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PARTITION OF UNITY METHOD FOR HELMHOLTZ

EQUATION: q-CONVERGENCE FOR PLANE-WAVE

AND WAVE-BAND LOCAL BASES1

Theofanis Strouboulis, Realino Hidajat, College Station

(Received November 21, 2005)

Abstract. In this paper we study the q-version of the Partition of Unity Method for
the Helmholtz equation. The method is obtained by employing the standard bilinear finite
element basis on a mesh of quadrilaterals discretizing the domain as the Partition of Unity
used to paste together local bases of special wave-functions employed at the mesh vertices.
The main topic of the paper is the comparison of the performance of the method for two
choices of local basis functions, namely a) plane-waves, and b) wave-bands. We establish
the q-convergence of the method for the class of analytical solutions, with q denoting the
number of plane-waves or wave-bands employed at each vertex, for which we get better than
exponential convergence for sufficiently small h, the mesh-size of the employed mesh. We
also discuss the a-posteriori estimation for any solution quantity of interest and the problem
of quadrature for all integrals employed. The goal of the paper is to stimulate theoretical
development which could explain various numerical features. A main open question is the
analysis of the pollution and its disappearance as function of h and q.

Keywords: Partition of Unity Method (PUM), Helmholtz equation, exponential conver-
gence, extrapolation, pollution due to wave-number

MSC 2000 : 65J10

1. Introduction

The Partition of Unity Method (PUM) which was introduced in [1]–[5] is now
used in many engineering computations. One of its many features is the possibility

of employing special local basis functions defined on the supports of the partition
of unity functions. Typically the PUM is combined with the classical FEM; see,

1 This work was supported by the Office of Naval Research under Grant N00014-99-1-
0726. The support of Dr. Luise Couchman of the Office of Naval Research is greatly
appreciated.
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e.g., the Generalized FEM [6]–[10], and the extended FEM [11]. In this paper we

will apply the (pure) PUM (i.e. the method obtained by pasting only basis functions
defined over the supports of the partition of unity functions) for solving the Helmholtz
problem given below in (2)–(3) with f = 0. We will choose the space of local
basis functions to be the span of a set of functions which identically satisfy the
homogeneous Helmholtz equation, ∆u + k2u = 0. The main problem is the selection
of the local basis functions. We must consider:

1. The approximation properties of the chosen set, more precisely

(a) its completeness;

(b) the estimate of the error in the best approximation.

2. The stability (inf-sup) of PUM.

In [5] and [2] these problems were addressed for two kinds of special functions,
namely a) plane-waves, b) Bessel functions of the first kind arising from the theory of

Vekua. The Fourier transform of the functions on
� 2 which satisfy the homogeneous

Helmholtz equation (2a) has its support on the circle ξ2
1 + ξ2

2 = k2; for example the

plane-waves are images of Dirac functions located on the circle.

The purpose of this paper is to compare the performance of the PUM for the
Helmholtz problem using two types of basis functions, namely

1. the plane-waves—which are images of Dirac functions on the circle,

2. the wave-bands—which are images of piecewise constant functions on the circle.

Let us note that the full theory for the wave-bands is not available. The numerical

results presented here are employed to stimulate the important question of how to
understand the behavior and properties of the PUM for the Helmholtz problem for

each particular choice of the basis functions.

The local character of the solution of the Helmholtz problem (2) is different in the
interior of the domain and in the neighbourhood of the boundary where the solution

can also have “evanescent” character. Here we deal with the problem in the interior
where the solution can be assumed to be analytic.

Since the initial works [2], [5] on the PUM for the Helmholtz, the method was

further developed by Bettess, Laghrouche and their co-workers [12]–[16], by Ortiz
and Sanchez [17] and Ortiz [18]; additional references may be found in these papers.

Other methods with similar ingredients are the Discontinuous Enrichment Method of
Farhat and co-workers [19], [20] which also employs local bases of plane waves using a

Discontinuous Galerkin formulation with Lagrange Multipliers, and the Variational
Theory of Complex Rays of Ladevèze, Rouch and co-workers [21]–[23] which uses

local bases of wave-bands and a new mixed variational formulation of the Discontin-
uous Galerkin type.
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Stability of the PUM for the Helmholtz can be analyzed by employing the pollution

ratio

(1) πS(u) =
‖∇(u− uPUM)‖L2(Ω)

inf
χ∈S

‖∇(u− χ)‖L2(Ω)

where u is the exact solution, uPUM is the PUM solution from the PUM space S.
The ratio πS(u) compares the norm of the error in uPUM versus the corresponding

norm of the error in the best approximation for the PUM space S and the exact
solution u; when πS(u) is close to one we can say that the pollution is negligible.
The pollution is a very important feature of numerical solution of the Helmholtz

problem; it is a shift in the Galerkin solution due to numerical dispersion and it was
addressed in [24]–[27]. The pollution is also related to the inf-sup condition which

was proved in [5] under the condition (1+k2)h 6 C . Another goal of the paper is to
tackle numerically, as function of the mesh-size h, and the order q of the local basis

functions, when the pollution starts to disappear for the two kinds of local basis
functions. The numerical results in the paper will indicate this effect which needs

still more rigorous analysis.

