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Abstract. This paper proposes a Lie group analytical approach to tackle the problem of
pricing derivative securities. By exploiting the infinitesimal symmetries of the Boundary
Value Problem (BVP) satisfied by the price of a derivative security, our method provides
an effective algorithm for obtaining its explicit solution.
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1. Introduction

The option pricing model developed by Black and Scholes (see [1]) enjoys great

popularity. Option pricing theory and its applications in many areas of finance as
well as actuarial science have enjoyed rapid development during the past 30 years.

Many different methods have been employed to tackle the problem of pricing deriva-
tive security. Black and Scholes used a non arbitrage principle; by constructing a

duplicated portfolio to the derivative, a PDE satisfied by the price of the derivative
security was obtained. Another very popular method is the so called martingale mea-
sure or the risk-neutral probability method. Gerber and Shiu in [7] introduced an

option pricing framework using the Esscher transform. Papers [3] and [4] used back-
ward stochastic differential equation techniques to tackle the problem. In a series of

articles by Lo and Hui (see [9] and [10]), a Lie algebraic approach was proposed to
deal with the option pricing problem. In this paper, we propose a slightly different

approach, the Lie group approach, to tackle the problem.

*This work was supported by Research Grants Council of HKSAR (Project No. HKU 7239/
04H) and the Small Project Funding Programme of HKU.
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When we deal with option pricing problems, if the underlying stock price is a

rather general model, or the option is an exotic one, it is usually not easy to obtain
an explicit solution. Many researchers have put a lot of effort into this problem.
Kunitomo and Ikeda in [8] obtained a closed form solution to a class of barrier

options. Geman and Yor obtained an explicit pricing formula to the Asian option
(see [6]). Paper [2] considered the option pricing problem under a Constant Elasticity

of Variance (CEV) model by using some results in [5]. All the above mentioned works
used some specified techniques. In this paper, we provide an effective algorithm for

dealing with this kind of problems. Our method is a general one. In this paper, we
use the European call option under the CEV model as an example to illustrate the

idea. However, the method can be used to many other models. Compared to the
work of Lo and Hui, our method can be more easily extended to problems under

more general models.

2. Some concepts and results on Lie groups

In this section, we provide some concepts and main results on Lie groups which will
be used later. Consider a one-parameter connected local Lie group of transformations

acting on an (x, u)-space with an infinitesimal generator

(1) X =
∑

i

ξi(x, u)
∂

∂xi
+ η(x, u)

∂

∂u
.

Explicit formulas for the extended infinitesimals η(k) of the corresponding kth ex-
tension with an infinitesimal generator

X(k) =
∑

i

ξi(x, u)
∂

∂xi
+ η(x, u)

∂

∂u
+

∑

i

η
(1)
i (x, u, u(1))

∂

∂ui
(2)

+ . . .+
∑

i1i2...ik

η
(k)
i1i2...ik

∂

∂ui1i2...ik

, k = 1, 2, . . .

are given by
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Proposition 1. We have




η
(1)
1

η
(1)
2
...

η
(1)
n


 =




D1η

D2η
...

Dnη


−B ·




u1

u2
...

un


 ,(3)




η
(k)
i1i2...ik−11

η
(k)
i1i2...ik−12

...

η
(k)
i1i2...ik−1n




=




D1η
(k−1)
i1i2...ik−1

D2η
(k−1)
i1i2...ik−1

...

Dnη
(k−1)
i1i2...ik−1



−B ·




ui1i2...ik−11

ui1i2...ik−12

...

ui1i2...ik−1n


(4)

where il = 1, 2, . . . , n for l = 1, 2, . . . , k − 1 with k = 2, 3, . . . and an n × n matrix

B = (Diξj). In particular, we have the infinitesimals, up to order 2, given by

η
(1)
1 =

∂η

∂x1
+

[∂η
∂u
− ∂ξ1
∂x1

]
u1 −

∂ξ2
∂x1

u2 −
∂ξ1
∂u

(u1)2 −
∂ξ2
∂u

u1u2,(5)

η
(1)
2 =

∂η

∂x2
+

[∂η
∂u
− ∂ξ2
∂x2

]
u2 −

∂ξ1
∂x2

u1 −
∂ξ2
∂u

(u2)2 −
∂ξ1
∂u

u1u2,(6)

