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COMPLEXITY OF AN ALGORITHM FOR SOLVING

SADDLE-POINT SYSTEMS WITH SINGULAR BLOCKS

ARISING IN WAVELET-GALERKIN DISCRETIZATIONS*

� �������	� 
 � � � �
, Ostrava

Abstract. The paper deals with fast solving of large saddle-point systems arising in
wavelet-Galerkin discretizations of separable elliptic PDEs. The periodized orthonormal
compactly supported wavelets of the tensor product type together with the fictitious domain
method are used. A special structure of matrices makes it possible to utilize the fast Fourier
transform that determines the complexity of the algorithm. Numerical experiments confirm
theoretical results.
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1. Introduction

In this paper we propose a fast method for finding a pair (u, λ) ∈ 
 n × 
 m that
solves the linear system of algebraic equations called the saddle-point system:

(1)

(
A B>

B 0

) (
u
λ

)
=

(
f
g

)
,

where the (n×n) matrix A is symmetric positive semi-definite, the (m×n) matrix B
has full row-rank and the vectors f , g are of the order n, m, respectively. We will be
interested especially in systems (1) with n large, A singular, B sparse and m much

smaller than n. Moreover, we will assume that the defect of A, i.e. l = n− rankA,
is much smaller than m. Systems of this type arise e.g. when we want to solve

quadratic programming problems with equality constraints [3], mixed formulations

*This work was supported by grant HPRNT-CT-2002-00286 and MSM 272400019.
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of second-order elliptic problems [1], or if we use the fictitious domain method to

Dirichlet problems [5].

The paper has been inspired by a class of saddle-point systems arising in wavelet-
Galerkin discretizations of separable elliptic PDEs. It is well known that the or-

thonormal compactly supported wavelets are defined on a bounded interval (or a
rectangular domain) via periodization [4]. Therefore they are a natural tool for

solving problems with periodic boundary conditions. Other types of boundary con-
ditions (e.g. Dirichlet or Neumann) can be treated by means of the fictitious domain

method [6], [9]. In these cases, it is necessary to solve the saddle-point system (1),
where the diagonal block A represents the PDE and the off-diagonal block B de-
scribes the geometry of the domain. More precisely, A is the stiffness matrix on a
new fictitious domain where the periodic boundary conditions are considered. On

the one hand, it can happen that the matrix A is singular, on the other hand, the
periodic boundary conditions together with separability of the PDE lead to the block

circulant structure of A. Since circulant matrices are diagonalizable by the discrete
Fourier transform (DFT), one can evaluate eigenvalues of A efficiently by the fast
Fourier transform (FFT). This makes the situation much easier because it is possible
to treat the singularity of A without great computational costs.
There are several basic approaches used for solving the saddle-point systems (1).

We turn our attention to the class of methods called primary (the Schur complement

methods, the range space methods [8] or static condensation [2], [1]). The key idea
is based on eliminating the first unknown u. If A is non-singular, we obtain a linear
system in terms of the second unknown λ with a positive definite matrix. Then
it is natural to use the conjugate gradient method (CGM) for computation of the

solution.

The situation is not so easy if A is singular because the first unknown u can not be
eliminated completely from (1). We obtain a (second) linear system in terms of λ and

a new unknown, sayα, that represents the correspondence of u to the null-space ofA.
The new linear system has again the saddle-point structure and its diagonal block is

non-singular in many practical situations. Therefore we can repeatedly eliminate the
first unknown, now it is λ, and obtain a (third) linear system in terms of α with a

positive definite matrix. The resulting linear system can be solved easily, e.g. by a di-
rect method thanks to the small order. Let us point out that the CGM can be utilized

during the elimination process in order to compute the matrix and the right-hand
side vector of the third linear system without necessity to compute and store the diag-

onal block of the second linear system. Although this idea seems to be cumbersome,
we will show its efficient realization leading to an algorithm with very small memory

requirements. In advance, we propose a fast implementation for the saddle-point
systems arising in the wavelet-Galerkin discretizations of PDEs mentioned above.
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The paper is organized as follows. In Section 2, we describe the wavelet-Galerkin

discretization of a model PDEs problem. In Section 3, we summarize theoretical
results concerning existence and uniqueness of the solution to the saddle-point sys-
tems (1) and the elimination of the first unknown in the case of singularA. A general
scheme of the algorithm is proposed in Section 4. A fast implementation based on
the use of the FFT and the Kronecker product is described in Section 5. Finally,

Section 6 presents results of numerical experiments.

2. Wavelet-Galerkin discretization of model problem

Let ω be a bounded domain in 
 2 with a Lipschitzian boundary ∂ω. We consider
the following Dirichlet problem:

−∆u + cu = f in ω,(2)

u = g on ∂ω,(3)

where f , g are sufficiently smooth functions defined on ω, ∂ω, respectively, and c > 0
is a given constant.

PSfrag replacements

Ω

Ω

ω

ω

∂

∂

Figure 1. Fictitious domain.

