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Abstract. In recent papers Ruhe suggested a rational Krylov method for nonlinear eigen-
problems knitting together a secant method for linearizing the nonlinear problem and the
Krylov method for the linearized problem. In this note we point out that the method can be
understood as an iterative projection method. Similarly to the Arnoldi method the search
space is expanded by the direction from residual inverse iteration. Numerical methods
demonstrate that the rational Krylov method can be accelerated considerably by replacing
an inner iteration by an explicit solver of projected problems.
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1. INTRODUCTION

In this note we consider the nonlinear eigenvalue problem
(1.1) ANz =0

where A(\) € C**" is a family of matrices depending on a complex parameter A €
D C C. As in the linear case a parameter X is called an eigenvalue of problem (1.1)
if the equation (1.1) has a nontrivial solution x # 0 which is called an eigenvector
corresponding to A\. We assume in this note that the matrix A()\) is large and sparse.
For sparse linear eigenproblems iterative projection methods are very efficient.
Approximations to the desired eigenvalues and the corresponding eigenvectors are
obtained from projections to subspaces which are expanded in the course of the algo-
rithm. Methods of this type are the Lanczos algorithm [10], Arnoldi’s method [1] and
the Jacobi-Davidson method [18], e.g., to name the most important ones. Volume [2]
contains a survey and a guide to the numerical solution of eigenvalue problems.
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Taking advantage of shift-and-invert techniques in Arnoldi’s method one gets ap-
proximate eigenvalues closest to the shift. Ruhe [15] generalized this approach sug-
gesting the rational Krylov method where several shifts are used in one run. Thus
one gets good approximations to all eigenvalues in a union of regions around the
shifts chosen.

In some sense, Ruhe [14] generalized the rational Krylov approach to sparse non-
linear eigenvalue problems. He combined the linearization of problem (1.1) by
Lagrangian interpolation and the solution of the resulting linear eigenproblem by
Arnoldi’s method. Similarly to the rational Krylov process, he constructs a se-
quence Vj, of subspaces of C". At the same time he updates Hessenberg matrices Hy
which approximate the projection of A(c) 'A(M\gx) to V. Here o denotes a shift
(which similarly to the rational Krylov method for linear problems can be updated
in the course of the algorithm) and )\, an approximation to the desired eigenvalue
of (1.1). Then a Ritz vector xj, of Hy, corresponding to an eigenvalue of small mod-
ulus approximates an eigenvector of the nonlinear problem from which a (hopefully)
improved eigenvalue approximation of problem (1.1) is obtained.

The convergence properties of this first version of rational Krylov for nonlinear
problems was far from being satisfactory. To improve its convergence, Ruhe in [16]
introduced an inner iteration which enforces the residual 7, = A(c) A\ )k to
be orthogonal to the search space Vi. This property is automatically satisfied for
linear eigenproblems. The inner iteration is presented heuristically not noticing
that it actually is nothing else but a solver of the projected nonlinear eigenproblem
VH A(0) "1 A(A\)Vis = 0. Thus, the rational Krylov method for nonlinear eigenprob-
lems can be interpreted as an iterative projection method, where the inner iteration
can be replaced by any solver of dense nonlinear eigenproblems. Numerical examples
demonstrate that the method can be accelerated considerably in this way.

Although motivated in a completely different manner the search space Vj is ex-
panded in the same way as in the Arnoldi method for nonlinear eigenproblems in-
troduced in [19], [20]. However, differently from rational Krylov, in the Arnoldi
approach the original problem A(A)x = 0 is projected to Vi. Thus, the nonlin-
ear Arnoldi method preserves symmetry properties of problem (1.1), which can be
exploited when solving the projected problems.

This note is organized as follows. Section 2 summarizes the rational Krylov method
as introduced by Ruhe [14], [16]. In Section 3 we give its interpretation as an iterative
projection method, and we comment on modifications and improvements. Section 4
compares the original method as implemented in [7] with its modification, where
the inner iteration is replaced by a direct solver of the projected problem, and with
the Arnoldi method for a rational eigenproblem governing mechanical vibrations of
a fluid-solid structure.
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2. THE RATIONAL KRYLOV METHOD

In [14] Ruhe had proposed the following rational Krylov method which was used
by Hager and Wiberg [6] to solve a rational eigenvalue problem governing damped
vibrations of a structure using the constitutive law of a standard linear viscoelastic
solid.

