 0.1000 |1.2945FE — 02| 8.9991F — 02 1.38 1.07 0.88 0.69
0.0768 0.0769 | 5.3557F — 03| 5.7493F — 02 2.95 3.36 1.50 1.71
0.0532 0.0526 |2.3742E — 03 | 3.7567E — 02 2.22 2.14 1.16 1.12
0.0398 0.0400 | 1.3345E — 03 | 2.6438E — 02 1.98 2.10 1.21 1.28
0.0270 0.0270 | 5.2577FE — 04| 1.6779FE — 02 2.40 2.38 1.17 1.16

Global order of convergence 2.07 2.11 1.07 1.11
Table 1. € =0.005, p =1, ¢ = 1 (parabolic case).

h 7| llernlizzeey | lernll eramy | EOChace | EOCHme | EOCihace | EOCine
0.2838 0.2500 | 2.0470F — 02| 8.7193F — 02 - - - -
0.2172 0.2000 | 1.0103E — 02| 5.5539F — 02 2.64 3.16 1.69 2.02
0.1540 0.1667 |4.3992F — 03| 3.4110F — 02 2.42 4.56 1.42 2.67
0.1035 0.1000 |1.6821F — 03| 1.7835E — 02 2.42 1.88 1.63 1.27
0.0768 0.0769 |4.9668F — 04 | 7.7827F — 03 4.08 4.65 2.78 3.16
0.0532 0.0526 | 1.6550F — 04 | 3.3350FE — 03 3.00 2.90 2.31 2.23
0.0398 0.0400 | 7.7630FE — 05| 1.8029F — 03 2.61 2.76 2.12 2.24
0.0270 0.0270 |2.7654F — 05| 7.0749E — 04 2.66 2.63 2.41 2.39

Global order of convergence 2.89 2.78 2.05 241
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Table 2. € = 0.005, p = 2, ¢ = 2 (parabolic case).




h T lernll2z) | BEOCgace EOCHme
0.2838 | 0.2500 | 4.9212F — 02 - -
0.2172 | 0.2000 | 3.8843F — 02 0.89 1.06
0.1540 | 0.1667 | 2.5997F — 02 1.17 2.20
0.1035 | 0.1000 | 1.5581F — 02 1.29 1.00
0.0768 | 0.0769 | 6.9089E — 03 2.72 3.10
0.0532 | 0.0526 | 3.2904F — 03 2.02 1.95
0.0398 | 0.0400 | 1.8620F — 03 1.96 2.07
0.0270 | 0.0270 | 7.5458FE — 04 2.32 2.30

Global order of convergence 1.95 1.99

Table 3. e =0, p=1, ¢ =1 (hyperbolic case).

h T lernllz2 () EOCSpace EOCHme
0.2838 | 0.2500 | 2.3451F — 02 - -
0.2172 | 0.2000 | 1.2484F — 02 2.36 2.83
0.1540 | 0.1667 | 6.1746F — 03 2.05 3.86
0.1035 | 0.1000 | 2.6342F — 03 2.14 1.67
0.0768 | 0.0769 | 8.0848F — 04 3.95 4.50
0.0532 | 0.0526 | 2.6400F — 04 3.05 2.95
0.0398 | 0.0400 | 1.0761F — 04 3.09 3.27
0.0270 | 0.0270 | 2.7962F — 05 3.47 3.44

Global order of convergence 2.87 2.98

Table 4. € =0, p =2, g = 2 (hyperbolic case).

Our DGFE computations were carried out with the aid of the FreeFEM++ modelling
environment from [27] which was adapted to the DGFE space-time discretization.
The time integrals were evaluated by quadrature formulae exact for polynomials
of degree 5 and 9 in the case of elements linear in time and quadratic in time,
respectively. The quadrature formulae used for integration over the triangles and
their sides were exact for polynomials of degree 5 both for the linear and quadratic
elements. The nonsymmetric linear problem was solved in each time step by the
multifrontal direct solver UMFPACK ([12]).
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8. CONCLUSION

Under assumptions (A), a)-h) from the first section, the assumption of uniform
shape regularity of meshes on individual time levels, nondegeneracy of faces I';;, some
relations between time steps and space mesh sizes and a certain regularity of the
exact solution, we have derived L?(L?) and /eL?(H') estimates for the error of the
approximate solution by the separated space-time discontinuous Galerkin method,
using polynomials of degree p in space and ¢ in time and, in general, different space
grids on different time levels. The error is then of order O(hP + 79). The estimate
holds true even if ¢ = 0 (hyperbolic case).

