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EXISTENCE TO SINGULAR BOUNDARY VALUE PROBLEMS
WITH SIGN CHANGING NONLINEARITIES USING AN
APPROXIMATION METHOD APPROACH*
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Abstract. This paper studies the existence of solutions to the singular boundary value

problem
{ —u" = g(t,u) + h(t,u), te€(0,1),
u(0) =0 = u(1),

where g: (0,1) x (0,00) — R and h: (0,1) x [0,00) — [0,00) are continuous. So our
nonlinearity may be singular at ¢ = 0,1 and v = 0 and, moreover, may change sign. The
approach is based on an approximation method together with the theory of upper and lower
solutions.
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1. INTRODUCTION

The singular boundary value problems of the form

{—u” = f(t,u), te(0,1),

(1) u(0) =0 =wu(l)

occurs in several problems in applied mathematics [1]-[3]. In many papers, the
critical condition is that either

f(t,r) >0 for (¢t,7) € (0,1) x (0,00)

* The research is supported by NNSF of China(10301033).
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or there exists a constant L > 0 such that for any compact set K C (0,1) there is
€ = e > 0 such that

flt,r) > L forall te K, re(0,¢]

We refer the reader to [1]-[3]. In the case when f(¢,r) may change sign in a neigh-
borhood of r = 0, very few existence results are available in literature.
In this paper we study positive solutions of the boundary value problem

(1.2)

{ —u” =g(t,u) + h(t,u), te(0,1),
u(0) = 0 = u(l);

here g: (0,1) x (0,00) — R and h: (0,1) x [0,00) — [0, 00) are continuous so that
our nonlinearity may be singular at ¢ = 0,1 and v = 0. Also our nonlinearity may
change sign. Our main existence results (Theorem 1.1 and Theorem 1.2) are new
(see Remark 1.2, Example 3.1 and Example 3.2).
A function u is a solution of the boundary value problem (1.2) if uw: [0,1] — R,
u satisfies the differential equation (1.2) on (0,1) and the stated boundary data.
Let C[0, 1] denote the class of maps u continuous on [0, 1], with the norm |u|e =

max_|u(t)]. Let
te[0,1]

1
M= {h € C(0,1): / |h(s)|ds < oo with lim+ tlh(t)] < oo
0 t—0

and 1i1{1 (1 —=2t)|h(t)] < oo.}
t—1—

Theorem 1.1. Suppose the following conditions hold:
(G1) there exist continuous functions g;: (0,1) x (0,00) — (0,00) (i = 1,2) such
that
gi(t,) is strictly decreasing for t € (0,1),
(1.3) —q1(t,7) < g(t,r) < ga2(t,r) for (t,7) € (0,1) x (0, 00),
g1(,rp1(4), g2(,7) € M for all v > 0;

(G2) for all ro > r; > 0 there exists v(-) € M such that g(t,r) + ~v(t)r is
increasing in (r1,72);
(G3) there exist ¢c1 > ¢z > 0,0 < 8 < 1 such that

(1.4) 0<g(t,r), te(0,1), 0<r<ec
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and
(1.5) /1 t(1 —t)g(t, col(t)) dt > com
0

where G(t,7) = min{g(t,r),1/r?} and I(t) = min{t,1 —t} for t € (0, 1);
(H1) there exist continuous functions h;: (0,1) x [0,00) — [0,00) (i = 1,2) such
that
hi(t,+) is increasing for t € (0,1),
hi(-,r), ha(,r) € M for r > 0,
hi(t,r) < h(t,r) < ha(t,r) for (t,r) € (0,1) x (0, 00),
there exists T > 0 such that hy(¢t,7) >0 for t € (0,1);

(1.6)

(H2) lim ha(t,r)/r =0 for t € (0,1).
Then problem (1.2) has at least one solution u € C[0,1] N C1(0,1) and u(t) > 0 for
t € (0,1). Moreover, there exist ¢; = ¢;(g, h,p1) > 0, i = 3,4 such that
csp1(t) < ult) <calpr(t)+1) for t €0,1],

where @1 is defined in Lemma 2.1.
Remark 1.1. Notice that g(¢,r) satisfies (G1). Moreover, for all ro > 1 > 0
there exists 7(-) € M such that g(t,r) + J(t)r is increasing in (r1,r2),
g(-,c(-))eM for ¢>0
and
7 glt.7) > g(t,7).