Linearizing the nonlinear family A(\) by Lagrange interpolation between two
points o and p one gets

A—o I

- A
2.1 AN\ = A —A high: der t .
(2.1) (\) i—o (H)Jru—o (o) + higher order terms

Neglecting the remainder in the Lagrange interpolation, replacing p with A\;_q,
A with );, and keeping o fixed for several steps, one obtains an approximation to
problem (1.1)

(2.2) (A1) — 0A(o))w =0, 6= 2L
)\j — 0
which is equivalent to the linear eigenproblem
1 0
(23)  (Al)TAQG) — 0D =0, A=A+ (1 — o)

If the dimension n of problem (1.1) is small, then this linear eigenproblem can be
used to approximate an eigenvalue of the nonlinear problem. Choosing the small-
est eigenvalue of (2.3) in modulus for every j, one can expect convergence to an
eigenvalue close to the initial approximation A;.

For large and sparse matrices Ruhe [14] suggested to combine the lineariza-
tion (2.3) with an Arnoldi process. Assume that the method has performed j steps,
yielding approximations Ay, ..., A; to an eigenvalue, an orthonormal basis vy, ..., v;
of the current search space, and an upper Hessenberg matrix H; ;1 € C/ *(U=1 such
that the Arnoldi recursion

(2.4) T(Aj—1)Vj—1 =V;Hj

is fulfilled (at least approximately). Here T'(\) = A(c) "' A()\) and V; = [v1,. .., vj].
In the linear case the matrix H; ;_; would be expanded by adding one column on
the right, and a zero row at the bottom, so that

. Hi; 1 kj
(2.5) H-H,( 7 / )
T 0 rel
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Formula r; = T'(\;)v, gives the residual at the current approximation (\;,v;) to an
eigenpair, r; =1; — VJVJH r; is the orthogonal complement of r; with respect to V7,
and k; = VJH 7; is the vector of Gram-Schmidt coefficients of r;.

Adding v 41 = r/||r.| to the basis in the linear case the next Arnoldi relation

(2.6) T(X)Vj = Vir1Hjsr,j

would hold. In the nonlinear case however this is not true.
From (2.1) it follows that

N — DYDY
JioT()\j_l)— J

-1y L

0
TNi—1) — —1.
)\jflfo' 1-6 (J 1)

TN ~

>‘j*1 — 0

Therefore, Ruhe suggested to update H; ;_; according to

1 0
L H o -1 ks
2.7 H. L [ 107707 1—017J J )
( ) Jj+1,7 ( 0 HTL”

to maintain the approximate fulfilment of the Arnoldi recurrence (2.6).

He arrived at a first version of the rational Krylov method in Algorithm 1. In
step 5: Hj ; denotes the submatrix of ;4 ; which is obtained by dropping the last
row.

Algorithm 1. Rational Krylov method; preliminary version.

1: Start with initial vector v; with ||v1]| = 1, and initial A; and &
2: r=A(o) LAy

3: for j =1,2,... until convergence do

4:  orthogonalize hj = VHr r| =r—Vhj, hjy1; = |rL]

5:  compute 0 = mineig H; ; with corresponding eigenvector s
6: A1 =N+ 155N —0)

T Hing =t — 15,

8 wipr =ry/[rul

9: 1= A(0) T ANj+1)vi1
10: end for

This version of rational Krylov turned out to be inefficient. To improve its con-
vergence properties Ruhe [16] suggested to modify the last column of H;4 ; and
to adjust A;i1, the diagonal of H;y;; and s according to steps 5:-7: in an inner
iteration so that the Arnoldi recursion (2.6) hold approximately and the residual
r = A(o) ' A(X\j11)V;s be enforced to be orthogonal to V;. Only after this inner
iteration has converged, the search space V; is expanded and the outer iteration con-
tinues. Again this requirement is automatically satisfied for linear eigenproblems.
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If H;11,; has already been updated according to step 7: then H; ;s = 0 holds, and
by Lagrangian interpolation we approximately have

A0) A1)V = ViHj 4 rie]
from which we obtain

I s
(28) Ay A | E ] =il b e

0 S5
Here 5 is the leading j — 1 vector of s and
ki = V2 A(0) " AN Vs = Vi

Multiplying (2.8) by the inverse of the matrix in brackets from the right and by VJH
from the left one gets a new Hessenberg matrix

1~
H;j = [Hjj-1,kj] [Ijol :11 S} = [Hjj-1,—s; 'Hjj-15+ 55 kj].