η
(2)
11 =

∂2η

∂x2
1

+
[
2
∂2η

∂x1∂u
− ∂2ξ1
∂x2

1

]
u1 −

∂2ξ2
∂x2

1

u2 +
[∂η
∂u
− 2

∂ξ1
∂x1

]
u11(7)

− 2
∂ξ2
∂x1

u12 +
[∂2η

∂u2
− 2

∂2ξ1
∂x1∂u

]
(u1)2 − 2

∂2ξ2
∂x1∂u

u1u2

− ∂2ξ1
∂u2

(u1)3 −
∂2ξ2
∂u2

(u1)2u2 − 3
∂ξ1
∂u

u1u11 −
∂ξ2
∂u

u2u11 − 2
∂ξ2
∂u

u1u12,

η
(2)
12 = η

(2)
21 =

∂2η

∂x1∂x2
+

[ ∂2η

∂x1∂u
− ∂2ξ2
∂x1∂x2

]
u2 +

[ ∂2η

∂x2∂u
− ∂2ξ1
∂x1∂x2

]
u1(8)

− ∂ξ2
∂x1

u22 +
[∂η
∂u
− ∂ξ1
∂x1

− ∂ξ2
∂x2

]
u12 −

∂ξ1
∂x2

u11 −
∂2ξ2
∂x1∂u

(u2)2

+
[∂2η

∂u2
− ∂2ξ1
∂x1∂u

− ∂2ξ2
∂x2∂u

]
u1u2 −

∂2ξ1
∂x2∂u

(u1)2 −
∂ξ2
∂u2

u1(u2)2

− ∂2ξ1
∂u2

(u1)2u2 − 2
∂ξ2
∂u

u2u12 − 2
∂ξ1
∂u

u1u12

− ∂ξ1
∂u

u2u11 −
∂ξ2
∂u

u1u22,

η
(2)
22 =

∂2η

∂x2
2

+
[
2
∂2η

∂x2∂u
− ∂2ξ2
∂x2

2

]
u2 −

∂2ξ1
∂x2

2

u1 +
[∂η
∂u
− 2

∂ξ2
∂x2

]
u22(9)

− 2
∂ξ1
∂x2

u12 +
[∂2η

∂u2
− 2

∂2ξ2
∂x2∂u

]
(u2)2 − 2

∂2ξ1
∂x2

∂uu1u2

− ∂2ξ2
∂u2

(u2)3 −
∂2ξ1
∂u2

u1(u2)2 − 3
∂ξ2
∂u

u2u22 −
∂ξ1
∂u

u1u22 − 2
∂ξ1
∂u

u2u12.
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���
�����
. For details, see [11]. �

Consider a kth order partial differential equation

(10) F (x, u, u(1), u(2), . . . , u(k)) = 0.

Definition 1. A one-parameter connected local Lie group of the transformations

x̄ = f(x, u, ε),(11)

ū = U(x, u, ε)

is said to leave the partial differential equation (10) invariant if and only if its kth ex-
tension leaves the surface F = 0 invariant.

Proposition 2. Let a one-parameter connected local Lie group of transforma-
tions be given having

(12) X =
∑

i

ξi(x, u)
∂

∂xi
+ η(x, u)

∂

∂u

as its infinitesimal generator with

X(k) =
∑

i

ξi(x, u)
∂

∂xi
+ η(x, u)

∂

∂u
+

∑

i

η
(1)
i (x, u, u(1))

∂

∂xi
(13)

+ . . .+
∑

i1,...,ik

η
(k)
i1,i2,...,ik

(x, u, u(1), . . . , u(k))
∂

∂ui,i2,...,ik

as the kth extended infinitesimal generator. The Lie group leaves equation (10)
invariant if and only if X(k)F = 0 whenever F = 0.

���
�����
. For details, see [11]. �

Definition 2. u = Θ(x) is called an invariant solution of F = 0 corresponding
to a one-parameter connected local Lie group of transformations admitted by this
equation if and only if

(i) u = Θ(x) is an invariant manifold of the Lie group,
(ii) u = Θ(x) solves F = 0.
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Proposition 3. Suppose that f is a function not depending on ui1...i. A kth or-

der partial differential equation (k > 2)

(14) ui1...il
= f(x, u, u(1), u(2), . . . , u(k))

admits an infinitesimal generator

(15) X =
∑

i

ξi(x, u)
∂

∂xi
+ η(x, u)