Theorem 1.2. Suppose (Gl), (G2), (H1), (H2) and the following conditions
hold:
(G3') there exists A > A1 such that
. Artg(tr)
1.8 1 — =10
49 A ()
where \; is defined in Lemma 2.1 and g™ (t,7) = max{0, g(¢t,7)}, g~ (t,r) =
max{0, —g(t,m)};
(H3) for all 7o > 11 > 0 there exists 7(-) € M such that h(t,r) + 7(t)r is

increasing in (r1,72).
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Then problem (1.2) has at least one solution u € C[0,1] N C1(0,1) and u > 0 for
t € (0,1). Moreover, there exist ¢; = ¢;(g,h) > 0 (i = 5,6) such that

cspr(t) S ult) <es(er(t)+1) for t€]0,1].
Remark 1.2. In [2], the authors consider the boundary value problem (1.1)
under the conditions

(iy) there exists a constant L > 0 such that for any compact set K C (0,1) there is
€ = e > 0 such that

fit,ry =L forall te K, re(0,¢];
(iz) for any & > 0 there is hy € C((0,1), RT) with
|f(t, )| < hs(t) forall te(0,1), >4,

and .
/ 11— )ha(t) dt < oo.
0

Then problem (1.1) has at least one solution u € C[0,1] N C(0,1).

In Section 3 we give two examples (see Example 3.1 and Example 3.2) which satisfy
the conditions of Theorem 1.1 or Theorem 1.2 but do not satisfy the conditions from
Remark 1.2.

2. PROOF OF MAIN RESULTS

We first give some lemmas which will help us to prove Theorem 1.1 and Theo-
rem 1.2. We assume throughout this section that (G1), (G2), (H1) and (H2) hold.

Lemma 2.1. Consider the eigenvalue problem

{ —u” = Mu(t), te(0,1),
u(0) =u(l) =0.

Then the eigenvalues are

2 form=1,2,...

Am = (mx)
and the corresponding eigenfunctions are

om(t) =sinmnt for m=1,2,....
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Let G(t, s) be the Green function for the BVP

{ —u"”" =0 for t e (0,1),

u(0) = u(1) = 0.
Then
s(I1—1t), 0<s<t<]l,
G(t,s) =
t(l—s), 0<t<s<Ll
For all (¢,s) € [0,1] x [0, 1] define
G(t,s) .
if t#0,1
o 7
Nits) =4 125 =0
T
— if t=1.
T
It follows easily that
(2.1) 0<G(t,s) <t(l—t) for (¢,8) € (0,1)x (0,1)
and
s(1—s) 1
(2.2) 5 <N(t,s) < 5 for (¢,s) € (0,1) x (0,1).
T

Define operators A, B: M — C]0,1] by

(2.3) Ax(t):/o G(t, s)x(s)ds
and
(2.4) Bux(t) /0 N(t, s)x(s)ds.

The next six results can be found in [4].
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Lemma 2.2. Let ng € N. Assume that for every n > ng there exist a,,d,,0 € M
such that

0<an(t), [0,() <) and lim §,(t) =0 for ¢t € (0,1)
and there exist @, Uy, U,, 4 € C[0, 1] such that
0 <a(t) < un(t) < a,(t) <a(t) for t€(0,1)

and 4(0) = (1) = 0. If

— — 1 N N ;

Un + Alanty,) < A(g(~, -+ v) +h(-,v) +apv+ 5n> < Uy, + A(anty,) in (0,1)

n

and v € [Up,ty,] = {u € C[0,1], Un(t) < u(t) < U,(t) for t € [0,1]}, then prob-
lem (1.2) has a solution u € C[0,1] N C1(0,1) such that u(t) < u(t) < a(t) for
t e 0,1].

Lemma 2.3. Let ¢: (0,1) x (0,00) — (0,00) be a continuous function such that

W(t,-) is strictly decreasing,
Y(-,r) € M for all r> 0.

