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EQUATIONS WITH STOCHASTIC DATA*
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Abstract. Let A : V → V ′ be a strongly elliptic operator on a d-dimensional manifold D
(polyhedra or boundaries of polyhedra are also allowed). An operator equation Au = f
with stochastic data f is considered. The goal of the computation is the mean field and
higher momentsM1u ∈ V ,M2u ∈ V ⊗ V , . . .,Mku ∈ V ⊗ . . . ⊗ V of the solution.
We discretize the mean field problem using a FEM with hierarchical basis and N degrees

of freedom. We present a Monte-Carlo algorithm and a deterministic algorithm for the
approximation of the momentMku for k > 1.
The key tool in both algorithms is a “sparse tensor product” space for the approximation

ofMku with O(N(logN)k−1) degrees of freedom, instead of Nk degrees of freedom for the
full tensor product FEM space.
A sparse Monte-Carlo FEM withM samples (i.e., deterministic solver) is proved to yield

approximations to Mku with a work of O(MN(logN)k−1) operations. The solutions are
shown to converge with the optimal rates with respect to the Finite Element degrees of
freedom N and the number M of samples.
The deterministic FEM is based on deterministic equations for Mku in Dk ⊂ � kd .

Their Galerkin approximation using sparse tensor products of the FE spaces in D allows
approximation ofMku with O(N(logN)k−1) degrees of freedom converging at an optimal
rate (up to logs).
For nonlocal operators wavelet compression of the operators is used. The linear sys-

tems are solved iteratively with multilevel preconditioning. This yields an approximation
forMku with at most O(N(logN)k+1) operations.

Keywords: wavelet compression of operators, random data, Monte-Carlo method, wavelet
finite element method
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1. Introduction

We analyze the Finite Element solution of operator equations Au = f where the

data f are random fields, i.e. measurable maps from a probability space into a set of
admissible data for the operator A.

We mention only diffusion problems with stochastic source terms or vibrations
with random forcing terms. Such equations also arise when equations with random

operators A are solved by perturbation expansions.

The simplest approach for the numerical solution of Au = f is Monte Carlo (MC)

simulation, i.e. generating a large number M of data samples fj with prescribed
statistics, and solving, possibly in parallel, for the corresponding solution ensemble

{uj = A−1fj : j = 1, . . . ,M}. Statistical moments and probabilities of the random
solution u are approximated from {uj}. Convergence of the MC method as the
numberM of samples increases is ensured (for suitable sampling) by the central limit
theorem. The MC method allows in general only the convergence rate O(M−1/2).

If statistical moments, i.e., the mean field and higher order moments of the random
solution u, are of interest, one can exploit the linearity of the equation Au = f to

derive a deterministic equation for the kth moment of the random solution. For
the Laplace equation with stochastic data this approach is due to I. Babuška [1].
This deterministic equation and its Finite Element (FE) solution were investigated

in [24], [25] in the case when A is an elliptic partial differential operator. It was shown
that the kth moment of the solution could be computed in a complexity comparable

to that of a FE solution for the mean field problem by the use of sparse tensor
products of standard FE spaces for which a hierarchical basis is available. Let us

mention that the use of sparse tensor product approximations is a well known device
in high dimensional numerical integration [26], multivariate approximation [27], and

in complexity theory [28].

In the present paper we are also interested in the case where A is a nonlocal opera-

tor, such as a strongly elliptic pseudodifferential operator. For example, we can first
consider a boundary value problem for an elliptic differential operator and stochastic

boundary data, then the boundary integral formulation leads to a problem Au = f

where A is an integral operator. As in the case of local operators, sparse tensor prod-

ucts of standard FE spaces allow deterministic approximation of the kth moment of
the random solution u with relatively few degrees of freedom; however, to achieve

optimal computational complexity, the Galerkin matrix for the operator A must also
be compressed, or sparsified. The design and the numerical analysis of deterministic

and stochastic solution algorithms that obtain the kth moment of the random solu-
tion of nonlocal operator equations with random data in log-linear complexity in the
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number N of degrees of freedom for the mean field problem is one purpose of the

present paper.
We apply the methods to the numerical solution of Dirichlet and Neumann prob-

lems for the Laplace or Helmholtz equation with stochastic data. Using a wavelet

Galerkin discretization we form sparse tensor products of the trial spaces to obtain
well conditioned, sparse representations of stiffness matrices for the operator A as

well as for wavelet discretizations of its k-fold tensor product which is the operator
arising in the kth moment problem.

We analyze the impact of the operator compression on the accuracy of functionals
of the Galerkin solution such as far field evaluations of the random potential at a

point. For example, means and variances of the potential at a point can be computed
with accuracy O(N−p) for any fixed order p for random boundary data with known
second moments in O(N) complexity where N denotes the number of degrees of
freedom on the boundary.

The outline of the paper is as follows:
In Section 2, we describe the operator equations considered and derive the de-

terministic problems for the higher moments, generalizing [25]. We establish the
Fredholm property for the tensor product operator and regularity estimates for the

statistical moments in anisotropic Sobolev spaces with mixed highest derivative. Sec-
tion 3 introduces definition and basic properties of wavelet Finite Element Methods.

Section 4 is devoted to the analysis of Sparse Tensor Product Monte Carlo Finite El-
ement Methods for the computation of k-point correlation functions of the random

solution. Section 5 addresses the deterministic numerical solution of the moment
equations, in particular the impact of various matrix compressions on the accuracy

of the approximated moments, the preconditioning of the product operator and the
solution algorithm. Section 6 contains examples from Finite and Boundary Element

Methods.

2. Operator equations with stochastic data

We consider the operator equation

(2.1) Au = f

where A is a bounded linear operator from a separable Hilbert space V into its

dual V ′.
The operator A is a differential or pseudodifferential operator of order % on a

bounded d-dimensional manifold D which may be closed or have a boundary. For a
closed manifold and s > 0 we define H̃s(D) := Hs(D) as the usual Sobolev space.
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For a manifold D with boundary we assume that it can be extended to a closed

manifold D̃ and define

H̃s(D) := {u|D : u ∈ Hs(D̃), u|D̃\D = 0}

with the induced norm. If D is a bounded domain in � d we use D̃ := � d . We now

assume that V = H̃%/2(D). In the case of a second order differential operator this
means that we have Dirichlet boundary conditions (other boundary conditions can

be treated in an analogous way, but we want to simplify the presentation).
The manifold D may be smooth, but we also consider the case that D is a poly-

hedron in � d , or the boundary of a polyhedron in � d+1 , or a part of the boundary
of a polyhedron.

For the deterministic operator A in (2.1) we assume strong ellipticity in the sense
that there exists α > 0 and a compact operator T : V → V ′ such that the G̊arding

inequality

(2.2) ∀ v ∈ V : 〈(A+ T )v, v〉 > α‖v‖2
V

holds. For the deterministic algorithm in Section 5 we need the slightly stronger as-
sumption that T ′ is smoothing with respect to a scale of smoothness spaces (see (5.3)

below). Here and in what follows, 〈·, ·〉 denotes the V ′×V duality pairing. We assume
also that

(2.3) kerA = {0},

which implies that for every f ∈ V ′, (2.1) admits a unique solution u ∈ V and,

moreover, that A−1 : V ′ → V is continuous, i.e. there is CA > 0 such that for all
f ∈ V ′ we have

‖u‖V = ‖A−1f‖V 6 CA‖f‖V ′ .

We consider (2.1) for data f and a solution u which are random fields. By this we

mean mappings from (Ω,Σ, P ), a σ-finite probability space, into separable Hilbert
spaces V ′ and V , respectively.
We define a random field f with values in a separable Hilbert spaceX as a mapping

f : Ω → X which maps events E ∈ Σ to Borel sets in X (the Borel σ-algebra of X
is generated by the open sets of X).

Note that the mapping f : Ω → X induces a measure P̃ on X .
We say that a random field u : Ω → X is in the Bochner space L1(Ω, X) if ω 7→

‖u(ω)‖X is measurable and integrable so that ‖u‖L1(Ω,X) :=
∫
Ω ‖u(ω)‖X dP (ω) is

finite. In this case the Bochner integral

�
u :=

∫

Ω

u(ω) dP (ω) ∈ X
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exists and we have

(2.4) ‖ � u‖X 6 ‖u‖L1(Ω,X).

Let k > 1. We say that a random field u : Ω → X is in the Bochner space

Lk(Ω, X) if ω 7→ ‖u(ω)‖k
X is measurable and integrable so that ‖u‖k

Lk(Ω,X) =∫
Ω
‖u(ω)‖k

X dP (ω) is finite. Note that Lk(Ω, X) ⊃ Ll(Ω, X) for k < l as can be seen

from the Cauchy-Schwarz inequality.

Let B denote a continuous linear mapping from X to another separable Hilbert
space Y . For a random field u ∈ Lk(Ω, X) this mapping defines a random variable
v(ω) = Bu(ω), and we have that v ∈ Lk(Ω, Y ) and

(2.5) ‖Bu‖Lk(Ω,Y ) 6 C‖u‖Lk(Ω,X).

Furthermore, we have

(2.6) B

∫

Ω

u dP (ω) =
∫

Ω

Bu dP (ω).

We are interested in statistics of the random solution u of (2.1) and, in particular,

in statistical moments. To define them, for any k ∈ � we need the k-fold tensor
product space

X(k) = X ⊗ . . .⊗X︸ ︷︷ ︸
k-times

,

and equip it with the natural norm ‖ ◦ ‖X(k) . It has the property that

(2.7) ‖u1 ⊗ . . .⊗ uk‖X(k) = ‖u1‖X . . . ‖uk‖X

holds for every u1, . . . , uk ∈ X (see [6] for more on norms on tensor product spaces).
For a random field u ∈ Lk(Ω, X) we now consider the random field u(k) defined by
u(ω)⊗ . . .⊗ u(ω). Then u(k) = u⊗ . . .⊗ u ∈ L1(Ω, X(k)):

‖u(k)‖L1(Ω,X(k)) =
∫

Ω

‖u(ω)⊗ . . .⊗ u(ω)‖X(k) dP (ω)(2.8)

=
∫

Ω

‖u(ω)‖X . . . ‖u(ω)‖X dP (ω) = ‖u‖k
Lk(Ω,X).