The problem of numerical solution is of course related to the implementation.
Hence the paper also deals with the quadrature and the a-posteriori error estimation.

Also here further theoretical analysis is needed.

In this work we study the computational aspects of the q-version of the Partition of
Unity Method, which we have also addressed recently in [28] in the context of the pq-

convergence of the Generalized Finite Element Method, which combines the present
approach with the p-version of the Finite Element Method. The main differences of

the present work with [28] is that here: a) We explore the use of two different local
bases, namely the plane-waves also employed in [28], and in addition the wave-bands

used by Ladevèze and co-workers [21]–[23] in their approach; b) We also employ
semi-analytical tools for all the numerical integrations which allow us to consider

cases with many (e.g. six) wavelengths per element. Once more the theoretical basis
of our work namely the proofs of existence, uniqueness, and a-priori error estimates

of q-convergence can be found in Chapter 8 of Melenk [5].

Theory, practical computation and experience are complementary. As was said
earlier, the goal of the paper is to stimulate the theoretical questions which would

explain various numerical features.

Following this Introduction we summarize the formulation of the Helmholtz equa-
tion, its Partition of Unity approximations, we attack the problem of numerical

integration of all the integrals employed in the formulation, illustrate the exponen-
tial convergence characteristics of the method in the context of two model examples,
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and show how it can be explored by extrapolation to obtain easily computable a-

posteriori error estimates for any computed solution quantity.

2. Theoretical background

In this section we formulate the Helmholtz model problem with Robin boundary

conditions in a finite domain and its PUM approximation. We refer the reader to
Chapter 8 of [5] for more details and proofs.
Let Ω ⊂ � 2 be a bounded domain with boundary ∂Ω = Γ1 ∪ Γ2, Γ1 ∩ Γ2 = ∅,

as shown in Fig. 1. We will be interested in the solution u of the boundary-value
problem

−∆u− k2u = f in Ω,(2a)

∂u

∂n
= g1 on Γ1,(2b)

∂u

∂n
− iku = g2 on Γ2.(2c)

PSfrag replacements

Ω

Γ1Γ2

Figure 1. Example of a domain Ω with interior boundary Γ1 and outer boundary Γ2.

The weak formulation of (2) is given as follows.
Find u ∈ H1(Ω) such that

B(u, v) = L (v) ∀ v ∈ H1(Ω)(3a)

where

B(u, v) =
∫

Ω

∇u∇v dΩ− k2

∫

Ω

uv dΩ + ik
∮

Γ2

uv ds,(3b)

L (v) =
∫

Ω

fv dΩ +
2∑

i=1

∮

Γi

giv ds,(3c)
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where H1(Ω) is the space of functions with square-integrable derivatives over Ω.
We have from Melenk [5]:

Theorem 1 (Existence and Uniqueness). Let f ∈ H−1(Ω), gi ∈ H−1/2(Γi),
i = 1, 2. Then there exists a unique solution of the Helmholtz problem which satisfies

(4) |||u||| def=
√
‖∇u‖2

L2(Ω) + k2‖u‖2
L2(Ω) 6 C (Ω, k)

(
‖f‖H−1(Ω) +

2∑

i=1

‖gi‖H−1/2(Γi)

)
.

Here C (Ω, k) indicates the dependence of C on the domain Ω and the wave-number k.
In the case that Ω is convex, C does not depend on k.

Let ∆h be a uniform mesh of squares of size h covering the domain Ω, as is,
e.g., shown in Fig. 2(a). Let ϕ∆h

i , i = 1, . . . , nnodes, be the classical piecewise
bilinear “hat” functions associated with the nodes located at the vertices of the

squares (see e.g. Fig. 2 (b)), and let

(5) ω∆h
i

def= suppϕ∆h
i =

{
x ∈ Ω: ϕ∆h

i (x) > 0
}

be the support of ϕ∆h
i which consists of the four squares which share the node as a

vertex.