J
Finally, H; ;s = H;  ;j—15 4+ s;h; = 0 yields that the last column of H; ; has to be
replaced by h; + s, k.

Thereafter s, A\j4+1 and H;;;; have to be updated according to steps 5:-7: of
Algorithm 1, and these steps have to be repeated until (hopefully) the residual has
become orthogonal to the search space V.

The final version of the rational Krylov method is contained in Algorithm 2 where
we neglected details about locking the converged eigenvalues, purging the unwanted
directions in the search space, and updating the pole o.

Algorithm 2. Rational Krylov method; final version.

1: start with initial vector V = [v1] with |jv1]] = 1, and initial A and o; set j =1
2: set hj =0;; s =¢;:=(0,...,0, )T € RV; x = vy;

3: compute 7 = A(0) "' A(N)z and k; = V/Tr

4: while ||k;|| > ResTol do

5:  orthogonalize r = r — V]H k;
6:  set hy = hj + kjs; '
7:  compute § = mineig H; ; with corresponding eigenvector s
8 x=1V;s
9: update A=\ + 1249()\70)
10:  update H;; = 72, H;; — 1451

-0
11:  compute r = A(o) "' A(N)x and k; = V}Tr
12: end while
13: compute hjy1; = 7]
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14: if |h;y1 ;] >EigTol then

15:  wvjp1 =r/hjt1,; 5 =7+ 1 GOTO 2:

16: end if

17: Accept eigenvalue A\; = A and eigenvector z; = x

18: If more eigenvalues wanted, choose next 6 and s, and GOTO 8:

3. RATIONAL KRYLOV, AN ITERATIVE PROJECTION METHOD

Ruhe motivated the inner iteration and the requirement to make sure that the
residual is orthogonal to the search space only by analogy to the linear case where
it is satisfied automatically. Hager in his thesis [5] states: “The inner iteration is
heuristically proposed, the condition for the inner iteration to converge and when
it converges to what it actually converges are left to the domain of future research,
we are looking forward to forthcoming papers of Ruhe.” So, obviously both authors
were not aware that the inner iteration is nothing else but a solver of the projected
nonlinear eigenproblem

(3.1) VHA(e) P ANV s = 0.

Algorithm 3. Inner iteration.

1: Start with V such that VHV = I, initial A and o and H ~ VH A(o) "t A(\)V
2: Replace last column of H by k = VH A(c) 7L A(A\1)v;

3: for j =1,2,... until convergence do

4:  compute § = min eig H with corresponding eigenvector s

5 A1 = A+ 15 (N — )

6: k=VHA(0)"LA\j41)Vs

7 H={%H - 550 +1/sj kel

8: end for

We were not able to prove the local convergence of the inner iteration which can
be rewritten as Algorithm 3. However, the following lemma is obvious.

Lemma 3.1. If the inner iteration converges, then it converges to a solution (5\, x),
x = Vs of the projected nonlinear eigenproblem (3.1).