Hence we can now define the momentMku as the expectation of u⊗ . . .⊗ u:
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Definition 2.1. For u ∈ Lk(Ω, X) with some integer k > 1, the kth moment
of u(ω) is defined by

(2.9) Mku =
�
[u ⊗ . . .⊗ u︸ ︷︷ ︸

k-times

] =
∫

ω∈Ω

u(ω)⊗ . . .⊗ u(ω)︸ ︷︷ ︸
k-times

dP (ω) ∈ X(k).

Note that (2.4) gives

(2.10) ‖Mku‖X 6 ‖u‖k
Lk(Ω,V ).

We now consider the operator equation Au = f where f ∈ Lk(Ω, V ′) is given with
k > 1. Since A−1 : V ′ → V is continuous we obtain from (2.5) that u ∈ Lk(Ω, V )
and

‖u‖Lk(Ω,V ) 6 C‖f‖Lk(Ω,V ′).

Note that this implies that the momentMku exists and satisfies

‖Mku‖V (k) 6 ‖u‖k
Lk(Ω,V ).

�����
	���

2.2. Note that our definitions of the moments Mku as Bochner inte-

grals coincide for k = 1, 2 with the definition of the expectation and covariance (for
a centered random variable): In, e.g., [4, Def. 2.2.7] the expectation is defined as
a mapping X ′ → � , and the covariance is a mapping X ′ × X ′ → � . In the case
of a reflexive space these objects can be identified with elements of X and X ⊗X ,
respectively, and coincide withM1u andM2u.
�����
	���


2.3. Since A−1 : V ′ → V in (2.1) is, by (2.2) and (2.3), bijective a

measure P on the space V ′ of data induces, via P ◦A, a measure P̃ on the space V
of solutions to (2.1).

An example for a measure P on X ′ is the Gaussian measure Γ (see, e.g., [16] for
probability measures over X and, in particular, [4], [14] for Gaussian measures on

function spaces). If P = Γ is Gaussian over V ′ and A in (2.1) is linear, Γ̃ is also
Gaussian over V (e.g. [4, Lemma 2.2.2]).

Since a Gaussian measure is completely determined by mean and covariance, hence
onlyMku for k = 1, 2 are of interest in this case.

We now consider the tensor product operator A(k) = A⊗ . . .⊗A (k times) which
maps V (k) to (V ′)(k). For v ∈ V and g := Av we obtain that A(k)v ⊗ . . . ⊗ v =
g ⊗ . . . ⊗ g. Consider a random field u ∈ Lk(Ω, V ) and let f := Au ∈ Lk(Ω, V ′).
Then the tensor product u(k) = u⊗ . . . u (k times) is in the space L1(Ω, V (k)), and
we obtain from (2.5) using B = A(k) that

A(k)u(k) = f (k)
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and f (k) ∈ L1(Ω, (V ′)(k)). Now (2.6) implies for the expectations

(2.11) A(k)Mku = Mkf.

In the case k = 1 this is just the equationA
�
u =

�
f for the mean field. Note that this

equation provides a way to compute the momentsMku in a deterministic way. We

will investigate the numerical approximation in Section 5. This is an alternative to
the Monte-Carlo approximation of the moments which will be considered in Section 4.

In the deterministic approach, explicit knowledge of the joint probability densi-

ties of f and of the probability measure P is not required to determine the order
k statistics of the random solution u from order k statistics of f .

For nonlinear operator equations, associated systems of moment equations re-
quire a closure hypothesis which must be additionally imposed and verified. For

the linear operator equation (2.1), however, a closure hypothesis is not necessary as
(2.11) holds.

To establish solvability of (2.11), we consider for operators Ai ∈ L(Vi, V
′
i ), i =

1, . . . , k, the tensor product operator A1 ⊗A2 ⊗ . . .⊗Ak:

Proposition 2.4. For an integer k > 1, let Vi, i = 1, . . . , k, be Hilbert spaces
with duals V ′i and let Ai ∈ L(Vi, V

′
i ) be injective and satisfy a G̊arding inequality,

i.e., there are compact Ti ∈ L(Vi, V
′
i ) and αi > 0 such that

(2.12) ∀ v ∈ Vi : 〈(Ai + Ti)v, v〉 > αi‖v‖2
Vi
,

where 〈·, ·〉 denotes the V ′i × Vi duality pairing.

Then the product operator A = A1 ⊗ A2 ⊗ . . . ⊗ Ak ∈ L(V ,V ′) where V =
V1 ⊗ V2 ⊗ . . . ⊗ Vk and V ′ = (V1 ⊗ V2 ⊗ . . .⊗ Vk)′ ∼= V ′1 ⊗ V ′2 ⊗ . . . ⊗ V ′k is injective

and, for every f ∈ V ′, the problem Au = f admits a unique solution u with

‖u‖V 6 C‖f‖V′ .

���������
. The injectivity and the G̊arding inequality (2.12) imply the bounded

invertibility of Ai for each i. This implies the bounded invertibility of A on V ′ → V
since we can write

A = (A1 ⊗ I(k−1)) ◦ (I ⊗ A2 ⊗ I(k−2)) ◦ . . . ◦ (I(k−1) ⊗Ak)

where I(j) denotes the j-fold tensor product of the identity operator on the appro-
priate Vi. Note that each factor in the composition is invertible. �
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To apply this result to (2.11), we require the special case

(2.13) A(k) := A⊗A⊗ . . .⊗A︸ ︷︷ ︸
k-times

∈ L(V (k), (V ′)(k)) = L(V (k), (V (k))′).

Theorem 2.5. If A in (2.1) satisfies (2.2), (2.3), then for every k > 1 the
operator A(k) ∈ (V (k), (V ′)(k)) is injective on V (k) and the equation

(2.14) A(k)Z = Mkf

has for every f ∈ Lk(Ω, V ′) a unique solution Z ∈ V (k).

This solution coincides with the kth moment Mku of the random field in (2.9):

Z = Mku.
���������

. By (2.10), the assumption f ∈ Lk(Ω, V ′) ensures thatMkf ∈ (V ′)(k).

The unique solvability of (2.14) follows immediately from Theorem 2.4 and the as-
sumptions (2.2) and (2.3). The identity Z = Mku follows from (2.11) and from the

uniqueness of the solution of (2.14). �

The numerical analysis of approximation schemes for (2.14) will require a regular-
ity theory for (2.14). To this end we introduce a smoothness scale (Ys)s>0 for the

data f with Y0 = V ′ and Ys ⊂ Yt for s > t. We assume that we have a corresponding
scale (Xs)s>0 of “smoothness spaces” for the solutions with X0 = V and Xs ⊂ Xt

for s > t, so that A−1 : Ys → Xs is continuous.
In the case of a smooth closed manifold we can use Ys = H−%/2+s(D) and Xs =

H%/2+s(D). For differential operators with smooth coefficients and a manifold with
a smooth boundary we can use Ys = H−%/2+s(D) and Xs = H̃%/2∩H%/2+s(D). Note
that in other cases (a pseudodifferential operator on a manifold with boundary, or

a differential operator on a domain with nonsmooth boundary) the spaces Xs will
contain functions which are singular at the boundary.

Theorem 2.6. Assume (2.2), (2.3) and that there is s0 > 0 such that A−1 : Ys →
Xs is continuous for 0 6 s 6 s0. Then we have for all k > 1 and for 0 6 s 6 s0

(2.15) ‖Mku‖
X

(k)
s

6 C‖Mkf‖
Y

(k)
s

6 C‖f‖k
Lk(Ω,Ys).

���������
. If (2.2), (2.3) hold the operator A(k) is invertible and Mku =

(A(k))−1(Mkf) holds with ‖Mku‖
X

(k)
0

6 Ck‖Mkf‖
Y

(k)
0
. To prove (2.15), from (2.12)

and from A(k) = (A⊗ I(k−1))(I ⊗A(k−1)) we get that

(2.16) (I ⊗A(k−1))(Mku) = (A⊗ I(k−1))−1(Mkf) = (A−1 ⊗ I(k−1))(Mkf).

152



Applying here the a-priori estimate for A,

(2.17) ‖A−1f‖Xs 6 Cs‖f‖Ys , 0 6 s 6 s0,

we obtain

‖(I ⊗A(k−1))(Mku)‖
Xs⊗X

(k−1)
0

= ‖(A−1 ⊗ I(k−1))Mkf‖
Xs⊗Y

(k−1)
0

6 Cs‖M`f‖
Ys⊗Y

(`−1)
0

.

Writing in (2.16) A(k−1) = (A ⊗ I(k−2))(I ⊗ A(k−2)) and reasoning in the same
fashion, we get from (2.17)

‖(I(2) ⊗A(k−2))(Mku)‖
X

(2)
s ⊗X

(k−2)
0

6 C2
s‖Mkf‖

Y
(2)

s ⊗Y
(k−2)
0

.

Iterating this argument proves (2.15). �

3. Discretization

In order to obtain a finite dimensional problem we need to discretize in both Ω
and D.

For D we will use finite element spaces V` ⊂ V .

3.1. Nested finite element spaces
The Galerkin approximation of (2.1) is based on a sequence {V`}∞`=0 of subspaces

of V of dimension N` = dimV` < ∞ which are dense in V , i.e. V =
⋃

`>0

V`, and

nested, i.e.

(3.1) V0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ V` ⊂ V`+1 ⊂ . . . ⊂ V.

We assume that for functions u in the smoothness spaces Xs with s > 0 we have
an approximation rate of the form

(3.2) inf
v∈V`

‖u− v‖V 6 CN
−s/d
` ‖u‖Xs .

3.2. Finite elements with uniform mesh refinement
We will now describe examples of the subspaces V` for subspaces which satisfy the

assumptions of Section 3.1. We introduce finite elements which are only continuous

across element boundaries. These elements are suitable for operators of order % < 3.
Let Pp(K) denote the polynomials of degree 6 p on a set K.
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Let us first consider the case of a bounded polyhedron D ⊂ � d . Let T0 be a

partition of D into simplices K which is regular. Let {T`}∞`=0 be the sequence of
partitions obtained by uniform mesh refinement: We can bisect the edges of T k

and obtain a new partition into simplices which belong to finitely many congruency

classes. We set V` = Sp(D, T`) = {u ∈ C0(D) : u|K ∈ Pp(K) ∀K ∈ T`} and
h` = max{diam(K) : K ∈ T`}.
Then N` = dim V` = O(h−d

` ) as ` → ∞. With V = H̃%/2(D) and Xs =
H%/2+s(D), standard finite element approximation results give that (3.2) holds for
s ∈ [0, p+ 1− 1

2%] and

inf
v∈V`

‖u− v‖V 6 CN−s/d‖u‖Xs .