Then the problem
—w"(t) = 7,/1<t w(t) + l) for t € (0,1)
) n 7 )
w(0)=w(l)=0
has a solution w, € C|0,1] such that
wn(t) S wpi1(t) <14 wi(t) for t €[0,1] and n € N.

If we let w(t) = lim wy,(t) for t € [0,1], then

weC0,1], w(t)>0 forte(0,1)
and

{ —w"(t) = Y(t,w(t)) for t € (0,1),
w(0) =w(l) =0.
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Lemma 2.4. Suppose m: (0,1) x [0,00) — [0,00) is a continuous function such

that
{m(-,r) €M forall r>0,

m(t,-) Is increasing

and there exists b € M, b(t) > 0 for t € (0,1) with

lim m(tr)
r—+oo b(t)T

=0 uniformly with respect to t € (0,1).

Then there exist Ry > 0 and v € C[0,1], 0 < ¥ < Rop1 such that

{5//(15) =mf(t,v) for t € (0,1),
7(0) = (1) = 0.

Corollary 2.1. Let 9(t,r), m(t,r), (wn)nen and Ry > 0 be as in Lemmas 2.3
and 2.4. There exists {Up, }nen C C[0,1] with 0 < ©U,, < Roys such that

{ =0 (t) = m(t,wn +vy,) for t € (0,1),
Up(0) =0, (1) =0

and )
—alr(t) > w(t, — +an) +m(t,4,) for t e (0,1)
n

where U, (t) = wy (t) + Uy (¢).

Next we consider the boundary value problem

(2.5) {M+Q@M0f@,t€®J%

u(0) =0 =wu(1)
where a, f € M, a(t) > 0 for t € (0,1).

Lemma 2.5. The following statements hold:
i) for any f € M, (2.5) is uniquely solvable and

u+t Alau) = A(f);

ii) if f(t) = 0 for t € (0,1), then the solution of (2.5) is nonnegative.
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Corollary 2.2. Let ®: M — C[0,1]NC*(0,1) be the operator such that ®(f) is

the solution of (2.5).
i) If f1(t) < fa(t) for t € (0,1), then ®(f1)(t) < D(f2)(¢) for t € [0,1].
ii) Let EC M and 8 € M. If |f(t)| < B(t), t € (0,1) for all f € E, then ®(F) is
relatively compact with respect to the topology of C|0,1].

Lemma 2.6. Let u(t) = c2l(t). Then

(t) < A(y(., % +g) +5n>(t) for te[0,1], n>1,

=

where

Proof. From (1.5) we have
A@Cw) () = / G(t, 5)3(s, u(s)) ds

— () / N(t, 8)g(s. u(s)) ds
@) !

> s(1—8)g(s,cal(s))ds

AS)
N
A
o\

©1(t) = eal(t) = u(t) for t € [0,1],

WV
o |8

SO

= ; G(t,s)g(s,u(s))ds > u(t) for te[0,1].

Lemma 2.7. Let

max{cl,rc sup [2B<®>(t)+3< sup f/('ﬂ”))(ﬂ]}

t€(0,1) TE[C1,1+%CQ

. 1
if ¢1 < 1+§CQ,

max{ e, sup (25 (g(%))ﬁ)(t)]}

te(0,1)

ol
I

. 1
1fc1>1+502
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be independent of n, and

Then

A(g(-, % +v) +6n>(t) <au(t) for te[0,1], veluu, n>1

Proof. Without loss of generality we suppose ¢; < 1 + %cz. Note that u < u
since ¢ > ¢; > cp. Let v > u. Then (note that g~ (-,r) = 0if 0 < r < ¢; by virtue
of (1.4))

Ao ) )
= /01 G(t,s) -g(s, % + v(s)) - E(s, R u(S)) + E(S&(S))} ds

1
T -
0 L
1

< /0 G(t,s) ()7 +  sup g (s,7)+ (g(s))ﬁ] ds
1

—

r€fer, 14 e

1
</ G(t,s)|2 +  sup g(s,r)} ds
0 L (Q(S) s Te[cl,1+%¢:2}

—0)[28( ) +B(_sw g

(g(' )5 r€ler,1+3co]
<) |28 () + o, )

<d(t) for te[0,1].