∂

∂u

if and only if

(16) η
(l)
i1...il

=
∑

ξj
∂f

∂xj
+ η

∂f

∂u
+

∑

j

η
(1)
j

∂

∂uj
+ . . .+

∑

j1,...,jk

η
(k)
j1...jk

∂f

∂uj1...jk

whenever ui1...ik
= f . In addition,

(i) η(p)
j1...jp

is linear in the components of u(p) if p > 2;

(ii) η(p)
j1...jp

is a polynomial in the components of u(1), . . . , u(p) whose coefficients are

linear homogeneous in ξi and η and in their partial derivatives with respect

to (x, u) of orders up to p.
���
�����

. For details, see [11]. �

If f is a polynomial in the components of u(1), . . . , u(k), then the equation (16) is a

polynomial equation in u(1), . . . , u(k) whose coefficients are linear homogeneous in ξi,
η and in their partial derivatives up to the kth order. Clearly, at any point x, one can
assign an arbitrary value to each u, u(1), . . . , u(k), provided the partial differential
equation ui1...il

= f is satisfied; in other words, one can assign any values to u,

u(1), . . . , u(k) except to the coordinates ui1...il
. Therefore, after replacing ui1...,il

,
the resulting polynomial equation must hold for arbitrary values of u(1), . . . , u(k).

Consequently, the coefficients of the polynomial must vanish separately, resulting in
a system of linear homogeneous partial differential equations for n + 1 functions ξi

and η. This resulting system is called the set of determining equations for the
infinitesimal generator X admitted by ui1...il

= f . In general, there are usually

more than n + 1 determining equations, hence the set of determining equations is
an overdetermined system. For, when f is a non-polynomial function, one can still

break up the equation

(17) η
(l)
i1...il

=
∑

ξj
∂f

∂xi
+ η

∂f

∂u
+ . . .+

∑

j1...jk

η
(k)
j1...jk

∂f

∂uj1...jk

into a system of linear homogeneous partial differential equations for ξi and η by
using similar arguments.
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Proposition 4. Suppose ui1...il
= f is a linear partial differential equation of

order k > 2 which admits an infinitesimal generator

(18) X =
∑

i

ξi
∂

∂xi
+ η

∂

∂u
.

Then

(19)
∂ξi
∂u

= 0 for i = 1, 2, . . . , n,
∂2η

∂u2
= 0,

hence, for n = 2, the infinitesimal generator is of the form

(20) X = ξ1(x1, x2)
∂

∂x1
+ ξ2(x1, x2)

∂

∂x2
+ [f(x1, x2)u+ g(x1, x2)]

∂

∂u
.

According to Proposition 1, we get

η
(1)
1 =

∂g

∂x1
+

∂f

∂x1
u+

[
f − ∂ξ1

∂x1

]
u1 −

∂ξ2
∂x1

u2,(21)

η
(1)
2 =

∂g

∂x2
+

∂f

∂x2
u− ∂ξ1

∂x2
u1,+

[
f − ∂ξ2

∂x2

]
u2,(22)

η
(2)
11 =

∂2g

∂x2
1

+
∂2f

∂x2
1

u+
[
2
∂f

∂x1
− ∂2ξ1
∂x2

1

]
u1 −

∂2ξ2
∂x2

1

u2(23)

+
[
f − 2

∂ξ1
∂x1

]
u11 − 2

∂ξ2
∂x1

u12,

η
(2)
12 = η

(2)
21 =

∂2g

∂x1∂x2
+

∂2f

∂x1∂x2
u+

[ ∂f
∂x2

− ∂2ξ1
∂x1∂x2

]
u1(24)

+
[ ∂f
∂x1

− ∂2ξ2
∂x1∂x2

]
u2 − 2

∂ξ1
∂x2

u11 +
[
f − ∂ξ1

∂x1
− ∂ξ2
∂x2

]
u12 −

∂ξ2
∂x1

u22,

η
(2)
22 =

∂2g

∂x2
2

+
∂2f

∂x2
2

u− ∂2ξ1
∂x2

2

u1 +
[
2
∂f

∂x2
− ∂2ξ2
∂x2

2

]
u2(25)

− 2
∂ξ1
∂x2

u12 +
[
f − 2

∂ξ2
∂x2

]
u22.