For the case that D is the boundaryD = ∂D of a polyhedron D ⊂ � d+1 we can define
finite element spaces in the same way as above and obtain the same convergence rates.

For a d-dimensional domain D ⊂ � d with a smooth boundary we can first di-
vide D into pieces DJ which can be mapped to a simplex S by smooth mappings

ΦJ : DJ → S (which must be C0 compatible where two pieces DJ , DJ′ touch). Then
we can define on D finite elements functions which on DJ are of the form g ◦ ΦJ

where g is a polynomial.
For a d-dimensional smooth surface D ⊂ � d+1 we can similarly divide D into

pieces which can be mapped to simplices in � d , and again define finite elements
using these mappings.

3.3. Wavelet basis for Vl

We will need a hierarchical basis for the nested spaces V0 ⊂ . . . ⊂ VL: We start with

a basis {ψ0
j}j=1,...,N0 for the space V0. We write the finer spaces Vl with l > 0 as a

direct sum Vl = Vl−1⊕Wl with a suitable spaceWl with basis functions {ψl
j}j=1,...,Ml

.

Therefore we have that VL = V0 ⊕ W1 ⊕ . . . ⊕ WL, and {ψl
j : l = 0, . . . , L, j =

1, . . . ,Ml} is a hierarchical basis for VL where M0 := N0:

(P1) V` = span{ψ`
j : 1 6 j 6 Mk, 0 6 k 6 `}.

Let us define N` := dimV` and N−1 := 0, then we have M` := N` − N`−1 for

` = 0, 1, 2, . . . , L.
Property (P1) is in principle sufficient for the formulation and implementation

of the sparse MC-Galerkin method and the deterministic sparse Galerkin method.
In order to obtain an algorithm with log-linear complexity we will need that the

hierarchical basis satisfies additional properties (P2)–(P5) of a wavelet basis. This
will allow us to perform matrix compression for nonlocal operators, and to obtain

optimal preconditioning for the iterative linear system solver.
(P2) Small support: diam supp(ψ`

j) = O(2−`).
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(P3) Energy norm stability: there is a constant CB > 0 independent of L, such

that for all vL =
L∑

`=0

M∑̀
j=1

v`
jψ

`
j(x) ∈ VL we have

(3.3) C−1
B

∑̀

`=0

M∑̀

j=1

|v`
j |2 6 ‖v‖2

V 6 CB

L∑

`=0

M∑̀

j=1

|v`
j |2.

(P4) Wavelets ψ`
j with ` > `0 have vanishing moments up to order p∗ > p− %:

(3.4)
∫
ψ`

j(x)x
α dx = 0, 0 6 |α| 6 p∗,

except possibly for wavelets where the closure of the support intersects

the boundary ∂D or the boundaries of the coarsest mesh. In the case of
mapped finite elements we require vanishing moments for the polynomial

function ψ`
j ◦ Φ−1

J .
(P5) Decay of coefficients for “smooth” functions in Xs: There is C > 0 inde-

pendent of L such that for u ∈ Xs we have

(3.5)
L∑

`=0

M∑̀

j=1

|u`
j |2 22`s 6 CLν‖u‖2

Xs
, ν =

{
0 for 0 6 s < p+ 1− 1

2%,

1 for s = p+ 1− 1
2%.

A function u ∈ V has a wavelet expansion
L∑

`=0

∞∑
j=1

u`
j ψ

`
j . We define the projection

PL : V → VL by truncating this wavelet expansion of u, i.e.,

(3.6) PLu :=
L∑

`=0

M∑̀

j=1

u`
jψ

`
j .

Because of the stability (P3) and the approximation property (3.2) we obtain that
the wavelet projection PL is quasioptimal: For 0 6 s 6 s0 and u ∈ Xs we have

(3.7) ‖u− PLu‖V 6 CN
−s/d
L ‖u‖Xs .

In the case of finite elements which are only continuous across the element bound-

aries one method for constructing wavelets satisfying these conditions is given in [9].
This approach gives wavelets for any degree p > 1 and vanishing moments up to
any order p∗, in any dimension; the stability condition (P3) is satisfied for % < 3
on smooth manifolds, and for % 6 2 on Lipschitz manifolds. The construction is
explicitly carried out for piecewise linear ones (p = 1) with p′ up to 5 for d = 1, 2,
which allows % > −4; in the case d = 3 the case p′ = 1 is shown, which allows % > 0.

155



3.4. Tensor product spaces: Full grid and sparse grid subspaces
We want to compute an approximation forMku ∈ V ⊗ . . .⊗V = V (k). Therefore

we need a suitable finite dimensional subspace of V (k). The simplest choice is the
tensor product space VL ⊗ . . .⊗ VL = V

(k)
L , but this space has dimension Nk

L which

is not practical for k > 1.
A reduction in cost is possible by using the so-called sparse tensor products.

We now define the k-fold sparse tensor product space V̂ (k)
L by

(3.8) V̂
(k)
L =

∑

`∈ � k
0

|`|6L

V`1 ⊗ . . .⊗ V`k

where we denote by ` the vector (`1, . . . , `k) ∈ � k
0 and by |`| = `1 + . . .+`k its length.

We can write V̂ as a direct sum by using the complement spaces Wl:

(3.9) V̂
(k)
L =

∑

`∈ � k
0

|`|6L

W`1 ⊗ . . .⊗W`k
.

We define the sparse projection operator P̂ (k)
L : V (k) → V̂

(k)
L by truncating the

wavelet expansion:

(3.10) (P̂ (k)
L v)(x) :=

∑

06`1+...+`k6L

16jν 6M`ν
, ν=1,...,k

v
`1...`j

j1...jk
ψ`1

j1
(x1) . . . ψ`k

k (xk).

In terms of the projections Q` := P`−P`−1, ` = 0, 1, . . . and P−1 := 0 we can express
P̂

(k)
L as

(3.11) P̂
(k)
L =

∑

06`1+...+`k6L

Q`1 ⊗ . . .⊗Q`k
.

The approximation property of sparse grid spaces V̂ (k)
L was established for example

in [25, Proposition 4.2], [11], [22].

Proposition 3.1.

inf
v∈V̂

(k)
L

‖U − v‖V (k)(3.12)

6 C(k)

{
N
−s/d
L ‖U‖

X
(k)
s

if 0 6 s < p+ 1− 1
2%,

N
−s/d
L L(k−1)/2‖U‖

X
(k)
s

if s = p+ 1− 1
2%.

The stability property (P3) implies the following result (see, e.g., [22]):
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Lemma 3.2 (Properties of P̂ (k)
L ). Assume (P1)–(P5) and that the component

spaces V` of V̂
(k)
L have the approximation property (3.2). Then for U ∈ V (k) we have

stability:

(3.13) ‖P̂ (k)
L U‖V (k) 6 C‖U‖V (k) ,

and hence for U ∈ X(k)
s and 0 6 s 6 s0 we have quasioptimal convergence of P̂

(k)
L U :

(3.14) ‖U − P̂
(k)
L U‖V (k) 6 C(k)N−s/d

L (logNL)(k−1)/2‖U‖
X

(k)
s
.

3.5. Galerkin method for space discretization
We first consider the discretization of the problem Au(ω) = f(ω) for a fixed ω.

In the Monte-Carlo method this problem will be approximatively solved for many
values of ω ∈ Ω.
The Galerkin discretization of (2.1) reads: find uL(ω) ∈ VL such that

(3.15) 〈AuL(ω), vL〉 = 〈f(ω), vL〉 ∀ vL ∈ VL, P -a.e. ω ∈ Ω.

It is well known that the injectivity (2.3) of A, the G̊arding inequality (2.2) and the

density of the sequence {V`}∞`=0 imply that there exists L0 > 0 such that for L > L0

problem (3.15) has a unique solution uL(ω). Furthermore, the inf-sup condition
holds (see, e.g., [12]): There exists cS > 0 such that for all L > L0

(3.16) inf
06=u∈VL

sup
06=v∈VL

〈Au, v〉
‖u‖V ‖v‖V

> 1
cS

> 0.

The inf-sup condition then implies quasioptimality of the approximations uL(ω) for
L > L0 (see [2]): There is C > 0 such that

(3.17) ∀L > L0 : ‖u(ω)− uL(ω)‖V 6 C inf
v∈VL

‖u(ω)− v‖V P -a.e. ω ∈ Ω.

From (3.17) and (3.2), we obtain an asymptotic error estimate: Let σ :=
min{s0, p+ 1− 1

2%}. There is C > 0 such that for 0 < s 6 σ

(3.18) ∀L > L0 : ‖u(ω)− uL(ω)‖V 6 CNL
−s/d‖u‖Xs P -a.e. ω ∈ Ω.
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4. Sparse Monte-Carlo Galerkin FEM

4.1. Monte-Carlo error for continuous problem
For a random variable Y let us denote the mean of M independent identically

distributed random variables as Y
M
:

Y
M

(ω1, . . . , ωM ) :=
1
M

(Y (ω1) + . . .+ Y (ωM )).

The simplest approach to the numerical solution of (2.1) for f ∈ L0(Ω, V ′) is Monte
Carlo (MC) simulation. Let us first consider the situation without discretization

of V . We generate M data samples f(ωj), j = 1, 2, . . . ,M , of f(ω) and find the
solutions u(ωj) ∈ V of the problems

(4.1) Au(ωj) = f(ωj), j = 1, . . . ,M.

We then approximate the kth momentMku by the mean EM
Mku of u(ωj)⊗. . .⊗u(ωj):

(4.2) EM
Mku := u⊗ . . .⊗ u

M =
1
M

M∑

j=1

u(ωj)⊗ . . .⊗ u(ωj).