PSfrag replacements

∆h

1

4

3

2

1
N (1)

3 
 


N (2)
4

N (3)
1

N (4)
2

PSfrag replacements

∆h

(a) (b)
Figure 2. (a) Example of a Cartesian mesh ∆h used in the formulation of the Partition of

Unity Method over the domain Ω. (b) A typical exploded view of a hat function
ϕ∆h

i over its support.

We define the Partition of Unity Space:

(6) W k;q
∆h

=
{

v =
nnodes∑

i=1

ϕ∆h

i vi : vi ∈ W k;q
loc (ω∆h

i )
}

where W k;q
loc is the local space of:
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a) plane-wave basis functions

(7) W k;q
loc = span

{
exp

(
ik

(
x cos

2πn

q
+ y sin

2πn

q

))
, n = 0, . . . , q − 1

}
,

which includes all linear combinations of plane waves travelling in the directions(
cos 2πn/q, sin 2πn/q

)
, n = 0, . . . , q − 1.

b) wave-band basis functions

(8) W k;q
loc = span

{∫ θn+1

θn

e(ik(x cos θ+y sin θ)) dθ : n = 0, . . . , q − 1, θn =
2πn− π

q

}
,

which includes all linear combinations of wave-bands obtained by superpo-
sition of all the plane waves travelling in the directions (cos θn, sin θn) to
(cos θn+1, sin θn+1), n = 0, . . . , q − 1, θn = (2πn− π)/q.

Fig. 3 depicts schematically both the basis functions for q = 2, 4 and 6, while Fig. 4
shows the contours of a real part of a discrete plane wave and the corresponding
wave-band.

q = 2 q = 4 q = 6

q = 2 q = 4 q = 6

Figure 3. Examples of the employed local basis functions. The top row depicts the plane-
wave basis, while the bottom row depicts the wave-band basis for q = 2,4, and 6,
respectively.

The PUM solution is defined as follows.
Find

(9) uq
h =

nnodes∑

i=1

ϕ∆h
i

( q∑

j=1

a
(i)
j W

(i)
j

)
∈ W k;q

∆h
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Figure 4. Contours of the real part of a) The plane-wave exp(ik(x cos θ+y sin θ)) for θ = 0;

b) the wave-band
∫ θ2
θ1
exp(ik(x cos θ + y sin θ)) dθ for θ1 = − � /4 and θ2 = � /4.

such that

(10) B(uq
h, v) = L (v) ∀ v ∈ W k;q

∆h

where W
(i)
j , j = 1, . . . , q are either the plane-wave or wave-band functions employed

in the patch ω∆h
i .

�������
	��
1. In [28] we addressed the Generalized Finite Element Method where

we seek

(11) up,q
h =

nfem(p)∑

k=1

bkNk +
nnodes∑

i=1

ϕ∆h
i

( q∑

j=1

a
(i)
j W

(i)
j

)
∈ Sk;q

h,p
def= Sp

∆h
⊕W k;q

∆h

such that

(12) B(up,q
h , v) = L (v) ∀ v ∈ Sk;q

h,p
def= Sp

∆h
⊕W k;q

∆h

where Nk denotes a standard FE bi-p basis functions on ∆h, nfem(p) is the total
number of degrees of freedom for the bi-p FE basis functions, W (i)

j , j = 1, . . . , q are

the employed plane wave functions in the patch ω∆h
i , and we also discussed the effect

of p. In the present paper we let p = 0 and consider two possible choices of the local
basis functions.

The stability and quasi-optimality of the above PUM approximation of the

Helmholtz was proved in [5]. The main result is that

(13) ‖∇(u− uq
h)‖L2(Ω) 6 C inf

χ∈Sq
h

‖∇(u− χ)‖L2(Ω)

where Sq
h = W k;q

∆h , and C is related to the pollution due to the wave-number.
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2. We will measure the pollution in concrete cases by computing the

ratio

(14) πSq
h
(u) =

‖∇(u− uq
h)‖L2(Ω)

inf
χ∈Sq

h

‖∇(u− χ)‖L2(Ω)
.

Theorem 2 (q convergence). Let the solution u of the Helmholtz problem (3)

be analytic on Ω̄ = Ω ∪ ∂Ω. Then, for h fixed we have

(15) inf
χ∈Sq

h

|||u− χ||| 6 C (h)e−αq

where α depends on h.

The main results needed for the proof of (15) are given in Sections 8.4–8.6 of
Melenk [5].