���
�����
. For details, see [12]. �

Consider a boundary value problem for a kth order partial differential equation

in the form F (x, u, u(1), . . . , u(k)) = 0 defined on a domain Ωx in the x-space with
boundary conditions

(26) Bα(x, u, u(1), . . . , u(k−1)) = 0
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prescribed on the boundary surfaces

(27) ωα(x) = 0,

where α = 1, 2, . . . , s. From now on, we only deal with boundary values problems
having unique solutions. Therefore, the invariant solution is precisely the unique
solution.

Definition 3. An infinitesimal generatorX is said to be admitted by the bound-
ary value problem (26)–(27) if and only if

(i) X(k)F = 0 whenever F = 0,
(ii) Xωα = 0 whenever ωα = 0 for α = 1, 2, . . . , s,
(iii) X(k−1)Bα = 0 whenever Bα = 0 on ωα = 0 for α = 1, 2, . . . , s.

Proposition 5. Suppose that the boundary value problem (26)–(27) admits
a one-parameter connected local Lie group of transformations. Let Φ = (ϕ1(x),
ϕ2(x), . . . , ϕn−1(x)) be n−1 independent group invariants of the Lie group depending
only on x. Let ν(x, u) be a group invariant of the Lie group such that ∂ν/∂u 6= 0.
Then (26)–(27) reduces to

(28) G(Φ, ν, ν(1), . . . , ν(k)) = 0

defined on some domain ΩΦ in the Φ-space with boundary conditions

(29) Cα(Φ, ν, ν(1), . . . , ν(k−1)) = 0

prescribed on the boundary surfaces

(30) θα(Φ) = 0

for some G, Cα, θα for α = 1, 2, . . . , s. In particular, if the infinitesimal generator is
of the form

(31) X =
∑

i

ξi(x)
∂

∂xi
+ f(x)u

∂

∂u
,

then ν = u/g(x) for a known function g and hence an invariant solution arising
from X is of the separated form

(32) u = g(x)ψ(Φ)

for an arbitrary function ψ of Φ = (ϕ1(x), ϕ2(x), . . . , ϕn−1(x)).
���
�����

. For details, see [12]. �
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3. European option pricing under CEV model

The Constant Elasticity of Variance (CEV) model with time-dependent model

parameters for a standard European call option is described by the boundary value
problem

(33)
∂V

∂t
+

1
2
σ2(t)Sθ ∂

2V

∂S2
+ (r(t) − d(t))S ∂V

∂S
− r(t)V = 0

with a boundary condition

(34) V (S, T ) = δ(S − S0)

prescribed on the boundary surface

(35) t 6 T, S > 0

where δ is the Dirac δ-function, T is the expiry date and S0 is the strike price.
First, for ease of calculation, we transform the boundary value problem to the

standard form by incorporating the transformation

(36) V = V eβ(t), S = Seα(t), t̄ = γ(t)

where α, β and γ are determined as follows:

∂V

∂t
=

{(
γ̇
∂V

∂t̄
+ Sα̇

∂V

∂S

)
− β̇V

}
e−β(t),(37)

∂V

∂S
=
∂V

∂S
eα(t)e−β(t),(38)

∂2V

∂S2
=
∂2V

∂S2
(eα(t))2e−β(t).(39)

Substituting (37)–(39) into (33), we have

(40) γ̇
∂V

∂t̄
+

1
2
σ2(t̄)e(2−θ)α(t̄)Sθ ∂

2V

∂S2
+ (r − d+ α̇)S

∂V

∂S
− (β̇ + r)V = 0.

Choosing α, β and γ such that

α̇ = −(r − d), α =
∫ T

t

(r − d) dt′,

β̇ = −r, β =
∫ T

t

r dt′,

γ̇ = −1
2
σ2(t)e(2−θ)α(t), γ =

∫ T

t

1
2
σ2(t′)e(2−θ)α(t′) dt′.
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Equation (40) can now be reduced to

(41)
∂V

∂t̄
= Sθ ∂

2V

∂S2
.

In addition, the original boundary condition and the surface are now transformed to

(42) V (S, 0) = δ(S − S0)

and

(43) t̄ > 0, S > 0,

respectively.

For the sake of reference, we replace V by u, S by x1 and t̄ by x2 in (41), i.e.

(44)
∂u

∂x2
= xθ

1

∂2u

∂x2
1

, or u2 = xθ
1u11.

According to Proposition 3, the system of determining equations can be found from

(45) η
(1)
2 = θxθ−1

1 ξ1u11 + xθ
1η

(2)
11 .