Lemma 2.8. For all n > 1 there exists a,, € C[0, 1] such that

(2:6) u(t) < an(t) <au(t)
and
" = 1
(2.7) { —on(t) = 9<t» —+ an@)) +3,(t) for t e (0,1),
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Proof. Fix n > 1. According to Remark 1.1 there exist v, € M, v, = 0
such that g(t,r) + v, (t)r is increasing in (%, 1 + 3¢). Let 5(t) = 7,,. We have that

n’n

g(t, £ +r)+7(t)r is increasing in (0, ¢]. From Lemma 2.6 and Lemma 2.7 we obtain
for fixed v € C[0,1], u(t) < v(t) <7u(t) that

u(t) + AG) (1) < A(5( -+ ) +6,) (1) + AGw(0)
:A(§<,%+g> T+ 60 ()
< A(g(.,%ﬂ) +7v+5n>(t)
< A(§<', % +i> +7u + 5n>(t)
<a(t) + A(Fa)(t)

Fix v € C[0,1] with u(t) < v(t
such that

/N

u(t). By Lemma 2.5 there exists ¥(v) € C0,1]

W ()(0) + OV = (6 + ) + W) +5(1) for £ € (0,1),

U (v)(t) + AFT(0))(t) = A(g(-, % + v) + 7+ 5n) (t) for te(0,1),
so the above inequality yields
u(t) + AFL)(E) < U(o)(t) + ATE())(H) < T(t) + AFD(E) for t € (0,1).
From Corollary 2.2 we have

(t) < ¥(v)(t) <u(t) for te0,1].

IS

Also,

1 t
[g(t = +0) + 70+ 60 210
n n

<1 (6 2 4 g (2 ) 4 7L+ 1600)
=0@t)e M for te(0,1).

Now W: [u,u] — [u,u] is relatively compact, so Schauder’s fixed point theorem

implies that there exists o, € C[0, 1] such that u(t) < a,(t) <u(t) and ¥(a,)(t)
an (t) for t € (0,1). We conclude that

1
—ay(t) = ?(t, —+ an) +8,(t) for te(0,1),

an(0) = a,(1) =0.
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Proof of Theorem 1.1. Without loss of generality we suppose ¢; < 1 + %02.
Let

+  sup g (t,7)

"/’(tv 7“) = gQ(t’ T) +
g(t)ﬁ r€ler,14+ 3 c2)

and
m(t,r) = ha(t,r).

From (1.3) we see that v satisfies the assumptions of Lemma 2.3, so there exist
w,wp, € C[0,1] such that

+ sup g (t,r) for t€(0,1),

—wi(t) :gg(t S +w ) +
" n g(t)ﬁ r€[c1,1+%62]

wn(0) =w,p(1) =0

and
w(t) = lim wy(t) for t€[0,1].

n—oo

From (1.6) it follows that m satisfies the assumption of Lemma 2.4, so by Corol-
lary 2.1 there exist Ry > 0 and v,, € C[0,1], 0 < 7,(t) < Rop1(t) for ¢ € [0,1] such
that

{ —0'(t) = ho(t,w, +0,) for t € (0,1),
Un(0) =0,(1) =0

and

1 1
—ar(t) = go (t, -+ dn> +—5+ sup g (t,r) + ha(t,d,) for t € (0,1)
n (t) r€ler,14+ 3 c2)

1=

where 4, (t) = wy(t) + U, (t) for ¢t € [0,1]. Then @, € C[0,1] and 4,(0) = 4,(1) = 0.
Let
() = w(t) + Rop1(t) for t €0,1],

SO
(2.8) 0 < ay,(t) < a(t) for t€][0,1].
Now let us consider the problem
—u(t) = g(t, 1, u) h(t,u) +6,(t) for te (0,1),
(2.9) n

u(0)=u(l)=0
where §,, is defined in Lemma 2.6.