It is well known that the Monte-Carlo error decreases as M−1/2 in a probabilistic

sense if the variance ofMku exists. Otherwise we obtain a lower rate:

Theorem 4.1. Let k > 1. Assume that f ∈ Lαk(Ω, V ′) for some α ∈ (1, 2]. For
M > 1 samples we define the sample mean EM

Mku as in (4.2). Then there exists C

such that for every M > 1 and every 0 < ε < 1

(4.3) P

(
‖EM

Mku −Mku‖V (k) 6 C
‖f‖k

Lαk(Ω,V ′)

ε1/αM1−1/α

)
> 1− ε.

���������
. In the case α = 2 this is a consequence of the Chebyshev inequality.

In the general case 1 6 α 6 2 we proceed as follows: We define U : Ω → V (k) by

U := u ⊗ . . . ⊗ u and Y : ΩM → V (k) by Y := U
M − E(U) = EM

Mku −Mku. We
then have for any λ > 0

‖Y ‖α
Lα(ΩM ,V (k)) =

∫

ΩM

‖Y (ω)‖α
V (k) dPM (ω)

>
∫

{ω : ‖Y (ω)‖
V (k) >λ}

‖Y (ω)‖α
V (k) dPM (ω)

> λα

∫

{ω : ‖Y (ω)‖
V (k) >λ}

1 dPM (ω) = λαPM (‖Y (ω)‖V (k) > λ).
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We now use Lemma 4.2 (given below) and obtain

PM (‖Y (ω)‖V (k) < λ) > 1−
(‖Y ‖Lα(ΩM ,V (k))

λ

)α

> 1−
(
c‖U‖Lα(Ω,V (k))

λM1−1/α

)α

.

Now (4.3) follows by using

ε :=
(
c‖U‖Lα(Ω,V (k))

λM1−1/α

)α

=⇒ λ =
c‖U‖Lα(Ω,V (k))

ε1/αM1−1/α
.

Note that we have ‖U‖Lα(Ω,V (k)) = ‖u‖k
Lαk(Ω,V ) 6 C‖f‖k

Lαk(Ω,V ′). �

It remains to show

Lemma 4.2. Assume U : Ω → V is a random variable with values in a Hilbert

space V . Then we have for 1 6 α 6 2

(4.4) ‖UM −E(U)‖Lα(ΩM ,V ) 6 CM−(1−α−1)‖U‖Lα(Ω,V ).

���������
. For α = 2 let W = U −E(U), then we obtain (4.4) using

‖WM‖2L2(Ω,V ) =
∫

ΩM

M−2(W (ω1) + . . .+W (ωM ),W (ω1) + . . .+W (ωM )) dP (ω)

= M−2

(∫

Ω

‖W (ω1)‖2
V dP (ω1) + . . .+

∫

Ω

‖W (ωM )‖2
V dP (ωM )

)

= M−1‖W‖2
L2(Ω,V )

since E(W ) = 0 and ‖W‖L2(Ω,V ) 6 ‖U‖L2(Ω,V ). For α = 1 we have

‖UM‖L1(Ω,V ) 6
∫

ΩM

M−1(‖U(ω1)‖V + . . .+ ‖U(ωM )‖V ) dPM (ω)

= M−1

(∫

Ω

‖U(ω1)‖V dP (ω1) + . . .+
∫

Ω

‖U(ωM )‖V dP (ωM )
)

= ‖U‖L1(Ω,V ).

Then we obtain the statement for 1 6 α 6 2 by interpolation. �

This shows that we can obtain a rate of M−1/2 in a probabilistic sense for the
Monte-Carlo method. A finer estimate can be obtained using the law of the iterated

logarithm, see, e.g., [16, Chapt. 8] for the vector valued case.
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Lemma 4.3. Assume that V is a separable Hilbert space and thatX ∈ L2(Ω, V ).
Then

(4.5) lim sup
M→∞

‖XM −E(X)‖V

(2M−1 log logM)1/2
6 ‖X −E(X)‖L2(Ω,V ) with probability 1.

���������
. The classical law of iterated logarithm (see, e.g., [5]) states for a real

valued random variable Y that

(4.6) lim sup
M→∞

|Y M −E(Y )|2
2M−1 log logM

= VarY with probability 1.

Let Z := X − E(X). As V is separable we can assume without loss of gen-
erality that V = `2. Let ej for j = 1, 2, . . . denote the standard basis of `2.
Then Y := (ej , Z) = Zj is a real valued random variable and we have (4.6) with

VarY = (ej ⊗ ej ,M2Z) = (M2Z)j,j . Now we add these estimates for j = 1, 2, . . .
and obtain

(4.7) lim sup
M→∞

∞∑
j=1

|Zj |2

(2M−1 log logM)1/2
6

∞∑

j=1

(M2Z)j,j with probability 1.

Then
∞∑

j=1

(M2Z)j,j = E

( ∞∑

j=1

(Z ⊗ Z)j,j

)
=

∫

Ω

∞∑

j=1

|Zj |2 dP (ω) = ‖Z‖2
L2(Ω,V ).

�

Applying Lemma 4.3 to X = u ⊗ . . . ⊗ u gives, due to ‖u ⊗ . . . ⊗ u‖L2(Ω,V (k)) =
‖u‖k

L2k(Ω,V ) 6 C‖f‖k
L2k(Ω,V ′), the following result:

Theorem 4.4. Let f ∈ L2k(Ω, V ′). Then

(4.8) lim sup
M→∞

‖EM
Mku −Mku‖V (k)

(2M−1 log logM)1/2
6 C‖f‖k

L2k(Ω,V ′) with probability 1.

4.2. Monte-Carlo Galerkin method and error of sparse moment approx-
imation
We now use the Galerkin method with the subspaces VL ⊂ V to solve (4.1) ap-

proximately and obtain Galerkin approximations uL(ωj). Then the mean

(4.9) EM,L
Mku

:=
1
M

M∑

j=1

uL(ωj)⊗ . . .⊗ uL(ωj)
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yields an approximation for Mku. However, one needs O(Nk
L) of memory and

O(MNk
L) of operations to compute this mean, which is usually not practical for

k > 1.
Therefore we propose to use the sparse approximation

(4.10) ÊM,L
Mku

:= P̂
(k)
L EM,L

Mku

which needs only a memory of O(Nk
L(logNL)k−1). By (3.6), uL(ωj) can then be

represented as

(4.11) uL(ωj) =
L∑

`=0

M∑̀

k=1

U `
k(ωj)ψ`

k

and we can compute the sparse tensor product MC estimate ofMku with P̂ (k)
L given

in (3.10) as

(4.12) ÊM,L
Mku

=
1
M

M∑

j=1

P̂
(k)
L [uL(ωj)⊗ . . .⊗ uL(ωj)] ∈ V (k)

L .

It can be computed in O(MNL(logNL)k−1) operations since P̂ (k)
L [uL(ωj) ⊗ . . . ⊗

uL(ωj)] can be computed in O(NL(logNL)k−1) operations: For each j we first com-
pute uL(ωj) in the wavelet basis and then form P̂

(k)
L [uL(ωj)⊗ . . .⊗ uL(ωj)] using

P̂
(k)
L (v ⊗ . . .⊗ v) =

∑

06`1+...+`k6L

16jν 6M`ν
, ν=1,...,k

vl1
j1
. . . vlk

jk
ψl1

j1
. . . ψlk

jk
.

The following result addresses the convergence of the sparse MC-Galerkin approx-
imation ofMku. Recall that σ := min{s0, p+ 1− 1

2%} with s0 as in Theorem 2.6.

Theorem 4.5. Assume that f ∈ Lk(Ω, Ys) ∩ Lαk(Ω, V ′) for some α ∈ (1, 2] and
some s ∈ (0, σ]. Then there is C(k) > 0 such that for all M > 1, L > L0 and all

0 < ε < 1 we have

P (‖ÊM,L
Mku

−Mku‖V (k) < λ) > 1− ε

with

λ = C(k)[CNL
−s/d(logNL)(k−1)/2‖f‖k

Lk(Ω,Ys) + ε−1/αM−(1−α−1)‖f‖k
Lαk(Ω,V ′)].
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���������
. We estimate

‖ÊM,L
Mku

−Mku‖V (k)

=
∥∥∥∥

1
M

M∑

j=1

P̂
(k)
L [uL(ωj)⊗ . . .⊗ uL(ωj)]−E(u⊗ . . .⊗ u)

∥∥∥∥
V (k)

6 1
M

M∑

j=1

∥∥∥∥P̂
(k)
L [uL(ωj)⊗ . . .⊗ uL(ωj)− u(ωj)⊗ . . .⊗ u(ωj)]

∥∥∥∥
V (k)

+
∥∥∥∥

1
M

M∑

j=1

P̂
(k)
L [u(ωj)⊗ . . .⊗ u(ωj)]−E(P̂ (k)

L [u⊗ . . .⊗ u])
∥∥∥∥

V (k)

+ ‖(I − P̂
(k)
L )Mku‖V (k) .

The last term is estimated using (3.14), Theorem 2.6 for 0 6 s 6 s0 by

‖(I − P̂
(k)
L )Mku‖V (k) 6 C(k)CNL

−s/d(logNL)(k−1)/2‖Mkf‖
Y

(k)
s
.

For the first term, we use (3.13) and (3.18) with a tensor product argument. For the

second term, the statistical error, by (3.13) it suffices to establish a bound for

∥∥∥∥E([u⊗ . . .⊗ u])− 1
M

M∑

j=1

[u(ωj)⊗ . . .⊗ u(ωj)]
∥∥∥∥

V (k)

= ‖Mku−EM
Mku‖V (k) ,

which was estimated in Theorem 4.1. �

We can get a sharper result by using the law of iterated logarithms for estimating
the statistical error (second term) in the previous proof:

Theorem 4.6. Let k > 1 and f ∈ L2k(Ω, V ′) ∩ Lk(Ω, Ys) with s ∈ (0, σ]. Then

‖ÊM,L
Mku

−Mku‖V (k) 6 CN
−s/d
L (logNL)(k−1)/2‖f‖k

Lk(Ω,Y s)(4.13)

+ CaMM−1/2(log logM)1/2‖f‖k
L2k(Ω,V ′)

where lim sup
M→∞

aM 6 1 with probability 1.