According to Proposition 4, η(1)
2 , η

(2)
11 and the infinitesimal generator L are given by

η
(1)
2 =

∂g

∂x2
+

∂f

∂x2
u− ∂ξ1

∂x2
u1 +

[
f − ∂ξ2

∂x2

]
u2,(46)

η
(2)
11 =

∂2g

∂x2
1

+
∂2f

∂x2
1

u+
[
2
∂f

∂x1
− ∂2ξ1
∂x2

1

]
u1 −

∂2ξ2
∂2x2

1

u2(47)

+
[
f − 2

∂ξ1
∂x1

]
u11 − 2

∂ξ2
∂x1

u12,

L = ξ1
∂

∂x1
+ ξ2

∂

∂x2
+ (f · u+ g)

∂

∂u
.(48)
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Substituting (46)–(47) into (45), we get

∂g

∂x2
+

∂f

∂x2
u− ∂ξ1

∂x2
u1 +

[
f − ∂ξ2

∂x2

]
u2

= θxθ−1
1 ξ1u11 + xθ

1

{
∂2g

∂x2
1

+
∂2f

∂x2
1

u+
[
2
∂f

∂x1
− ∂2ξ1
∂x2

1

]
u1 −

∂2ξ2
∂x2

1

u2

+
[
f − 2

∂ξ1
∂x1

]
u11 − 2

∂ξ2
∂x1

u12

}
,

0 =
[
xθ

1

∂2g

∂x2
1

− ∂g

∂x2

]
+

[
xθ

1

∂2f

∂x2
1

− ∂f

∂x2

]
u

+
[
2xθ

1

∂f

∂x1
− xθ

1

∂2ξ1
∂x2

1

+
∂ξ1
∂x2

]
u1 +

[
−xθ

1

∂2ξ2
∂x2

1

−
[
f − ∂ξ2

∂x2

]]
u2

+
[
θxθ−1

1 ξ1 + xθ
1f − 2xθ

1

∂ξ1
∂x1

]
u11 +

[
−2xθ

1

∂ξ2
∂x1

]
u12.

Since u2 = xθ
1u11, equation (45) is equivalent to

0 =
[
xθ

1

∂2g

∂x2
1

− ∂g

∂x2

]
+

[
xθ

1

∂2f

∂x2
1

− ∂f

∂x2

]
u+

[
2xθ

1

∂f

∂x1
− xθ

1

∂2ξ1
∂x2

1

+
∂ξ1
∂x2

]
u1(49)

+
[
−x2θ

1

∂2ξ2
∂x2

1

+ xθ
1

∂ξ2
∂x2

+ θxθ−1
1 ξ1 − 2xθ

1

∂ξ1
∂x1

]
u11 +

[
−2xθ

1

∂ξ2
∂x1

]
u12.

Equating the coefficients of u and the derivatives of u to zero, we get the system of

determining equations

(i)
∂g

∂x2
= xθ

1

∂2g

∂x2
1

,

(ii)
∂f

∂x2
= xθ

1

∂2f

∂x2
1

,

(iii) 2xθ
1

∂f

∂x1
= xθ

1

∂2ξ1
∂x2

1

− ∂ξ1
∂x2
,

(iv) θxθ−1
1 ξ1 − 2xθ

1

∂ξ1
∂x1

= x2θ
1

∂2ξ2
∂x2

1

− xθ
1

∂ξ2
∂x2
,

(v)
∂ξ2
∂x1

= 0.

Solving this system, we get

ξ1 =
1

2− θ (c1x2 + c2)x1, ξ2 = c1
x2

2

2
+ c2x2 + c3,(50)

f = −1
2

( 1
2− θ

)2

c1x
2−θ
1 − 1

2

(1− θ
2− θ

)
c1x2 + c4, g = 0,(51)

where c1, c2, c3 and c4 are undetermined constants.
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The invariance of the boundary condition and the surfaces imposes further restric-

tion on the constants ci’s:

(i) The condition x1 > 0 implies ξ1(0, x2) = 0 ⇒ no restriction.
(ii) The condition x2 > 0 implies ξ2(x1, 0) = 0 ⇒ c3 = 0.

(iii) The condition u(x1, 0) = δ(x1 − x̂1), where 0 < x̂1 <∞ implies

f(x1, 0)u(x1, 0) = ξ1(x1, 0)δ′(x1 − x̂1)(52)

⇒ f(x1, 0)δ(x1 − x̂1) = ξ1(x1, 0)δ′(x1 − x̂1).