Hence, the final version of rational Krylov is an iterative projection method. In
every step the nonlinear eigenproblem A(c)~!A(N)z = 0 is projected to a search
space V, and V is expanded by the orthogonal complement of the residual r =
A(c)"LA(N)Vs of the Ritz pair with respect to V. Thus, one ends up with Algo-
rithm 4:
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Algorithm 4. Rational Krylov method, an iterative projection method.
1: start with initial vector V' = [v1] with ||v1|| = 1, initial A and o

2: for j =1,2,... until convergence do

3:  solve projected eigenproblem V7 A(c)"1A(A\)V's = 0 for (), s)

4:  compute Ritz vector x = Vs and residual r = A(c) ANz

5:  orthogonalize r =r — VV

6: expand searchspace V = [V, r/|r|]

7: end for

Two observations are at hand. First, the inner iteration is a solver of a nonlin-
ear eigenproblem (3.1) of small dimension. Hence, it can be replaced in step 3: of
Algorithm 4 by any method for dense nonlinear eigenproblems like solvers taking ad-
vantage of the characteristic equation [8], [9], [24], inverse iteration [13], the method
of successive linear problems [13] which are all quadratically convergent, or residual
inverse iteration [11].

Secondly, expanding the search space it is not necessary to use the residual of
the problem that is projected to the search space but every direction is fine which
has a high approximation potential for the eigenvector wanted next. Following this
line the second author in [19] and [22] proposed two iterative projection methods for
problem (1.1).

In [19] the search space is expanded by the orthogonal complement of r =
A(o)"TA(MN)Vs, where (), Vs) is a Ritz pair of the projected problem

(3.2) VEANVSs =0.

This choice was motivated by the residual inverse iteration which is known to con-
verge linearly where the contraction constant satisfies O(|c — A|). For linear eigen-
problems this method reduces to the shift-and-invert Arnoldi method, and therefore,
it was called Arnoldi method.

In [22] the search space is expanded by an approximate solution ¢ of the correction

(1 20y (12,

where (A, z) is the current Ritz pair of the projected problem (3.2) and r = A(\)x is

equation

its residual. This method obviously generalizes the Jacobi-Davidson method intro-
duced by Sleijpen and van der Vorst for linear problems in [18] and for polynomial
eigenproblems in [17]. In this case it can be shown that the search space is expanded
by an approximation to the direction v = A(X)A’(\)z obtained from the inverse
iteration.

A further disadvantage when considering the projected problem (3.1) instead
of (3.2) is the fact that symmetry properties of the underlying problem (1.1) are
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destroyed. If for instance A(-) is a family of real symmetric matrices such that the
eigenvalues of problem (1.1) allow a minmax characterization, then this property is
inherited by the projected problems (3.2). Hence, (3.2) can be solved efficiently by
safeguarded iteration [21], which converges quadratically or even cubically if A’())
is positive definite. For this type of problems the Jacobi-Davidson method was pro-
posed in [3], the Arnoldi method in [20]. Similarly, symmetry properties of the
spectrum for conservative gyroscopic eigenproblems or Hamiltonian problems which
can be exploited in the solution process of the projected problem are destroyed if
problem (3.1) is used.

The numerical example in the next section demonstrates that the inner iteration
in Algorithm 3 usually does not converge very fast, and the original rational Krylov
method in Algorithm 2 is inferior to other iterative projection methods. However,
there is one advantage of Ruhe’s approach. The solvers for dense nonlinear eigen-
problems need the explicit form of the projected problem (3.1) or (3.2) whereas
Algorithm 2 only needs a procedure that yields the vector A(c)~tA(\)x for a given
vector x.

4. NUMERICAL EXPERIMENTS

To test the methods we consider a mathematical model which describes the prob-
lem governing free vibrations of a tube bundle immersed in a slightly compressible
fluid under the following simplifying assumptions: The tubes are assumed to be
rigid, assembled in parallel inside the fluid, and elastically mounted in such a way
that they can vibrate transversally, but they can not move in the direction perpen-
dicular to their sections. The fluid is assumed to be contained in a cavity which
is infinitely long, and each tube is supported by an independent system of springs
(which simulates the specific elasticity of each tube). Due to these assumptions,
three-dimensional effects are neglected, and so the problem can be studied in any
transversal section of the cavity. Considering small vibrations of the fluid (and the
tubes) around the state of rest, it can also be assumed that the fluid is irrotational.