3. Numerical integration

In [28] we used Gauss-Legendre numerical integration to evaluate all integrals.
Here, in the case of plane-waves, we will employ a semi-analytical scheme which

follows from [13], [14].
Noting that a plane wave function W

(m)
j (x) = exp(ikx · ej) satisfies

(16) ∇W (j)
m = ikemW (j)

m

we write the typical element of the stiffness matrix

(17)
∫

τ

∇(ϕ∆h
r W (r)

m ) · ∇(ϕ∆h
s W (s)

n )− k2(ϕ∆h
r W (r)

m )(ϕ∆h
s W (s)

s ) dτ

into the form

(18)
∫

τ

exp(ik(em+en)·x)[(∇ϕ∆h
r +ikemϕ∆h

r )·(∇ϕ∆h
s +ikenϕ∆h

s )−k2ϕ∆h
r ϕ∆h

s dτ ].

Next we employ the Filon integration rule (see [29, p. 151]) to evaluate (18). Recall
that Filon’s rule is used to integrate highly-oscillatory integrals in the form

(19)
∫ b

a

f(t) cos kt dt and
∫ b

a

f(t) sin kt dt

by subdividing the interval [a, b] into 2N subintervals of equal length and approximat-
ing f(t) by a parabola obtained by interpolating f(t) at mesh points. For rectangular
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element τ , the integral (18) can be written as an iterated integral in the x and y

directions. Further, ϕ∆h
r (x, y) = ϕ∆h

r (x)ϕ∆h
r (y) and thus (18) can be split into two

1-D integrals. For example, we have

∂

∂x
ϕ∆h

r (x, y)
∂

∂x
ϕ∆h

s (x, y) =
∂

∂x
ϕ∆h

r (x)
∂

∂x
ϕ∆h

s (x)ϕ∆h
r (y)ϕ∆h

s (y),(20)

= F (x)G(y)

which, after multiplication by exp(ik(em + en) · x) can be written as
∫

I

cos(ω1x)F (x) dx

∫

J

cos(ω2y)G(y) dy(21)

−
∫

I

sin(ω1x)F (x) dx

∫

J

sin(ω2y)G(y) dy

+ i
∫

I

sin(ω1x)F (x) dx

∫

J

cos(ω2y)G(y) dy

+ i
∫

I

cos(ω1x)F (x) dx

∫

J

sin(ω2y)G(y) dy

with ω1 = k(cos θm + cos θn) and ω2 = k(sin θm + sin θn), and each one of the 1-D
integrals can be evaluated by Filon’s rule.

We performed some computational experiments with τ = (0, 1)×(0, 1) and k = 20,
and computed the stiffness matrix using 40 × 40 Gauss Legendre Quadrature and
Filon’s rule with 2 subintervals on x and y coordinates. Analyzing the results for

q = 2, 4, 6, . . . , 40 we found that for k = 20 both the quadratures give indentical
results up to the roundoff error, while Filon’s rule is always more economical as

shown in Fig. 5.
In the case of wave-bands, we use (40×40)2 Gauss integration rule; more precisely

we use the 40× 40 Gauss rule over τ and the 40 point Gauss rule in each band. For
example,

(22)
∫

τ

k2

(
ϕ∆h

r

∫ θr2

θr1

eik(x cos θ+y sin θ) dθ

)(
ϕ∆h

s

∫ θs2

θs1

eik(x cos θ+y sin θ) dθ

)
dτ

is computed by

40∑

i=1

40∑

j=1

k2ϕ̂∆h
r (ξi, ξj)ϕ̂∆h

s (ξi, ξj)|J |wiwj(23)

40∑

m=1

exp
(
ik(x(ξi) cos θ(ξm) + y(ξj) sin θ(ξm))

)
· 1

2 (θr2 − θr1)wm

40∑

n=1

exp
(
ik(x(ξi) cos θ(ξn) + y(ξj) sin θ(ξn))

)
· 1

2 (θs2 − θs1)wn
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Figure 5. Comparison of execution time for computation of stiffness matrices between Gauss
Legendre integration and Filon integration.

where ξi and wi are the Gauss Legendre points and the weights, respectively, and
ϕ̂∆h

s is the piecewise bilinear “hat” function in the master domain (1, 1) × (−1, 1).
A more economical semi-analytical approach for evaluating the integrals in the case
of wave-bands has been proposed by Ladevèze and Rouch [23].

4. Discussion of the computed results

4.1. Plane Wave on Rectangular Domain
As our first example, we took the Helmholtz equation on the unit square Ω =

(0, 1)× (0, 1) with Robin boundary conditions:

∆u + k2u = 0 in Ω,(24a)

∂u

∂n
+ iku = g on ∂Ω(24b)

where we chose g such that the exact solution is the plane wave

(25) u(x, y) = eik(x cos θ+y sin θ), θ =
π
16

.