127



We will prove that «, is a lower solution of problem (2.9) and 4, is an upper
solution of problem (2.9).
Now (1.7), Lemma 2.8 and the positivity of h(¢,s) imply that

(1) = (1, -+ an(®)) +00(0) < 91~ + () + hlt, @n(0) + 5.(0),

S0 ay, is a lower solution of (2.9). On the other hand, from the definition of g and u
we have

g(t,u) = min{g(t,g), ﬁ} < g(i)ﬁ for t € (0,1)

and

_<t1+) i +(t1+> . +_<t1+)
— - u) = —1min - u = - u
g n 2 g n :,(%‘Fg)ﬁ g n 2

_/, 1 _
<g (t, — —i—y) < sup g (t,r) for t € (0,1),
no— refer,1+1co]

SO

(2.10) dn(t) < + sup g (t,7) for te (0,1).

r€fer,1+5ca]

Consequently, we have

1
— iy (t) = go (t» -~ + un> + 5+ sup g~ (t,7) + ho(t, in)

g(t) rG[c1,1+%62]
1
>g(t,—+1l )+—+ sup g (t,r)+ h(t,an,)
g n " %(t)ﬁ re[cl,l-‘r%cz] "
1 .
> gt + i ) + bt i) + 00 (1),
S0 1y, is an upper solution of (2.9). Next we prove

(2.11) o (t) < din(t) for t e [0,1].

Suppose (2.11) is not true. Let y(t) = a,(t) — tin(t) and let o € (0,1) be the point
where y(t) attains its maximum over (0,1). We have

y(o) >0 and ¥y’ (o) <O0.

128



On the other hand, since a,,(c) > iy (o) we have

—a, (o) = _<U, % + an(o ) + 0n(o

+
=2
3

1
n

sup g~ (0,7)

1
<g(o~ +an(o ) +
n re[c1,1+%02]

+ sup g (o,7)
refer,14+3ca)

+ sup g (07 T) + he (Uv U, (U))
refer,14+3ca)

SO

and this is a contradiction.

From (G2) we see that there exists v € M such that r — g(t, L + ) +~(¢)r is
increasing in (0, |4|oo). Let w(t) = u(t), Un(t) = a,(t). From (2.6), (2.8) and (2.11)
we have

0 < T(t) < Tnlt) < in(t) <alt) for t e (0,1).

Further, for v € C[0, 1] with @, (t) < v(t) < @,(t), t € [0, 1], we have

~

+
gl

—Tn (t) + (), (t

N
Q

N
i)
Y~ T~ T~

0) + O + (1)

~

n v) ()0 + 0n(t) + h(t,0)

o~

N
S
K33 |I=3|-

_|_+

) + ’)’( )Un + 5n(t) + h(ta ﬁn)
V()i (1)

//\
@1

)

3

On the other hand, by (2.10),

bosw gt =)
(t)ﬁ re[cl,l-&-%cz]

and
lim 0,(t) =0 for t e (0,1).

Now Lemma 2.2 guarantees that there exists a solution u € C[0,1] to (1.2) with
a(t) <u(t) < aft) for t e o,1].

129



Moreover, because 4(t) < |w|oo + Row1(t) < (Jwloo + Ro)(1+ ¢1(t)) = ca(l + ¢1(t))
(here ¢4 = |w|os + Ro) and c3¢1(t) < U(t) (here c3 = 3ca/7, see Lemma 2.6), the
estimates asserted in the theorem follow. O

Proof of Theorem 1.2. From assumption (1.8) it follows that there are c¢7 > 0,
A > A1 such that, if n > 2/c7, 0 <k < 2¢7/]¢1|c0, then

1

0< kil < 2L, 0<—+kpi(t) <ecr

2 n

and

AE +kpi(t) + 97 (8 £ + ker (1)) <1

h(t, £ + ke (1)) o
Thus
Mepr(t) +97 (8 5 + ke (1) _ )

h(t, & + ke (1))

Then for fixed n > 62—7,

Nk () + g~ (t, % + ktpl(t)) < h(t, % + ktpl(t)),

and we have

Mooy (1) < h(t, % n kapl(t)) _g (t, % n k(pl(t)>
<ot (t 1, kou(t)) —o (1 % +hpi(t) + (1, % T0)
= i1 (1)) — Bt ki (6) + At ki 1)

where
(2.12) bu(t) = h(, % + ki (1)) — h(t, ker (1),

Let u(t) = ke1(t), then we have

—u"(t) = Mkp1(t) < Mepi(t) < g(t, % +a(t)) + h(t,u(t)) + d,(t) for ¢ € (0,1).