We imbed ω in a larger rectangular domain Ω, i.e. ω ⊂ Ω, with the boundary
denoted by ∂Ω; see Fig. 1. For the sake of simplicity, we shall assume that it is
possible to take Ω = [0, 1] × [0, 1]. On Ω, we shall solve (2), (3) by means of the
fictitious domain method with the boundary Lagrange multipliers; see [5]. To this
end, we replace (2), (3) by the following saddle-point problem:

(4)





Find (ũ, λ) ∈ V (Ω)×H−1/2(∂ω) such that

aΩ(ũ, v) =
∫

Ω

f̃v dx dy + 〈λ, v〉 ∀ v ∈ V (Ω),

〈µ, ũ− g〉 = 0 ∀µ ∈ H−1/2(∂ω),
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where V (Ω) is a well chosen subspace of H1(Ω), H−1/2(∂ω) denotes the dual to
H1/2(∂ω) with the duality pairing 〈·, ·〉, f̃ ∈ L2(Ω) extends f from ω onto Ω and

aΩ(v, w) =
∫

Ω

(∇v · ∇w + cvw) dx dy ∀ v, w ∈ V (Ω).

It is well known that the saddle-point problem (4) has a unique solution (ũ, λ) and
that u = ũ|ω solves a weak formulation of (2), (3).

Let us specify V (Ω). Since we shall discretize the problem (4) by using periodized
function spaces, it is natural to choose

(5) V (Ω) = H1
per(Ω),

i.e. V (Ω) is the subset of function from H1(Ω) periodic at the boundary ∂Ω.
Let V J be the family of finite dimensional subspaces of H1

per(Ω) defined by

V J =
{

v : v =
∑

kx

∑

ky

vkx,kyϕJ
kx,ky

(x, y), vkx,ky = vkx+nx,ky , vkx,ky = vkx,ky+ny

}

with n := dim V J = nxny, where J = (Jx, Jy) is a multiindex,

ϕJ
kx,ky

(x, y) = 2(Jx+Jy)/2ϕ(2Jxx− kx)ϕ(2Jyy − ky)

are wavelet-scaling functions on the wavelet-levels Jx, Jy and nx = 2Jx , ny = 2Jy ,

respectively. We will assume that ϕ is an orthonormal compactly supported wavelet-
scaling function with sufficiently high regularity; see [4].

Since the basis functions ϕJ
kx,ky

(x, y) are of the tensor product type, their supports
induce on Ω a dyadic rectangular mesh DJ consisting of rectangles

Rkx,ky =
[
2−Jx(kx − 1), 2−Jxkx

]
×

[
2−Jy (ky − 1), 2−Jyky

]
.

We will restrict ourselves to the situations where the intersection between ∂Ω and
any rectangle Rkx,ky is either empty or an edge. Then

DJ = {Rkx,ky : kx = 1, . . . , nx, ky = 1, . . . , ny}.

Let {ΛJ} be a family of finite dimensional spaces approximating H−1/2(∂ω). Be-
fore giving their definitions, we will approximate the boundary curve ∂ω by

[|∂ω|] =
⋃

Rkx,ky∈DJ
∂ω

Rkx,ky ,
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where DJ
∂ω is the subset of DJ defined by

DJ
∂ω = {Rkx,ky ∈ DJ : Rkx,ky ∩ ∂ω 6= ∅};

see Fig. 2. Let us now define

ΛJ = {µ : µ|Rkx,ky
∈ P0(Rkx,ky ) ∀Rkx,ky ∈ DJ

∂ω},

i.e. ΛJ contains functions that are constant on any rectangle Rkx,ky intersected by
the boundary curve ∂ω. It is easily seen that m := dim ΛJ = cardDJ

∂ω.

Figure 2. Approximation of the boundary ∂ω by [|∂ω|].

If we replace V (Ω) by V J and H−1/2(∂ω) by ΛJ in (4), we obtain the wavelet-
Galerkin discretization of the problem (2), (3):

(6)





Find (uJ , λJ ) ∈ V J × ΛJ such that

aΩ(uJ , vJ) =
∫

Ω

f̃vJ dx dy + 〈〈λJ , vJ 〉〉 ∀ vJ ∈ V J ,

〈〈µJ , uJ − gJ〉〉 = 0 ∀µJ ∈ ΛJ ,

where gJ is an appropriate extension of g from ∂ω to [|∂ω|] and 〈〈·, ·〉〉 approximates
the duality pairing 〈·, ·〉 so that

〈〈µJ , vJ 〉〉 =
∫

[|∂ω|]
µJvJ dx dy ∀µJ ∈ ΛJ ∀ vJ ∈ V J .

If we rewrite (6) into the algebraic form, we obtain the saddle-point system (1).