This means that with probability 1 there are at most finitely many values of M

where the error estimate (4.13) is not satisfied with aM = 1 + ε.
�����
	���


4.7. Note that all results in this section also hold in the case of a
stochastic operator A(ω).
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Let X now denote the space of bounded linear mappings V → V ′. Assume that

A : Ω → X is measurable (with respect to Borel sets of X) and that there exists C,
α > 0 and a compact T : V → V ′ such that

‖A(ω)‖V 6 C almost everywhere,(4.14)

〈(A(ω) + T )u, u〉 > α‖u‖2
V almost everywhere.(4.15)

Let k > 1. Then f ∈ Lk(Ω, V ′) implies u = A−1f ∈ Lk(Ω, V ) and Mku ∈ V (k).
Also f ∈ Lk(Ω, Yδ) implies u = A−1f ∈ Lk(Ω, Xδ) and Mku ∈ X

(k)
δ . Therefore all

proofs in this section still apply.

5. Deterministic Galerkin approximation of moments

5.1. Sparse Galerkin approximation of Mku

We now approximate Mku by using the Galerkin method for (2.14). If we use
the full tensor product space V (k)

L the inf-sup condition of the discrete operator

for L > L0 follows directly from the inf-sup condition (3.16) by a tensor product
argument. The regularity estimate for the kth momentMku,

(5.1) ‖Mku‖
X

(k)
s

6 C`,s‖Mkf‖
Y

(k)
s
, 0 6 s 6 s0, k > 1,

then allows us to obtain convergence rates. However, this method is very expensive
since we have to set up and solve a linear system with N k

L unknowns.

We can reduce this complexity by using the sparse tensor product space V̂ (k)
L . We

define the sparse Galerkin approximation ẐL ofMku as follows:

(5.2) find ẐL ∈ V̂ (k)
L such that 〈A(k)ẐL, v〉 = 〈Mkf, v〉 ∀ v ∈ V̂ (k)

L .

We first consider the case when the operator A is coercive, i.e., (2.2) holds with

T = 0. Then also A(k) : V (k) → (V ′)(k) is coercive, and the stability of the Galerkin
method with V̂ (k)

L follows directly from V̂
(k)
L ⊂ V (k).

In the case of T 6= 0 the stability on the sparse space V̂ (k)
L is not obvious: We

know that (A+T )⊗ . . .⊗(A+T ) is coercive, but (A+T )⊗ . . .⊗(A+T )−A⊗ . . .⊗A
is not compact. Therefore we require some additional assumptions.
We assume that (2.2) holds with the additional requirement that T ′ : V → V ′ is

smoothing with respect to the scale of spaces Xs, Ys, and we also assume that the
adjoint operator A′ : V → V ′ possesses a regularity property: We assume that there

exists δ > 0 such that

T ′ : V → Yδ is continuous,(5.3)

(A′)−1 : Yδ → Xδ is continuous.(5.4)
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Due to the indefiniteness of A we have to modify the sparse grid space: Let L0 > 0
and L > L0. We define a space V̂

(k)
L,L0

with V̂ (k)
L ⊂ V̂

(k)
L,L0

⊂ V̂
(k)
L+(k−1)L0

as follows:

Definition 5.1. Let S1
L,L0

:= {0, . . . , L}. Let Sk
L,L0

be the set of indices l ∈ � k
0

satisfying the following conditions:

l1 + . . .+ lk 6 L+ (k − 1)L0,(5.5)

(li1 , . . . , lik−1) ∈ Sk−1
L,L0

if i1, . . . , ik−1 are different indices in {1, . . . , k}.(5.6)

Then we define

(5.7) V̂
(k)
L,L0

:=
∑

l∈Sk
L,L0

W l1 ⊗ . . .⊗W lk .

Let JL0 := {0, 1, . . . , L0}. Then Sk
L,L0

has the the following subsets:

Jk
L0
, Jk−1

L0
× S1

L,L0
, Jk−2

L0
× S2

L,L0
, . . . , JL0 × Sk−1

L,L0
.

Therefore V̂ (k)
L,L0

contains the following subspaces:

(5.8) V
(k)
L0

, V
(k−1)
L0

⊗ V̂
(1)
L,L0

, V
(k−2)
L0

⊗ V̂
(2)
L,L0

, . . . , VL0 ⊗ V̂
(k−1)
L,L0

.

We will choose a certain fixed L0 > 0 and consider the sequence of spaces V̂ (k)
L,L0

with L going to infinity. Since V̂ (k)
L ⊂ V̂

(k)
L,L0

⊂ V̂
(k)
L+(k−1)L0

we see that dim V̂
(k)
L,L0

grows with the same rate as dim V̂
(k)
L if L→∞.

We then have the following discrete stability property:

Theorem 5.2. Assume that A and T satisfy (2.2) and (5.3), (5.4). Then there
exist L0 ∈ � and cS > 0 such that for all L > L0,

(5.9) inf
06=u∈V̂

(k)
L,L0

sup
06=v∈V̂

(k)
L,L0

〈A(k)u, v〉
‖u‖V (k)‖v‖V (k)

> 1
cS

> 0.

In the case T = 0 this holds with L0 = 0.
���������

. Note that with A0 := A + T we have, with 〈·, ·〉 denoting the V × V ′

resp. the V ′ × V duality,

〈A0u, u〉 = 〈u, (A′ + T ′)u〉 = 〈u,A′v〉 = 〈Au, v〉

if we define v = (A′)−1(A′ + T ′)u = (I + K̃)u with K̃ := (A′)−1T ′. By the assump-
tions (5.3), (5.4) we have that K̃ : V → Vδ is continuous.
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Let u ∈ V̂L,L0 be arbitrary. We have to find v ∈ V̂L,L0 such that 〈A(k)u, v〉 >
c‖u‖2

V (k) and ‖v‖V (k) 6 C‖u‖V (k) . Let w := (I + K̂)⊗ . . .⊗ (I + K̂)u, then

〈A(k)u,w〉 = 〈A(k)
0 u, u〉 > αk‖u‖2

V (k) .

We now use v := P̂
(k)
L,L0

w with the projector P̂ (k)
L,L0

: V (k) → V̂
(k)
L,L0

defined analogously

to (3.10). With K̂ := (I + K̂)⊗ . . .⊗ (I + K̂)− I and E := w− v = (I − P̂ (k)
L,L0

)v we
have

〈A(k)u, v〉 = 〈A(k)u,w〉 − 〈A(k)u,E〉 = 〈A(k)
0 u, u〉 − 〈A(k)u,E〉(5.10)

> αk‖u‖2
V (k) − c‖u‖V (k)‖E‖V (k) .

With u ∈ V̂ (k)
L,L0

we get (I − P̂
(k)
L,L0

)u = 0 and

E = (I − P̂
(k)
L,L0

)(I + K̂)u = (I − P̂
(k)
L,L0

)K̂u.

Note that K̂ is a sum of 2k−1 terms of the formK1⊗. . .⊗Kk where eachKj is either I
or K̃, and Kj = K̃ for at least one j. We consider one of these terms which contains

a tensor product of k factors, where i > 1 factors are equal to K̃, and the remaining
k − i factors are equal to I . Without loss of generality we can assume that we have

to estimate for g := K̃(i)⊗I(k−i)u the approximation error ‖(I− P̂ (k)
L,L0

)g‖V (k) . Since

u ∈ V̂
(k)
L,L0

⊂ V (i) ⊗ V̂
(k−i)
L,L0

(where we use the convention that the factor V̂ (0)
L,L0

is

omitted) we obtain that g ∈ V (i) ⊗ V̂
(k−i)
L,L0

(where the factor V (0)
L is omitted). Since

V
(i)
L0

⊗ V̂
(k−i)
L,L0

⊂ V̂
(k)
L,L0

we have that

(5.11) ‖(I−P̂ (k)
L,L0

)g‖V (k) 6 C‖(I−P (i)
L0
⊗P̂ (k−i)

L,L0
)g‖V (k) = C‖(I−P (i)

L0
⊗I(k−i))g‖V (k)

where the last equality follows from g ∈ V (i)⊗ V̂ (k−i)
L,L0

. Now we use that V̂ (i)
L0

⊂ V
(i)
L0
,

then the approximation result (3.12) for V̂ (i)
L0
gives

(5.12) ‖(I − P
(i)
L0

)f‖V (i) 6 CN
−δ/d
L0

‖f‖
X

(i)
δ

.

As

(I − P
(i)
L0
⊗ I(k−i))g = (I − P

(i)
L0

)⊗ I(k−i)g

we get from (5.11), (5.12) that

‖(I − P̂
(k)
L,L0

)g‖V (k) 6 CN−δ/d‖g‖
X

(i)
δ ⊗V (k−i) 6 CN

−δ/d
L0

‖u‖V (k)

where we used g = K̃(i) ⊗ I(k−i) and the continuity of K̃ : V → Xδ.
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Since all 2k − 1 terms in E can be estimated in this way, we obtain

‖E‖ 6 (2k − 1)CN−δ/d
L0

‖u‖V (k)

and (5.10) gives

〈A(k)u, v〉 > (αk − c(2k − 1)CN−δ/d
L0

)‖u‖2
V (k) .

Therefore we can choose L0 > 0 so that 〈A(k)u, v〉 > 1
2α

k‖u‖2
V (k) . As K̂ : V → V

and P̂ (k)
L,L0

: V (k) → V (k) are continuous we have that ‖v‖V (k) 6 c‖u‖V (k) . �

The inf-sup condition now implies quasioptimal convergence (see [2]), and therefore

the convergence rate is given by the approximation rate:

Theorem 5.3. Assume (2.2), (2.3).
(i) Let f ∈ Lk(Ω, V ′). Then there is L0 > 0 such that for all L > L0 the sparse

Galerkin approximation ẐL ∈ V̂ (k)
L,L0

ofMku is uniquely defined and converges

quasioptimally, i.e. there is C > 0 such that for all L > L0 we have

‖Mku− ẐL‖V (k) 6 C inf
v∈V̂

(k)
L,L0

‖Mku− v‖V (k) → 0 as L→∞.

(ii) Assume that f ∈ Lk(Ω, Ys) and the approximation property (3.2). Then for
0 6 s 6 σ := min{s0, p+ 1− 1

2%} we have

(5.13) ‖Mku− ẐL‖V (k) 6 C(k)N−s/d
L (logNL)(k−1)/2‖f‖Ys .

���������
. The quasioptimality is a consequence of the inf-sup condition (5.9).