Let
1 1 C7o1 (t)
= — t —
P(t,s) = ga(t, s) +h2<t, 207 + ko1 ( )) + 3 Tonl
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and

m(t, s) = ha(t, s).

From (1.3) we see that ¢ satisfies the assumptions of Lemma 2.3, so there exist
w,wy, € C[0,1] such that

1 1 1 t
—wll(t) = ga (t, - +wn) + ho (t, Ser+ Iapl(t)) L2 I0 (0,1),
n 2 2 o1

wn(0) =w,(1) =0

and

w(t) = lim wy,(t) for t € 0,1].

n—oo

It follows from (1.6) that m satisfies the assumption of Lemma 2.4, so by Corollary 2.1
there exist Ry > 0 and v,, € C([0,1]), 0 < 0, (¢) < Rop1(t) for ¢ € [0, 1], such that

{ —0(t) = ho(t,wn +0,) for t € (0,1),
Up(0) =0, (1) =0

and

X 1 . 1 Lerp(t)
—a’(t) > (t— nt) h(t— k t) —
un() 92 77’L+u () +ha 72C7+ 901() +2 |(P1|

+ha(t, dy,) for t e (0,1)

where U, (t) = wn(t) + U, (t) for t € [0,1]. Then @, € C[0,1] and 4, (1) = 4,(1) = 0.
Let
W(t) = w(t) + Rop1(t) for ¢ €]0,1],

SO

0 < d,(t) <a(t) for tel0,1].
Next we prove that
(2.13) u(t) < Gn(t) for t e [0,1].

Suppose (2.13) is not true. Let y(t) = u(t) — 4, (t) and let o € (0,1) be the point
where y(t) attains its maximum over (0,1). We have

y(o) >0 and ¥y’ (o) <O0.
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On the other hand, since u(c) > @, (o) we have

-7"(0) < g(o, 1 + ﬂ((ﬂ) + h(o, (o)) + dn(0)

< go (0, - + &n(0)> + ho (0, %07 + k(pl(a))

+ ha (0, iin(0)) < — iy (),

so we have

and this is a contradiction.
‘We have

Bn(0)] = (6 + kr()) = At K ()] < 2ha (6 50 + Hlen]

for n > 2/c7. Consequently 6, — 0 for ¢ € (0,1) and n — oco.

By virtue of assumptions (G2) and (H3) there exist v,7 € M, n > 2/c7 such that
g(t, 2 +7)+h(t,r)+a(t)r is increasing in (0, |@|o), where a(t) = ~(t) + 7(t). Taking
U, = u(t) and observing that

1
g(-,g +v) +h(,v)+apv+6, €M, v E [Up,ly)

we obtain
u+ A(au) < A(g(~, % +ﬂ> +h(-, W) + 0, + aﬁ)
< A(g<~, % +v> +h(-,v) +anv+5n>
<A(g(- % i) + Al i) + niin + 00 )
<A(ge(- % i) + ha(Cy ) + anin + s (- %c7 +hpr ) + %c':f'l)

< Uy + Alanfy,).

Lemma 2.2 implies that problem (1.2) has a solution u € C[0,1]NC*(0,1). Reasoning
similar to that in the proof of Theorem 1.1 implies that there exist ¢; = ¢;(g,h) > 0
(i = 5,6) such that

es1(t) < u(t) <celpi(t)+1) for te0,1].
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3. EXAMPLE

Example 3.1. Consider the boundary value problem

—u” = g(t,u) + h(t,u), te(0,1),
o (t.) + hit.w), ¢ (0.1)
u(0) =0 =wu(1)
where
1. 1
—lsin—|, O0<r<-—,
(tr)* ro r T
g 111
——sin—, —-<r
T
and
r? for0<r<1,
h(tvr):
r7 for r>1

with &« > 0, 0 < 7 < 1. Then Theorem 1.1 guarantees that (3.1) has at least a
solution u € C[0,1] with u(¢) > 0 for ¢ € (0, 1).