Computational results shown in Section 7 indicate that the error estimates are
suboptimal in the L?(L?)-norm, but optimal in \/L?(H!)-seminorm. On the other
hand, they are uniform with respect to the diffusion coefficient £ — 0+. Moreover,
the method allows us to use different nonconforming space meshes with hanging
nodes on different time levels, which plays an importnat role in time dependent
adaptive mesh refinement in the space domain 2. From this point of view it will be
suitable to carry out numerical experiments for this situation in order to examine
the influence of the use of time dependent triangulations in the domain 2. Another
question is the choice of ¢ = 0, when our method can be treated as backward Euler’s
scheme. The technique applied here does not allow to analyze this case. This was
carried out in [16], but the error estimate obtained blows up for £ — 0+.

From the analysis presented here one can see that further modifications and gen-
eralizations are possible, namely the use of quadrilateral space elements and/or the
application of the hp-version of the DGFE discretization. The analysis of this case
can be performed following the above results and estimates from, e.g., [28] and [43].
Further open problems are the derivation of optimal error estimates in the case when
the SIPG variant of the DG space discretization of the diffusion terms is used, the
analysis of the effect of numerical integration, extension to nonlinear convection-
diffusion problems (solved in [20] and [14] by the method of lines), derivation of a
posteriori error estimates, and last but not least, the application of the DG space-
time discretization to the solution of some nonstationary technically relevant prob-
lems, as, e.g., the compressible viscous flow described by the system of Navier-Stokes
equations.

9. APPENDIX

Proof of Lemma 16. For each estimate we shall first make use of Lemma 13
(estimate (6.19) where we set ¢ := P,,,II,,u) and in estimating individual terms com-
ing from (6.19) use Lemma 14 (estimates (6.25)—(6.31)), Lemma 15 (estimates (6.32)
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and (6.33)), assumption (6.37) and standard tools (Young’s inequality, multiplicative

trace inequality (3.41), inverse inequality (3.42)).

By Lemma 13,

for the H'(£2, 7}, )-norm we have

(9.1) / Hr A

m

< 3{/ lu =l t 9.7, 09 dt+/ Wt — PrIlnul g 7, ) At
. , T

m

CyTm\?
+ (=) /1 |(HmuPml_[mu)/ﬁ{l(g,?—hwm)dt}.

Then we estimate the individual terms on the right-hand side of (9.1) using (6.26),

(6.30) and (6.33):

(9.2) [ Tl @y < CRI [ [uls g

m m
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T 1€, m
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N2 2 2q42
= CRCBTo 2t (1,510 (0 -
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Similarly to the above, using also (6.31), we obtain

/ > / Mt — P Ipu)|? da dt
Im zEzh
=y / / |(VILyu — Py (VILyw))|? dt da
P€TH,m
CP Z / 2q|vaU|Hq+1(I )dl’
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Estimates (9.1)—(9.4) imply (6.38).
For the L?(Q)-norm we have

(9.5) / 112 gy dt
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(9.8) / (Tt = PraTlt) 26yt = / / (Tt — Py Tlyu) |2 dt da
I QJI,,
1237'3{1/ L fas 1, do
Q

2 _2q1,.12
< Cpmp |U|Hq+1(1m;L2(Q))~

Estimate (9.8) is obtained in a way similar to (9.7). From (9.5)—(9.8) we get (6.39).

Estimate (6.40) is obtained in a way similar to (6.39), writing K; instead of €2 and
using assumption (6.37).

For the Jj, ,,-terms we have

©0:9) [ ot
I,
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+ 3/ Jnm (Tpu — Py, Mpu — P I u) dt
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I

By (3.20), (3.40), the multiplicative trace inequality (3.41) and Lemma 14,
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Further, again the use of (3.41), Lemma 14, assumption (6.37) and a process similar
to that in the proof of (9.6)—(9.8) and (9.3) yield
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Im

mZEzh
mzezh m
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Similarly, using the process from (9.4) and (9.8), we get
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Estimates (9.9)—(9.12) imply (6.41).
For the boundary v-norm we have

|3 Ul orcon+ 10012 -y g0)
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Here, in (9.13) we proceeded in the same way as in (9.10), in (9.14) in the same way

as in (9.11) and in (9.15) in the same way as in (9.12). These estimates imply (6.42).

For the H?(Q, 7}, ,»)-norm we have
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where
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Here our argumentation is more brief, because the estimates are almost the same
as in the case of the H'(Q,7}, ,,,)-norm. The only difference is that in (9.18) and
(9.19) we have used the inverse inequality (3.42) for the components of VII,, (%).
Estimates (9.16)—(9.19) yield (6.43).

For the last term in (6.34) we have
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which is (6.44). O
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