Note that {V`}∞`=0 is dense in V , hence {V
(k)
` }∞`=0 is dense in V

(k). Since V (k)

L̃
⊂

V̂
(k)
L ⊂ V̂

(k)
L,L0

if L̃ < L/k we obtain that the sequence {V̂ (k)
`,L0

}∞`=L0
is dense in V (k),

which implies the convergence in (i). The convergence rate in (ii) follows from Propo-
sition 3.1. �

5.2. Matrix compression
In the case when A is a differential operator the number of nonzero entries in the

stiffness matrix for the standard FEM basis is O(N). Therefore we can compute a
matrix-vector product with O(N) operations.
In the case of an integral equation the operator A is nonlocal and all elements of

the stiffness matrix are nonzero. Then the cost of a matrix-vector product is O(N 2),
which increases the complexity of the algorithm. It is well known that one can
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improve the complexity to O(N(logN)c) by using the so-called matrix compression
with wavelets, see, e.g., [23], [8]. We will discuss this in this and the next section.

In the compression step, we replace most of the entries AJJ′ of the stiffness ma-
trix AL with zeros, yielding an approximate stiffness matrix ÃL. The stiffness

matrix AL as well as its compressed variant ÃL induce mappings from V L to (V L)′

which we denote by AL and ÃL, respectively. We will require AL and ÃL to be close

in the following sense: for certain values s, s′ ∈ [0, σ] with σ = p + 1 − 1
2% and for

u ∈ Xs, v ∈ Xs′ we have

(5.14) |〈(AL − ÃL)PLu, PLv〉| 6 c(s, s′)N−(s+s′)/d
L (logNL)q(s,s′)‖u‖Xs‖v‖Xs′

with c(s, s′) > 0 and q(s, s′) > 0 independent of L. The following result collects
some properties of the corresponding approximate solutions.

Proposition 5.4. Assume (2.2) and (2.3).
1) If (5.14) holds for (s, s′) = (0, 0) with q(0, 0) = 0 and c(0, 0) sufficiently small
then there is L0 > 0 such that for every L > L0, (ÃL)−1 exists and is uniformly

bounded, i.e.

(5.15) ∀L > L0 : ‖(ÃL)−1‖(V L)′→V L 6 C

for some C independent of L.

2) If, in addition to the assumptions in 1), (5.14) holds with (s, s′) = (σ, 0), then

(5.16) ‖(A−1 − (ÃL)−1)f‖V 6 CN
−σ/d
L (logNL)q(σ,0)‖f‖Yσ .

3) Let g ∈ V ′ be such that the solution ϕ ∈ V of A′ϕ = g belongs to Xσ . If, in

addition to the assumptions in 1) and 2), (5.14) holds also for (s, s′) = (0, σ)
and for (s, s′) = (σ, σ), then

(5.17) |〈g, (A−1 − (ÃL)−1)f〉| 6 CN
−2σ/d
L · (logNL)max{q(0,σ)+q(σ,0),q(σ,σ)}

where C = C(f, g).
���������

. 1) The G̊arding inequality (2.2), the injectivity (2.3) and the density
in V of the subspace sequence {V L}L imply the discrete inf-sup condition (3.16).

Using (5.14) with vL ∈ V L and (s, s′) = (0, 0) we obtain due to (3.16)

‖ÃLv
L‖(V L)′ > ‖AvL‖(V L)′ − ‖(A− ÃL)vL‖(V L)′ > c−1

s ‖vL‖V − Cc(0, 0)‖vL‖V .
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This implies that for c(0, 0) < 1/(2Ccs) there is L0 > 0 such that for all L > L0

(5.18) ‖vL‖V 6 cs
2
‖ÃLv

L‖(V L)′ ∀ vL ∈ V L,

whence (5.15).

2) Let f ∈ Yσ and u = A−1f , ũL = (ÃL)−1f for L > L0. We have

‖u− ũL‖V 6 ‖u− PLu‖V + ‖PLu− ũL‖V .

Using (3.16) and 〈ÃLu
L, vL〉 = 〈Au, vL〉 for all vL ∈ V L, we get

‖PLu− ũL‖V 6 C‖ÃL(PLu− ũL)‖(V L)′ = C‖ÃLP
Lu−Au‖(V L)′ ,

which yields

(5.19) ‖u− ũL‖V 6 ‖u−PLu‖V +C‖A(u− PLu)‖(V L)′ +C‖(A− ÃL)PLu‖(V L)′ .

Here, the first two terms are estimated using the stability (P3) and (3.6) which imply

(5.20) ‖u− PLu‖V 6 C inf
v∈V L

‖u− v‖V 6 C(NL)−σ/d‖u‖Xσ ,

and the continuity A : V → V ′. The third term in (5.19) is estimated by (5.14) for

(s, s′) = (σ, 0) and PLvL = vL for all vL ∈ V L:

(5.21) |〈(A− ÃL)PLu, vL〉| 6 Cc(σ, 0)N−σ/d
L (logNL)q(σ,0)‖u‖Xσ‖v‖V .

3) To show (5.17), we let ϕL := PLϕ for ϕ = (A′)−1g ∈ Xσ and u = A−1f ,
ũL = (ÃL)−1f for L > L0. Then

|〈g, u− ũL〉| = |〈ϕ,A(u− ũL)〉| 6 |〈A(u− ũL), ϕ− ϕL〉|+ |〈A(u− ũL), ϕL〉|.

We estimate the first term by C‖u−ũL‖V ‖ϕ−PLϕ‖V , which implies the bound (5.17)

by virtue of (5.16) and (5.20). The second term is bounded as follows:

〈A(u− ũL), ϕL〉 = 〈(ÃL −A)ũL, ϕL〉
= 〈(ÃL −A)(ũL − PLu), PL

ϕ 〉+ 〈(ÃL −A)PLu, PLϕ〉.

Here we estimate the second term by (5.14) with (s, s′) = (σ, σ). For the first term,
we use (5.14) with (s, s′) = (0, σ) to obtain

|〈(ÃL −A)PL(ũL − PLu), PLϕ〉|
6 CN

−σ/d
L (logNL)q(0,σ)‖ũL − PLu‖V ‖ϕ‖Xσ

6 CN
−σ/d
L (logNL)q(0,σ)(‖ũL − u‖V + ‖u− PLu‖V )‖ϕ‖Xσ .

Using here (5.16) and (5.20) completes the proof. �
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5.3. Wavelet compression
We now explain how to obtain an approximate stiffness matrix ÃL which on the

one hand has only O(NL(logNL)a) nonzero entries (out of N2
L), and on the other

hand satisfies the consistency condition (5.14).

Here we assume that the operator A is given in terms of a Schwartz kernel k(x, y)
as (Γ = ∂D where D is a bounded Lipschitz polyhedron)

(5.22) (Aϕ)(x) =
∫

y∈Γ

k(x, y)ϕ(y) dΓ(y)

for ϕ ∈ C∞0 (Γ) where k(x, z) satisfies the Calderón-Zygmund estimates

(5.23) |Dα
xD

β
y k(x, y)| 6 Cαβ |x− y|−(d+%+|α|+|β|).

In the following, we combine the indices (`, j) into a multiindex J = (`, j) to
simplify notation, and write ψJ , ψJ′ , etc.
Due to the vanishing moment property (3.4) of the basis {ψJ}, the entries AL

JJ′ =
〈AψJ , ψJ′〉 of the moment matrix AL with respect to the basis {ψJ} show fast decay
(cf. [23]). Denote SJ = supp(ψJ ), SJ′ = supp(ψJ′). Then we have the following
decay estimate for AJJ′ (see [23, Lemma 8.2.1]).

Proposition 5.5. If the wavelets ψJ , ψJ′ satisfy the moment condition (3.4)

and A satisfies (5.22), (5.23), then

(5.24) |〈AψJ , ψJ′〉| 6 C dist(SJ , SJ′)−γ 2−γ(`+`′)/2

where γ := %+ d+ 2 + 2(p∗ + 1) > 0.

This can be exploited to truncate AL to obtain a sparse matrix ÃL with at most

O(NL(logNL)2) nonzero entries and such that (5.14) is true with c(0, 0) as small
as desired, independent of L, q(0, 0) = 0, and q(0, σ) = q(σ, 0) 6 3

2 , q(σ, σ) 6 3,
see [21], [23], [8], for example. The number of nonzero entries in a block ÃL

`,`′ of Ã
L

is bounded by

(5.25) nnz(ÃL
`,`′) 6 C(min(`, `′) + 1)d 2d max(`,`′).

�����
	���

5.6. For integral operators A an alternative approach for the efficient

computation of matrix-vector products with the stiffness matrix AL is given by the
so-called cluster approximation. In this case one additionally assumes for the oper-

ator (5.22) that the kernel k(x, z) is analytic in x and z for z 6= 0, and the size of its
domain of analyticity is proportional to z. Under these assumptions, one can replace
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k(x, y) in (5.22) for |x−y| sufficiently large by a so-called cluster approximation with
degenerate kernels which are obtained by either truncated multipole expansions or
polynomial interpolants of order logNL, allowing to apply the block ÃL

`,`′ to a vector
in at most

(5.26) C(logNL)d 2dmax(`,`′), 0 6 `, `′ 6 L

operations. See, e.g., [20] for details.

5.4. Error analysis for sparse Galerkin with matrix compression
Based on the compressed stiffness matrix ÃL and the corresponding operator

ÃL : VL → (VL)′ induced by it, we define the sparse tensor product approximation
of Mku with matrix compression analogous to (5.2) by: find Z̃k

L ∈ V̂
(k)
L,L0

such that

for all v ∈ V̂ (k)
L,L0

(5.27) 〈Ã(k)
L Z̃k

L, v〉 = 〈Mkf, v〉.

We prove bounds for the error Z̃k
L −Mku.

Lemma 5.7. Assume (2.2), (2.3) and that the spaces VL as in Example 3.2 admit
a hierarchic basis {ψ`

j}`>0 satisfying (P1)–(P5). Assume further that the operator

ÃL in (5.27) satisfies the consistency estimate (5.14) for s = s′ = 0, q(0, 0) = 0, and
with sufficiently small c(0, 0).
Then there is L0 > 0 such that for all L > L0, the kth moment problem with

matrix compression, (5.27), admits a unique solution and the following error estimate
holds:

‖Mku− Z̃k
L‖V (k)(5.28)

6 C inf
v∈V̂

(k)
L

{
‖Mku− v‖V (k) + sup

06=w∈V̂
(k)

L

|〈(A(k)
L − Ã(k)

L )v, w〉|
‖w‖V (k)

}
.