To see this let 3 = min{3, a}, gi(t,r) = 1/r + n* and ga(t,r) = 1/r®. Notice
that (1.3) is satisfied. For all ro > 71 > 0, let

0
’y(t)ESllp@—g +1<o0

reAt OT

where A = (r1,72) \ {nn: n € N}, so g(¢,r) + v(¢)r is increasing in (r1,72).
Let ng be fixed such that

1
21/(@=B) < pom + gn.

Let ¢; = 1/m and ¢z € (0,¢1) be such that

o0

< an [(ﬁyiﬁ B (6n6+5)27ﬁ]

=ng

Now for n > ng,

1
(cat)™

.1 S 1
sin —
Czt - (CQt)ﬁ

for te | ! ! ]
or , ,
co(nn+ 3n) ea(nm+ )
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so we have
1 1/2
[ 0= otewyar> [ i gt e a
0 0
1 1/2
Z 5/ tg(t, col(t)) dt
/1/ co nn+ ) 1
n=ng 7 1/ (c2(nn+3n)) (C2t)

11 1/(ca(nn+3m))
i Z/ =5 qt
2¢h S 1/ (eatnnt 3

:%c B)n2—P Z {(6n+1) - <6n6+5>27ﬁ}

n=ngo

\%
DO | —

Thus (1.5) is satisfied.
Let hi(t,r) = ha(t,r) = h(t,r) for (¢,r) € (0,1) x (0,00) and note that (H1) and
(H2) are satisfied.

Example 3.2. Consider the boundary value problem

—u" =g + h(t,u te(0,1),
(3.) (t,u) + h(t,u), (0,1)
u(0) =0 =wu(1)
where
1
- for r € [1,00),
/rra
LA for r € |+ 1]
37+ 3 orre |71,
4k + 1)+ (—dkr +1)  for 1€ |—— i}
L4k 4+ 1" 4k1’
g(t,r) = - )
4 1)et1](4 —1] f —_ —}
(4k + D)4k + 2)r — 1] orr€_4k+2,4k+1,
(4k +2)r — 1 fo e[# #}
: R e ) b
1 1
e or v [l L]
(k+Dr or v € TSR
fork=1,2,..., >0 and
1
h(t,r):§\/7_"

134



Then

1 for r € [1,00),
Ta
4 1 rl
§T_§ for re_i,l},
g (t,r)=<0 for r € _4}{12,%},
1—(4k+2)r for re _#,#},
L4k + 3" 4k + 2
A+ 1)r—1 forre|—— 1 }
Ldk +4" 4k + 3
Let A = A\1. Then we have
lim A
r—0t  h(t,r)

By Theorem 1.2, problem (3.2) has a solution u € C[0,1] N C*(0,1).

1]
2]
8]

[4]

References

R. P. Agarwal, D. O’Regan: Singular Differential and Integral Equations with Applica-
tions. Kluwer Academic Publishers, Dordrecht, 2003. Zbl 1055.34001
P. Habets, F. Zanolin: Upper and lower solutions for a generalized Emden-Fower equa-
tion. J. Math. Anal. Appl. 181 (1994), 684-700. Zbl 0801.34029
D. O’Regan: Theory of Singular Boundary Value Problems. World Scientific, Singapore,
1994. Zbl 0807.34028
H. Li, D. O’Regan, and R.P. Agarwal: An Approximation Approach to Eigenvalue
Intervals for Singular Boundary Value Problems with Sign Changing Nonlinearities. To
appear.

Authors’ addresses: H. Lii (corresponding author), Department of Applied Mathemat-

ics, Hohai University, Nanjing, 210098, P.R. China, e-mail: haishen2001@yahoo.com.cn;

D.

O’Regan, Department of Mathematics, National University of Ireland, Galway, Ireland,

e-mail: donal.oregan@nuigalway.ie; R. P. Agarwal, Department of Mathematical Sciences,
Florida Institute of Technology, Melbourne, FL 32901-6975, USA, e-mail: agarwal@fit.edu.

135



		webmaster@dml.cz
	2020-07-02T11:53:41+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