Here we let k = 20 and employ uniform N × N meshes of squares for N =
1, 2, 4, and 8 denoted respectively as mesh A, mesh B, mesh C, and mesh D. Tab. 1
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summarizes the data for the meshes employed: their mesh size h and the respective

Number of Waves Per Element (NWPE): h/λ = hk/2π.

N h NWPE
Mesh A 1 1.0 3.18
Mesh B 2 0.5 1.59
Mesh C 4 0.25 0.80
Mesh D 8 0.125 0.40

Table 1. Meshes utilized in the analysis: N is the number of elements in the x and y di-
rections, h is the uniform mesh size, and NWPE is the Number of Waves Per
Element.

Fig. 6 plots the percent relative error in the H1-seminorm with respect to the

square root of the total number of degrees of freedom
√

NDOF in the horizontal axis.
Here we can see that asymptotically we obtain in both cases exponential convergence:

(26) ‖∇(u− uq
h)‖ ≈ C e−γ

√
NDOF

where C depends on h. It is noteworthy that in the pre-asymptotic range the PUM

with plane-waves delivers much better accuracy than the PUM with wave-bands,
especially as the mesh is refined.
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Mesh A Mesh B Mesh C Mesh D
q

plane bands plane bands plane bands plane bands

2 .4804E+2 .8673E+2 .1991E+2 .8047E+2 .6740E+1 .6768E+2 .2899E+1 .3725E+2

(1.2656) (1.0123) (1.2848) (1.0461) (1.1723) (1.1674) (1.0617) (1.7044)

4 .4804E+2 .8312E+2 .1982E+2 .7108E+2 .6499E+1 .4382E+2 .1530E+1 .1980E+2

(1.2733) (1.0367) (1.2911) (1.1456) (1.2267) (1.5224) (1.0333) (1.2924)

6 .4784E+2 .7096E+2 .1805E+2 .4562E+2 .2898E+1 .2084E+2 .5649E+0 .5031E+1

(1.2837) (1.1598) (1.5014) (1.4796) (1.0849) (1.5763) (1.0110) (1.1175)

8 .4625E+2 .5731E+2 .7638E+1 .3248E+2 .1963E+1 .7755E+1 .2036E+0 .1276E+1

(1.3328) (1.3551) (1.8657) (1.5727) (1.0413) (2.0812) (1.0025) (1.0219)

10 .3085E+2 .3296E+2 .4529E+1 .9547E+1 .6265E+0 .1680E+1 .4171E−1 .1460E+0

(2.1812) (1.6811) (2.6496) (2.0383) (1.0817) (1.0589) (1.0012) (1.0034)

12 .1435E+2 .2343E+2 .2794E+1 .3684E+1 .1832E+0 .4780E+0 .6085E−2 .2551E−1
(1.6432) (1.4063) (2.6249) (2.2801) (1.0153) (1.0201) (1.0015) (1.0027)

14 .5856E+1 .1316E+2 .7339E+0 .1618E+1 .4013E−1 .1173E+0 .1033E−2 .3496E−2
(2.1209) (1.8404) (1.5043) (2.7466) (1.0125) (1.0119) (1.0010) (1.0014)

16 .1770E+1 .5150E+1 .1674E+0 .8736E+0 .7176E−2 .1890E−1 .9904E−4 .4094E−3
(3.7616) (3.1204) (1.3202) (1.5545) (1.0111) (1.0064) (1.0026) (1.0007)

18 .3616E+0 .1392E+1 .3489E−1 .1903E+0 .1099E−2 .4635E−2 .4858E−4
(1.1258) (4.3197) (4.4855) (2.2648) (1.0055) (1.0080) (1.0016)

20 .3653E−1 .3663E+0 .7387E−2 .3766E−1 .1132E−3 .6812E−3
(1.0151) (2.3713) (1.0700) (1.2690) (1.0133) (1.0060)

22 .2615E−2 .1123E+0 .5557E−3 .5128E−2 .6593E−4
(1.0134) (3.3856) (1.1110) (1.0429) (1.0102)

24 .1375E−3 .3232E−1 .2834E−4 .7461E−3
(1.0058) (1.9706) (1.0296) (1.0288)

26 .1024E−1 .1354E−3
(1.5303) (1.0258)

28 .2311E−2
(1.1255)

30 .6362E−3
(1.0544)

32 .1157E−3
(1.0225)

Table 2. The values of the percent relative error in the best approximation ‖∇(u −
A

q
h u)‖L2(Ω)/‖∇u‖L2(Ω) × 100% using the plane-wave and wave-band functions.
The number inside the bracket is the pollution ratio πSq

h
(u), namely the ratio

between the percent relative error of the PUM and the best approximation.
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Mesh A Mesh B Mesh C Mesh D
q

plane bands plane bands plane bands plane bands

2 .7258E+2 .3489E+2 .4037E+2 .1520E+2 .2386E+2 .1101E+2 .1146E+2 .8322E+1

(1.1730) (1.0957) (1.2527) (1.0579) (1.2871) (1.0836) (1.1536) (1.4215)