Mathematically this problem can be described in the following way (cf. [12], [4]).
Let © C R? (the section of the cavity) be an open bounded set with Lipschitz
boundary I'. We assume that there exists a family Q; # 0, j = 1,..., K, (the
sections of the tubes) of simply connected open sets such that Q; C Q for every j,
Qj NQ; =0 for j # 4, and each ; has a Lipschitz boundary I';. With this notation

K
we set Qg = Q\ J ©;. Then the boundary of Qy consists of K + 1 connected
j=1

components which are I and I';, j =1,..., K.
We denote by H'(Qo) = {u € L?*(Q): Vu € L*(Qo)?} the standard Sobolev
space equipped with the usual scalar product. Then the eigenfrequencies and the
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eigenmodes of the fluid-solid structure are governed by the following variational
eigenvalue problem (cf. [12], [4]).

Find X € R and u € H*(Q) such that for every v € H ()

K
(4.1) c? Vu-Vvd,r:)\/uvdx—i—Z%/ unds-/ vnds.
Qo | — Vi Ay J I

Here u is the potential of the velocity of the fluid, ¢ denotes the speed of sound
in the fluid, g is the specific density of the fluid, k; represents the stiffness constant
of the spring system supporting the tube j, m; is the mass per unit length of the
tube j, and n is the outward unit normal to the boundary of .

We consider the rational eigenvalue problem (4.1) where Q is the ellipse with
center (0,0) and length of semiaxes 8 and 4, and Q;, j = 1,...,9 are circles with
radius 0.3 and centers (—4, —2), (0, —2), (4,-2), (—5,0), (0,0), (5,0), (—4,2), (0,2)
and (4,2). We assume that all constants in problem (4.1) are equal to 1.

Discretizing problem (4.1) by finite elements one gets a rational matrix eigenvalue

problem
(4.2) ANz := —Ax + ABz + %C’x =0

where C collects the contributions of all tubes. A, B, and C' are symmetric matrices,
A and C' are positive semidefinite, and B is positive definite. In our example the
dimension is n = 36040.

Problem (4.2) has 28 eigenvalues A\; < ... < Agg in the interval J; = (0,1)
(cf. [21]), and a large number of eigenvalues greater than 1.

We determined approximations to the eigenvalues in [0,1) by the rational Krylov
method as implemented in [7], by the iterative projection method from Algorithm 4
where the projected rational eigenproblems were solved by linearizing the equiva-
lent quadratic eigenproblem (1 — A)VTA(A)Vy = 0, and by the nonlinear Arnoldi
method from [20], i.e. the iterative projection method (3.2), where the projected
problems were solved by safeguarded iteration. All three methods were able to find
all 28 eigenvalues.

The experiments were run under MATLAB 6.5 on an Intel Centrino M processor
with 1.7GHz and 1GB RAM. Figs. 1 to 3 show the time consumption and the
convergence history of the three methods. In every case the initial pole was chosen
to be o = 0.1, and the iteration was terminated if the residual was less than 107°.
In all plots plus signs indicate the eigenvalues found, and circles mark changes of the
pole o.

In the plots on the left the solid line indicates the total time consumption of the
iteration, and in plots 2 and 3 the dashed lines mark the time needed for solving the
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Figure 1. Time consumption and convergence history for rational Krylov.
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projected nonlinear eigenproblems, which is only a very small portion of the total

CPU time. Replacing the inner iteration
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reduces the computing time by more than 50 %, and the nonlinear Arnoldi method
is even more efficient and needs only 11 % of the nonlinear rational Krylov method.

Neither the rational Krylov method in its original form nor its modification with
an explicit solver of the projected problem (3.1) was able to determine eigenvalues
larger than the pole of problem (4.2) in a systematic way. For different choices of
initial approximations for ¢ and A they both found only two or three eigenvalues
before they diverged. The nonlinear Arnoldi method taking advantage of the sym-
metry of problem (4.2) and of the fact that its eigenvalues can be characterized
as minmax values of a Rayleigh functional (cf. [23]) computed eigenvalues greater
than 1 one after the other without problems. Fig. 4 shows the time consumption and
the convergence history of Arnoldi’s method for the 15 eigenvalues in the interval
(1,2.5).

total time

eigenvalue approximation

time for solving projected problems

0 10 20 30 40 50 60 70 80
iteration iteration

Figure 4. Time consumption and convergence history for eigenvalues in (1,2.5).
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