Equation (52) is satisfied if

(i) ξ1(x̂1, 0) = 0 implies (2− θ)−1c2x̂1 = 0, i.e. c2 = 0;

(ii) f(x̂1, 0) = − ∂ξ1
∂x1

(x̂1, 0) = − 1
2− θ c1(0) = 0, therefore

−1
2

( 1
2− θ

)2

c1x̂
2−θ
1 + c4 = 0, i.e. c4 =

1
2

( 1
2− θ

)2

c1x̂
2−θ
1 .

Hence, we have

ξ1 =
1

2− θ (c1x1x2), ξ2 = c1
x2

2

2
,(53)

f =
(

1
2

( 1
2− θ

)2

x̂2−θ
1 − 1

2
1− θ
2− θx2 −

1
2

( 1
2− θ

)2

x2−θ
1

)
c1(54)

and the infinitesimal generator

L =
1

2− θ x1x2
∂

∂x1
+
x2

2

2
∂

∂x2
(55)

+
(

1
2

( 1
2− θ

)2

x̂2−θ
1 − 1

2

(1− θ
2− θ

)
x2 −

1
2

( 1
2− θ

)2

x2−θ
1

)
u
∂

∂u
.

According to Proposition 5, the corresponding invariant solution is

(56) u =
1

x
(1−θ)/(2−θ)
2

exp
[
−

( 1
2− θ

)2 1
x2

(
x̂2−θ

1 + x2−θ
1 )

]
F

(x(2−θ)/2
1

x2

)
.
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Denote x(2−θ)/2
1 /x2 by z. Now, the partial derivatives of u can be rewritten as

∂u

∂x2
=

1

x
(1−θ)/(2−θ)
2

exp
[
−

( 1
2− θ

)2 1
x2

(x̂2−θ
1 + x2−θ

1 )
]

(57)

×
{
−1− θ

2− θ
1
x2
F +

( 1
2− θ

)2( x̂2−θ
1 + x2−θ

1

x2
2

)
F − x

(2−θ)/2
1

x2
2

F ′
}
,

∂u

∂x1
= − 1

2− θ
1

x
(1−θ)/(2−θ)+1
2

x1−θ
1 exp

[
−

( 1
2− θ

)2 1
x2

(x̂2−θ
1 + x2−θ

1 )
]
· F(58)

+
2− θ

2
1

x
(1−θ)/(2−θ)+1
2

x
(2−θ)/2−1
2

× exp
[
−

( 1
2− θ

)2 1
x2

(x̂2−θ
1 + x2−θ

1 )
]
· F ′,

xθ
1

∂2u

∂x2
1

=
1

x
(1−θ)/(2−θ)
2

exp
[
−

( 1
2− θ

)2 1
x2

(x̂2−θ
1 + x2−θ

1 )
]

(59)

×
{
−1− θ

2− θ
1
x2
F +

( 1
2− θ

)2 1
x2

2

x2−θ
1 F − 1

x2
2

x
(2−θ)/2
1 F ′

+
2− θ

2

(2− θ
2

− 1
) 1
x2
x
−(2−θ)/2
1 F ′ +

(2 · θ
2

)2 1
x2

2

F ′′
}
.

Substituting (58) and (59) into (44), we get

(60) F ′′ +
(
1− 1

2− θ
)1
z
F ′ − x̂2−θ

1 · F = 0,

which is a modified Bessel equation of the second type. Its solution can be readily

found in any standard table of Bessel functions. For a general discussion on Bessel
equations, see [13]. Therefore, the explicit pricing formula for a European call option

is

Pc(S, t) = Se− � T
t

d(t′) dt′
∞∑

n=0

zne−z

Γ(n+ 1)
G

(
n+ 1 +

1
2− θ , ω

)
(61)

− S0e− � T
t

r(t′) dt′
∞∑

n=0

zn+(2−θ)−1
e−z

Γ
(
n+ 1 + (2− θ)−1

)G(n+ 1, ω)

where

(62) z =
S2−θe(2−θ)α

(2− θ)2γ , ω =
S

(2−θ)
0

(2− θ)2γ , G(a, ω) =
1

Γ(a)

∫ ∞

ω

ζa−1e−ζ dζ.
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