4 .7246E+2 .2851E+2 .3968E+2 .1198E+2 .2123E+2 .5751E+1 .4728E+1 .3786E+1

(1.1736) (1.2936) (1.2679) (1.4349) (1.4932) (1.7736) (1.0992) (1.6302)

6 .7114E+2 .1110E+2 .2613E+2 .5189E+1 .5917E+1 .2284E+1 .1185E+1 .6250E+0

(1.2003) (1.3802) (1.9644) (2.6768) (1.1256) (1.5639) (1.0118) (1.1162)

8 .6081E+2 .8525E+1 .7795E+1 .5413E+1 .1913E+1 .1836E+1 .2475E+0 .2463E+0

(1.2263) (1.9132) (1.3765) (1.9656) (1.0538) (14.336) (1.0016) (1.0154)

10 .3556E+2 .8341E+1 .4654E+1 .4028E+1 .5796E+0 .6442E+0 .3747E−1 .5907E−1
(2.3332) (1.7995) (1.0765) (1.8841) (1.0851) (1.1956) (1.0011) (1.0242)

12 .1477E+2 .6529E+1 .2303E+1 .1845E+1 .1561E+0 .1067E+0 .5026E−2 .7836E−2
(1.7258) (1.5944) (2.1806) (8.0000) (1.0167) (1.0309) (1.0012) (1.0046)

14 .3811E+1 .3451E+1 .5460E+0 .3458E+0 .2860E−1 .2460E−1 .7434E−3 .7177E−3
(1.9234) (2.8708) (2.0751) (1.5058) (1.0157) (1.0171) (1.0019) (1.0022)

16 .1175E+1 .1771E+1 .1805E+0 .1500E+0 .5533E−2 .7578E−2 .7716E−4 .1250E−3
(3.9566) (2.4032) (1.0820) (1.4767) (1.0074) (1.0227) (0.9999) (1.0008)

18 .5348E+0 .6593E+0 .5723E−1 .4223E−1 .1418E−2 .1072E−2
(1.1887) (4.6519) (10.666) (1.0992) (1.0085) (1.0075)

20 .8084E−1 .1250E+0 .1443E−1 .9467E−2 .2430E−3 .1942E−3
(1.0143) (3.4384) (1.0804) (1.1049) (1.0325) (1.0051)

22 .2748E−1 .2894E−1 .4479E−2 .2362E−2
(1.0124) (1.5463) (1.0554) (1.0868)

24 .7721E−2 .2005E−1 .1527E−2 .9474E−3
(1.0060) (1.1546) (1.0308) (1.0278)

26 .2357E−2 .9657E−2 .5843E−3 .3069E−3
(1.0076) (1.3410) (1.0199) (1.0713)

28 .7026E−3 .4007E−2 .2269E−3
(1.0080) (1.0177) (1.0220)

30 .3876E−3 .1582E−2
(0.5575) (1.0076)

Table 3. The values of the percent relative error in the best approximation ‖∇(u −
A

q
h u)‖L2(Ω)/‖∇u‖L2(Ω) × 100% using the plane-wave and wave-band functions
for the domain Ω1. The number inside the bracket is the pollution ratio πSq

h
(u),

namely the ratio between the percent relative error of the PUM and the best
approximation.
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Tab. 2 gives the values of the percent relative error in the best approximation:

‖∇(u−A q
h u)‖L2(Ω)/‖∇u‖L2(Ω) × 100 %, where A q

h u ∈ Sq
h is such that

(27)
∫

Ω

∇(A q
h u) · ∇v dΩ =

∫

Ω

∇u · ∇v dΩ ∀ v ∈ Sq
h

where u is the analytical solution given by (25). Tab. 2 also gives the value of the
pollution ratio πSq

h
(u) in each case. The deviation of πSq

h
(u) from the value one is

the measure of the pollution.

Fig. 7 and Fig. 8 show the graph of the percent relative error in the PUM solution
and the best approximation for the plane-wave and the wave-bands PUM space,

respectively. We can see from both figures that for sufficiently high q depending
on h, the solution converges exponentially as

(28) ‖∇(u− uq
h)‖ ≈ C1e−βq

with the same rate β ≈ 1. Note also that as the mesh is refined, the effect of the
pollution is practically negligible almost starting from q = 2.
In summary, it seems that for the problem with the exact solution given by (25)

the PUM using plane-waves performs better than the PUM using wave-bands es-
pecially for small h and high q. For large h and low q the PUM using bands has

smaller pollution ratio. The better performace of the PUM using plane-waves can
be partially explained from the fact that the exact solution is also a plane wave.