���������
. We show unique solvability of (5.27) for sufficiently large L. By Theo-

rem 5.2 we have that (5.9) holds.

To show unique solvability of (5.27), we write

A(k) − Ã(k)
L = (A− ÃL)⊗A(k−1) + ÃL ⊗ (A(k−1) − Ã(k−1)

L )

= (A− ÃL)⊗A(k−1) + ÃL ⊗ (A− ÃL)⊗A(k−2) + Ã(2)
L ⊗ (A(k−2) − Ã(k−2)

L )
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and obtain, after iteration,

A(k) − Ã(k)
L = (A− ÃL)⊗A(k−1) +

k−2∑

ν=1

Ã(ν)
L ⊗ (A− ÃL)⊗A(k−ν−1)(5.29)

+ Ã(k−1)
L ⊗ (A− ÃL)

(where the sum is omitted if k = 2). We get from (5.9) that for any u ∈ V̂
(k)
L there

exists v ∈ V̂ (k)
L such that

〈Ã(k)
L u, v〉 = 〈A(k)u, v〉+ 〈(Ã(k)

L −A(k))u, v〉(5.30)

>
[
c−1
S − sup

w∈V̂
(k)

L

sup
w̃∈V̂

(k)
L

〈(Ã(k)
L −A(k))w, w̃〉

‖w‖V (k) ‖w̃‖V (k)

]
‖u‖V (k)‖v‖V (k) .

To obtain an upper bound for the supremum, we admit w, w̃ ∈ V
(k)
L,L0

⊇ V̂
(k)
L ,

use (5.29) and (5.14) with s = s′ = 0 and q(0, 0) = 0 to get

‖ÃL‖VL→(VL)′ 6 ‖A‖V→V ′︸ ︷︷ ︸
cA

+c(0, 0)

and therefore estimate for any w, w̃ ∈ V (k)
L,L0

|〈Ã(k)
L −A(k))w, w̃〉|(5.31)

6 c(0, 0)
[
ck−1
A +

(k−2∑

ν=1

(cA + c(0, 0))νck−ν−1
A

)
+ (cA + c(0, 0))k−1

]

× ‖w‖V (k)‖w̃‖V (k)

= c(0, 0) · C(A, k)‖w‖V (k)‖w̃‖V (k) .

If c(0, 0) is sufficiently small, this implies due to (5.28) the stability of Ã(k)
L on V̂ (k)

L,L0
:

there is L0 > 0 such that

(5.32) inf
06=u∈V̂

(k)
L,L0

sup
06=v∈V̂

(k)
L,L0

〈Ã(k)
L u, v〉

‖u‖V (k)‖v‖V (k)
> 1

2cS
> 0

for all L > L0, and hence the unique solvability of (5.27) for these L follows.

To prove (5.28), we proceed as in the proof of the first Strang Lemma (e.g. [7]). �

We now use this lemma to obtain the following convergence result:
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Theorem 5.8. Assume (2.2), (2.3), V = H%/2(Γ) and that the subspaces {V`}∞`=0

are as in Example 3.2, and that in the smoothness spaces Xs = H%/2+s(Γ), s > 0,
the operator A : Xs → Ys is bijective for 0 6 s 6 s0 with some s0 > 0. Assume
further that a compression strategy for the matrix AL in the hierarchic basis {ψ`

j}
satisfying (P1)–(P5) is available with (5.14) for s′ = 0, 0 6 s 6 σ = p + 1 − 1

2%,

q(0, 0) = 0 and with arbitrary small c(0, 0), independent of L for L > L0. Then with

δ = min{p+ 1− 1
2%, s}/d, 0 6 s 6 s0 we have the error estimate

(5.33) ‖Mku− Z̃k
L‖V (k) 6 C(logNL)min{(k−1)/2,q(s,0)}N−δ

L ‖Mkf‖
Y

(k)
s
.

���������
. We use (5.28) with the choice v = P̂

(k)
L,L0

and apply to ‖Mku− v‖V (k)

the approximation result (2.6). We express the difference A(k)
L − Ã(k)

L using (5.29).

Then we obtain a sum of terms, each of which can be bounded using (5.14) and the
continuity of A(k)

L and Ã(k)
L . This yields the following error bound:

‖Mku− Z̃k
L‖V (k) 6 C[(logNL)(k−1)/2N−δ

L + c(s, 0)(logNL)q(s,0)N
−s/d
L ]‖Mku‖

X
(k)
s
.

�

Theorem 5.8 addressed only the convergence of Z̃k
L in the “energy” norm V (k).

In the applications which we have in mind, however, also functionals of the solu-
tionMku are of interest which we assume are given in the form 〈G,Mku〉 for some
G ∈ (V (k))′. We approximate such functionals by 〈G, Z̃k

L〉.

Theorem 5.9. With all assumptions as in Theorem 5.8, and, in addition, as-
suming that the adjoint problem

(5.34) (A(k))′Ψ = G

admits a solution Ψ ∈ X(k)
s′ for some 0 < s′ 6 σ and that the compression ÃL of the

stiffness matrix AL satisfies (5.14) with s = s′ = σ, we have

|〈G,Mku〉 − 〈G, Z̃k
L〉| 6 C(logNL)min{k−1,q(s,s′)}N−(δ+δ′)

L ‖Mkf‖
Y

(k)
s

where δ = min{p+ 1− 1
2%, s}/d, δ′ = min{p+ 1− 1

2%, s
′}/d.

���������
. The proof is analogous to that of Theorem 5.4. 3), using the sparse

approximation property (3.12) in place of (3.2). �
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5.5. Iterative solution of the linear system

We solve the linear system (5.27) using iterative solvers and denote the matrix of

this system by ˆ̃A(k)
L . We will consider three different methods:

(1) If A is self-adjoint and (2.2) holds with T = 0 the matrix ˆ̃A(k)
L is Hermitian

positive definite, and we use the conjugate gradient algorithm which requires
one matrix-vector multiplication by the matrix ˆ̃A(k)

L per iteration.

(2) If A is not necessarily self-adjoint, but satisfies (2.2) with T = 0 we can use the

GMRES algorithm with restarts every µ iterations. In this case ˆ̃A(k)
L +( ˆ̃A(k)

L )H is
positive definite. This requires two matrix-vector multiplications per iteration,

one with ˆ̃A(k)
L and one with ( ˆ̃A(k)

L )H .

(3) In the general case when (2.2) is satisfied with some operator T we multiply the

linear system by the matrix ( ˆ̃A(k)
L )H and can then apply the conjugate gradient

algorithm. This requires one matrix-vector multiplication with ˆ̃A(k)
L and one

matrix-vector multiplication with ( ˆ̃A(k)
L )H per iteration.

In order to achieve log-linear complexity it is essential that we never explicitly form
the matrix ˆ̃A(k)

L . Instead, we only store the matrix ÃL for the mean field prob-

lem. We can then compute a matrix-vector product with ˆ̃A(k)
L (or ( ˆ̃A(k)

L )H ) by an

algorithm which multiplies parts of the coefficient vector by submatrices of ÃL, see
Algorithm 5.10 in [25]. This requires O((logNL)kd+2k−2NL) operations ([25, Theo-
rem 5.12]).

Let us explain the algorithm in the case k = 2 and L0 = 0: In this case a
coefficient vector u has components ul

j
l′
j′ where l, l

′ are the levels used for V̂ (2)
L

(i.e., l, l′ ∈ {0, . . . , L} such that l+l′ 6 L+L0) and j ∈ {1, . . . ,Ml}, j′ ∈ {1, . . . ,Ml′}.
Let ÃL1 denote the submatrix of ÃL corresponding to levels l, l′ 6 L1. We can then
compute the coefficients of the vector ˆ̃A(k)

L u as follows where we overwrite at each

step the current components with the result of a matrix-vector product:

• For l = 0, . . . , L, j = 1, . . . ,Ml:

multiply the column vector with components (ul
j
l′
j′)l′=0...L−l

j′=0...Ml′

by the matrix ÃL−l.

• For l′ = 0, . . . , L, j′ = 1, . . . ,Ml:

multiply the column vector with components (ul
j
l′
j′)l=0...L−l

j=0...Ml

by the matrix ÃL−l′ .

We now analyze the convergence of the iterative solvers. The stability assumptions
for the wavelet basis, the continuous and discrete operators imply the following
results about the approximate stiffness matrix ˆ̃A(k)

L :

Proposition 5.10. Assume the basis {ψ`
j} satisfies (3.3) with cB independent

of L.
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(i) Assume that ÃL satisfies (5.14) for q(0, 0) = 0 with sufficiently small c(0, 0).

Then there is C2 such that for all L the matrix
ˆ̃A(k)

L of the problem (5.27)
satisfies

(5.35) ‖ ˆ̃A(k)
L ‖2 6 C2 <∞.

(ii) Assume additionally to the assumptions of (i) that (2.2) holds with T = 0. Then
there is C1 > 0 such that

(5.36) λmin( 1
2 ( ˆ̃A(k)

L + ( ˆ̃A(k)
L )H)) > C1 > 0.

(iii) Assume the discrete inf-sup condition (5.9) holds. Then we have with C inde-

pendent of L

(5.37) ‖( ˆ̃A(k)
L )−1‖2 6 CcS .

���������
. Because of (3.3) the norm ‖vL‖V (k) of vL ∈ V̂

(k)
L,L0

is equivalent to the

2-vector-norm ‖v‖2 of the coefficient vector v. For (i) we obtain an arbitrarily small
upper bound for the bilinear form with the operator A − ÃL with respect to the
norm ‖vL‖V (k) . Since A is continuous we get an upper bound for the norm of Ã and
therefore for the corresponding 2-matrix-norm.
In (ii) the bilinear form 〈Av, v〉 corresponds to the symmetric part of the matrix,

and the lower bound corresponds to the smallest eigenvalue of the matrix. Since
the norm of A − Ã is arbitrarily small we also get lower bound for the compressed
matrix.
In (iii) the inf-sup condition (5.9) states that for L > L0 the solution operator

mapping (V̂ (k)
L,L0

)′ to V̂ (k)
L,L0

is bounded by cS . Because of the norm equivalence (3.3)

this implies ‖( ˆ̃A(k)
L )−1‖2 6 CcS . �

For the method (1) with a self-adjoint positive definite operator A we have that

λmax/λmin 6 C2/C1 =: κ is bounded and independent of L, and obtain for the
conjugate gradient iterates error estimates

‖u(m) − u‖2 6 c

(
1− 2

κ1/2 + 1

)m

.