4.2. Rigid scattering problem

We obtained our second example by employing the analytical solution of scattering

of a plane wave by a rigid circular cylinder, which is depicted in Fig. 9. Employing
cylindrical coordinates (r, θ), the boundary value problem for the scattered pres-
sure u(r, θ) reads

∆u + k2u = 0, r > a,(29a)
∂u

∂r
= − ∂

∂r
(uinc), r = a,(29b)

lim
r→∞

√
r
(∂u

∂r
− iku

)
= 0(29c)

where

uinc(r, θ) = P0eikr cos θ(30)
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Figure 7. q-convergence of the PUM and the best approximation for Mesh A, B, C, and D
computed using plane-wave functions.

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0  5  10  15  20  25  30  35

q

mesh A
mesh A - BA

mesh B
mesh B - BA

mesh C
mesh C - BA

mesh D
mesh D - BA

1

1

R
el

at
iv

e 
er

ro
r 

in
 H

1 
se

m
in

or
m

  (
in

 p
er

ce
nt

)

Figure 8. q-convergence of the PUM and best approximation for Mesh A, B, C, and D
computed using wave-bands functions.
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Figure 9. Notations used in the definition of the model example of scattering of a plane
wave by a rigid circular scatterer and the problem domains Ωi.

is the pressure field for the incident plane wave. Using separation of variables (see,
e.g., [30, p. 412]) we obtain

(31) u(r, θ) = −P0

∞∑

n=0

εnin
J ′n(ka)Hn(kr)

H ′
n(ka)

cos(nθ)

where ε0 = 1, εn = 2, n 6= 0, Hn(z) is the cylindrical Hankel function of the first kind,
and Jn(z) is the cylindrical Bessel function of the first kind. We set our example
problem in square domains Ωi, i = 1, 2, adjacent to the scatterer and employed (31)
to obtain g on ∂Ωi.

REAL PART OF SOLUTION
 Min = -.146E+01 ;  Max = 0.146E+01 

IMAGINARY PART OF SOLUTION

-1.20 -1.00 -0.50 -0.25 0.0 0.25 0.50 1.00 1.20

Figure 10. Contours of the real and imaginary part of the scattered field in Ω2. The small
box inside the contours is the domain Ω1.

In our computations we employed k = 20 and domains Ω1 = (−2,−1)×(−0.5, 0.5)
and Ω2 = (−5,−1) × (−2, 2). As in the previous example, we employed uniform
meshes of squares obtained from nested refinements of the domains Ωi.
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Fig. 11 reports the convergence of the H1-seminorm of the error with increas-

ing q using the domain Ω1. Note that for this example the PUM with wave-bands
gives better accuracy in the pre-asymptotic range as compared with the PUM with
plane-waves. Asymptotically, both choices give almost identical accuracies converg-

ing exponentially with respect to
√

NDOF.
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Figure 11. q-convergence of the PUM using plane-wave and wave-band functions for do-
main Ω1 using Mesh A, B, C, and D.

Fig. 12 and Fig. 13 plot the percent relative error in the PUM solution versus the

corresponding error in the best approximation for the plane-wave and wave-band
bases, respectively, using the domain Ω1. Once more we see that we get exponential

convergence with respect to q, for sufficently high q depending on h with rate β ≈ 1.
In Fig. 14 we plot the result of computation on the domain Ω2 using a uniform

2 × 2 mesh, such that the Number of Waves Per Element NPWE ≈ 6.37, while in
Fig. 15 we also include the results for the 4× 4 mesh for which NPWE ≈ 3.18. Note
that the pollution is significant for both bases and for almost the entire range of q

for both meshes, and that the rate of exponential convergence improves as the mesh
is refined.

From the above results we see that for “smooth” solutions, the PUM with wave-

bands performs better than with plane-waves while stability is the same for both
bases. Theoretical understanding is not available although the smoothness of the
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Figure 12. q-convergence of the PUM and the best approximation for the domain Ω1 using
Mesh A, B, C, and D computed using plane-wave functions.
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Figure 13. q-convergence of the PUM and the best approximation for the domain Ω1 using
Mesh A, B, C, and D computed using wave-bands functions.

198



 0.01

 0.1

 1

 10

 100

 1000

 0  10  20  30  40  50  60

q

pum-plane
pum-bands

ba-plane
ba-bands

R
el

at
iv

e 
er

ro
r 

in
 H

1 
se

m
in

or
m

  (
in

 p
er

ce
nt

)

10

1

Figure 14. q-convergence of the PUM and the best approximation for the domain Ω2 using
uniform 2× 2 mesh computed using plane-wave and wave-bands functions.

solution obviously plays a role. The problem relates to the approximation properties

of the basis functions employed on the circle of the Fourier symbol of the equation.

4.3. A-posteriori error estimation by q-extrapolation

The exponential rate of convergence of the PUM solution with respect to q enables

us to use a simple a-posteriori error estimation by extrapolation as outlined in [31].
Another approach for a-posteriori estimation of PUM can be found in [32].

Assuming that the quantity of interest converges exponentially exactly like (28)

we have

(32) log
F (u)−F (uq

h)
F (u) −F (uq−2

h )
≈ log

e−βq

e−β(q−2)
= −2β,

which gives us the ability to estimate the exact quantity of interest F (u) by solving
the linear equation

(33)
F̃ (u)−F (uq

h)
F̃ (u)−F (uq−2

h )
=

F̃ (u)−F (uq−2
h )

F̃ (u)−F (uq−4
h )
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Figure 15. q-convergence of the PUM and the best approximation for the domain Ω2 us-
ing uniform 2 × 2 and 4 × 4 mesh computed using plane-wave and wave-bands
functions.

and hence

(34) F̃ (u) =
−F 2(uq−2

h ) + F (uq
h)F (uq−4

h )
F (uq

h) + F (uq−4
h )− 2F (uq−2

h )

where F̃ (u) is the q-extrapolated estimate for F (u).
As an example, consider the rigid scattering problem and let us employ the modu-

lus of the solution on the surface of the scatterer coinciding with the domain boundary

as the quantity of interest, namely F (u) = |u(−a, 0)|.

Mesh plane-wave basis wave-band basis
A 1.088107 1.088061
B 1.088040 1.088040
C 1.088040 1.088044
D 1.088040 1.088039

Table 4. The extrapolated estimate F̃ (u) for Mesh A, B, C, and D using both the plane-
wave and the wave-band basis function.

Fig. 16 and Fig. 17 shows the graphs of the output F (uq
h) respectively for the

plane-wave and the wave-bands PUM basis versus q. From both figures we can see
that the finer mesh reaches the asymptotic range faster than the coarser one.
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Figure 16. Graph of the output F (uq
h) = |uq

h(−a, 0)| on Mesh A, B, C, and D using plane-
wave basis functions.
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h) = |uq

h(−a, 0)| on Mesh A, B, C, and D using wave-
band basis functions.
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Using the same values of q as in Figs. 16 and 17, we report the exact and estimated

quantity of interest for F (uq−4
h ) in Tab. 5. We can see that we get very good

effectivity indices for all the meshes and for both types of basis functions.

Mesh special function
|F (u)−F (uq−4

h )|
F (u)

|F̃ (u)−F (uq−4
h )|

F̃ (u)
θ

plane-waves 0.0669% 0.0607% 0.9073
A wave-bands 0.0493% 0.0473% 0.9594

plane-waves 0.0014% 0.0014% 1.0000
B wave-bands 0.0031% 0.0083% 2.6774

plane-waves 0.0051% 0.0051% 1.0000
C wave-bands 0.0004% 0.0007% 1.7500

plane-waves 0.0009% 0.0009% 1.0000
D wave-bands 0.0027% 0.0026% 0.9630

Table 5. Exact and estimated value of the quantity of interest and its effectivity index for
Mesh A, B, C, and D computed using PUM with the plane-waves and wave-bands.

5. Conclusions

The goal of the paper was to study numerically the PUM for the Helmholtz equa-

tion, the effect of the choice of the local basis functions, the quadrature, and the
a-posteriori error estimation. Two kinds of local basis functions were considered,

namely the plane-waves and the wave-bands. The conclusions are:
1. There is no big difference in the performance of the PUM with either kind of

local basis. Nevertheless, various theoretical questions still exist. From the
practical point of view the plane-waves are preferable because of the low cost
of the numerical quadrature.

2. There is need for theoretical analysis of the (disappearance of) pollution with h

and q.

3. The a-posteriori error estimation based on q-extrapolation has similar effec-
tiveness as in the elasticity computations where it is used in the context of

commercial p-version finite element codes. The a-posteriori error estimates can
also be used to find out when the pollution becomes negligible in the particular

case.
4. For the PUM using plane-waves on rectangular elements, a semi-analytical ap-

proach based on the Filon rule is rather effective. Further work is needed for
the case of wave-bands.
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