For the method (2) we obtain for the GMRES from [10] for the restarted GMRES
method (e.g., with restart µ = 1)

‖u(m) − u‖2 6 c
(
1− 1

κ

)m

.
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For the method (3) we use the conjugate gradient method with the matrix B :=

( ˆ̃A(k)
L )H ˆ̃A(k)

L and need the largest and smallest eigenvalue of this matrix. Now
(5.37) states that λmin(B) > (CcS)−2 > 0. Therefore we have with κ̃ := C2

2 (CcS)2

that

‖u(m) − u‖2 6 c
(
1− 2

κ̃1/2 + 1

)m

.

Note that the 2-vector norm ‖u‖2 of the coefficient vector is equivalent to the
norm ‖u‖V (k) of the corresponding function on D × . . .×D. If we start with initial

guess zero we therefore need a number M of iterations proportional to L to have
an iteration error which is less than the Galerkin error. However, if we start on the

coarsest mesh with initial guess zero, perform a sufficiently large (but independent
of L) number M of iterations, use the resulting solution vector as starting vector

on the next finer mesh, perform once more the same number M of iterations on
this mesh, and so on, we obtain an approximate solution of the linear system with
accuracy of the order of the discretization error in total work proportional to N ,

i.e. without the additional logarithmic factor L.

Therefore we have the following complexity result:

Proposition 5.11. We can compute an approximation Zk
L for Mku using a

fixed number m0 of iterations such that

‖Zk
L −Mku‖V (k) 6 CN

−s/d
L Lβ

where β = 1
2 (k − 1) in the case of a differential operator, β = min{ 1

2 (k − 1), q(s, 0)}
with q(s, 0) from (5.33) in the case when A is an integral operator. The total number
of operations is O(N(logN)k−1) in the case of a differential operator. In the case of
an integral operator we need at most O(N(logN)k+1) operations.

6. Examples: FEM and BEM for the Helmholtz equation

We now consider the Helmholtz equation in a domain G ⊂ � n with boundary
Γ := ∂G. We will discuss two ways of solving this equation with stochastic data:

First we use the finite element approximation of the differential equation and apply
our results for D = G which is of dimension d = n.

Secondly, we consider the boundary integral formulation which is an integral equa-
tion on the boundary Γ. We discretize this equation and then apply our results for
D = Γ which is of dimension d = n − 1. In this case we can also allow exterior
domains G as the computation is done on the bounded manifold Γ.
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To keep the presentation simple we will just consider smooth boundaries and

one type of boundary condition (Dirichlet condition for finite elements, Neumann
condition for boundary elements). Other boundary conditions and operators can be
treated in a similar way.

6.1. Finite element methods
Let G ⊂ � n be a bounded domain with smooth boundary. We consider the

boundary value problem V = H1
0 (G)

(−∆− κ2)u(ω) = f(ω) in G, u|Γ = 0.

Here we have V = H1
0 (G), V ′ = H−1(G), and the operator A : V → V ′ is defined by

〈Au, v〉 =
∫

G

(∇u · ∇v − κ2uv) dx

and obviously satisfies the G̊arding inequality 〈Au, u〉 > ‖u‖2
V − (κ2 + 1)‖u‖2

L2(G).
The operator −∆: V → V ′ has eigenvalues 0 < λ1 < λ2 < . . . which converge to ∞.
We need to assume that κ2 is not one of the eigenvalues λj so that condition (2.3)
is satisfied.

The spaces for smooth data for s > 0 are Ys = H−1+s(G), the corresponding
solution spaces are Xs = H1+s(G). We assume that the stochastic right-hand side
function f(ω) satisfies f ∈ Lk(Ω, Ys) = Lk(Ω, H−1+s(G)) for some s > 0.
The space VL has NL = O(h−d

L ) = O(2Ld) degrees of freedom and the sparse
tensor product space V̂ (k)

L,L0
has O(NL(logNL)(k−1)) degrees of freedom. For k > 1

we can then numerically obtain a sparse grid approximation Zk
L ∈ V̂

(k)
L,L0

for Mku

using a total of O(NL(logNL)(k−1)) operations satisfying the error estimate

‖Zk
L −Mku‖ 6 chp

L| log(hL)|(k−1)/2‖f‖k
Lk(Ω,Yp)

provided we have f ∈ Lk(Ω, Yp).

6.2. Boundary element methods
We illustrate the preceding abstract results with the boundary reduction of the

stochastic Neumann problem to a boundary integral equation of the first kind.

In a bounded domain G ⊂ � d with Lipschitz boundary Γ = ∂G, we consider

(6.1) (∆ + κ2)U = 0 in D

with a wave number κ2 ∈ � not an interior Neumann eigenvalue and boundary
conditions

(6.2) γ1U = n · (∇U)|Γ = σ on Γ
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where σ ∈ Lk(Ω, H−1/2(Γ)) with an integer k > 1 are given random boundary data,
n is the exterior unit normal to Γ, and Hs(Γ), |s| 6 1, denotes the usual Sobolev
spaces on Γ, see, e.g., [18]. We assume in (6.2) that P -a.s.

(6.3) 〈σ, 1〉 = 0

and, if d = 2, in (6.1) that

(6.4) diam(D) < 1.

Then the problem (6.1), (6.2) admits a unique solution U ∈ Lk(Ω, H1(D)) [24],
[25].
For the boundary reduction, we define for v ∈ H1/2(Γ) the boundary integral

operator

(6.5) (Wv)(x) = − ∂

∂nx

∫

Γ

∂

∂ny
e(x, y)v(y) dsy

with e(x, y) denoting the fundamental solution of −∆−κ2. The integral operatorW

is continuous (e.g. [18]),

(6.6) W : H1/2(Γ) → H−1/2(Γ).

To reduce the stochastic Neumann problem (6.1), (6.2) to a boundary integral equa-

tion with σ ∈ Lk(Ω, H−1/2(Γ)) satisfying (6.3) a.s., we use a representation as a
double layer potential R2:

(6.7) U(x, ω) = (R2θ)(x, ω) := −
∫

y∈Γ

∂

∂ny
e(x, y)θ(y, ω) dsy

where
�

θ satisfies for κ 6= 0 the BIE

(6.8) W1
�

θ =
�

σ ,

with the hypersingular boundary integral operator W1u := Wu+ 〈u, 1〉.
We see that the mean field M1U can be obtained by solving the deterministic

boundary integral equation (6.8). Based on the compression error analysis in Sec-
tion 5.2, we obtain an approximate solution EL

θ ∈ V L in O(NL(logNL)2) operations
and memory with an error bound

‖Eθ −EL
θ ‖H1/2(Γ) 6 cN

−(p+1/2)
L (logNL)3/2‖σ‖L1(Ω,Hp+1(Γ)).
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To determine the variance of the random solution U , second moments of θ are re-

quired. To derive boundary integral equations for them, we use that by Fubini’s
theorem, the operatorM2 and the layer potential R2 commute. For (6.1), (6.2) with
σ ∈ L2(Ω, H−1/2(Γ)), we obtain that Cθ = M2θ satisfies for κ = 0 the BIE

(6.9) (W1 ⊗W1)Cθ = Cσ in H1/2,1/2(Γ× Γ).

Here, the ‘energy’ space V equals H1/2(Γ) and A = W1.

The unique solvability of the BIE (6.9) is ensured by

Proposition 6.1. If κ = 0, the integral operator W1 ⊗W1 is coercive, i.e. there

is cS > 0 such that

(6.10) ∀Cθ ∈ H1/2,1/2(Γ× Γ): 〈(W1 ⊗W1)Cθ, Cθ〉 > cS‖Cθ‖2H1/2,1/2(Γ×Γ).

���������
. We prove (6.10). The operator W1 is self-adjoint and coercive in

H1/2(Γ) (e.g. [19], [13], [18]). Let {ui}∞i=1 denote an H
1/2(Γ) orthonormal base

in H1/2(Γ) consisting of eigenfunctions ofW1. Then, {ui⊗uj}∞i,j=1 is an orthonormal

base in H1/2,1/2(Γ× Γ) and we may represent any Cθ ∈ H1/2,1/2(Γ× Γ) in the form

Cθ =
∞∑

i,j=1

cijui ⊗ uj . For any M < ∞, consider CM
θ =

M∑
i,j=1

cijui ⊗ uj . Then we

calculate

〈(W1 ⊗W1)CM
θ , CM

θ 〉 =
〈

(W1 ⊗W1)
M∑

i,j=1

cijui ⊗ uj ,

M∑

i′,j′=1

ci′j′ui′ ⊗ uj′

〉

=
M∑

i,j=1

λiλjc
2
ij > λ2

1

M∑

i,j=1

c2ij = λ2
1‖CM

θ ‖2H1/2,1/2(Γ×Γ).

Passing to the limit M →∞, we obtain (6.10). �

In the case κ 6= 0 we use that the integral operatorW satisfies a G̊arding inequality
in H1/2(Γ) and obtain unique solvability of the BIE (6.9) for Cθ from Theorem 2.4,
provided that W is injective, i.e. that κ is not an eigenvalue of the interior Neumann

problem.

To compute the second moments of the random solution U(x, ω) at an interior
point x ∈ D, we use

(M2U)(x, x) = M2R2θ = (R2 ⊗R2)(M2θ)
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and obtain from Theorem 5.9 and the sparse tensor product approximation Z̃2
L

ofM2θ in O(NL(logNL)3) operations and memory an approximation of (M2U)(x, x)
which satisfies, for smooth boundary Γ and data

σ ∈ L2(Ω, Yp+1/2) = L2(Ω, Hp+1(Γ)),

at any interior point x ∈ D the error bound

|(M2U)(x, x) − 〈R2 ⊗R2, Z̃
2
L〉| 6 c(x)(logNL)3N−2(p+1/2)

L ‖σ‖2
L2(Ω,Hp+1(Γ)).
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