Its diagonal block A is singular provided c = 0 because it is the stiffness matrix
of the Laplace operator on the domain Ω, where periodic boundary conditions are
considered. Since V J are represented by tensor product functions, the matrix A can
be described by the Kronecker product as

(7) A = Ax ⊗ Iy + Ix ⊗Ay,
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where Ix, Iy and Ax, Ay are of the order nx, ny, respectively. Moreover, Ax, Ay

are circulant matrices because of the presence of the periodic boundary condition
on ∂Ω. For more details about A and B, we refer to [9].

3. Preliminaries

Let us denote the null-space and the range-space of B by

N (B) = {v ∈ 
 n : Bv = o} and R(B) = {µ ∈ 
 m : µ = Bv},

respectively. The following statements are well known.

Lemma 1. Let A be symmetric positive semi-definite. Then v ∈ N (A) iff
v>Av = 0.

Theorem 1. The saddle-point system (1) has a unique solution iff

(8) N (A) ∩ N (B) = {o}.

We will assume that A in the saddle-point system (1) is singular with l =
dimN (A), l > 1. Consider an (n × l) matrix N whose columns span the null-
space N (A) and denote by A† a generalized inverse to A that satisfies

(9) A = AA†A.

Let us point out that A† is not determined by (9) uniquely. The following remark
shows that we can easily find a symmetric positive semi-definite A†.

�����������
1. Any symmetric positive semi-definite matrix A can be factored

into a product LDL> with a non-singular lower tri-diagonal L and a diagonal D =
diag(d1, . . . , dn); see [7]. Let us define D† = diag(d†1, . . . , d

†
n), where d†i = 1/di if

di 6= 0 and d†i = 0 if di = 0. It may be verifed that A† = (L>)−1D†L−1 is symmetric

positive semi-definite and satisfies (9).

296



Theorem 2. Let us assume that (8) is satisfied and A† is symmetric positive

semi-definite. The second component λ of the solution to (1) is the first component
of the solution to the linear system

(10)

(
BA†B> −BN
−N>B> 0

) (
λ

α

)
=

(
BA†f − g
−N>f

)
.

The first component u of the solution to (1) is given by the formula

(11) u = A†(f −B>λ) + Nα.

���������
. First we shall prove that there is a unique solution to (10). Under

our assumptions, it is easy to show that BA†B> is symmetric positive semi-definite
and −N>B> has full row-rank. Therefore (10) is again a saddle-point system of the

type (1). Let us have µ ∈ N (BA†B>)∩N (−N>B>) and denote v = B>µ. Because
of N>v = o, v belongs to R(A) so that v = Aw. Furthermore, µ>BA†B>µ = 0
yields

0 = v>A†v = w>AA†Aw = w>Aw.

According to Lemma 1, we obtainw ∈ N (A) so that v = o or equivalentlyB>µ = o.
The last equality gives µ = o because B has full-row rank. Hence N (BA†B>) ∩
N (−N>B>) = {o} and Theorem 1 implies that there is a unique solution to the
saddle-point system (10). It remains to prove that the pair (u, λ) satisfying (10)
and (11) is a solution to the saddle-point system (1). It may be directly verified by
substituting (11) and then (10) into (1). �

The algorithm proposed in the next section is based on the previous theorem. We
will confine ourselves to situations in which BA†B> is non-singular. A sufficient

condition guaranteeing this property is proved in the following theorem.

Theorem 3. (i) The matrix BA†B> in (10) is symmetric positive definite if

(12) N (A†) ∩R(B>) = {o}.

(ii) If A† is the Moore-Penrose pseudoinverse to A then (12) is equivalent to

(13) N (A) ∩ R(B>) = {o}.
���������

. Denote v = B>µ for µ 6= o. Because of v 6= o, the relation (12) yields
v 6∈ N (A†). Using Lemma 1 for A†, we obtain

µ>BA†B>µ = v>A†v > 0

so that the statement (i) holds. The statement (ii) follows from the fact that if A† is
the Moore-Penrose pseudoinverse to A, then N (A) = N (A†). �
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4. Algorithms

In this section we will propose an algorithm for solving the saddle-point system (1)

with singular A. First we recall the well known algorithm for the case of non-
singular A. We will assess computational costs of both algorithms by the number of
floating point operations (flops) that are perfomed by matrix-vector multiplications.
Let us denote by nA† and mB the number of flops needed for the evaluation of

one of the matrix-vector products A†v, N>v, Nα and Bv, B>µ, respectively.

4.1. Algorithm for the non-singular case
Let A be non-singular. Eliminating the first unknown u from the saddle-point

system (1), we obtain u = A−1(f − B>λ) and the linear system Cλ = p, where
C = BA−1B> is positive definite and p = BA−1f−g. The algorithm can be divided
into three steps:

Algorithm 4.1

Step 1 : Assemble p = BA−1f − g.
Step 2 : Solve the linear system Cλ = p using the CGM.
Step 3 : Assemble u = A−1(f −B>λ).

The computational costs of Step 1 and Step 3 are 2(nA† + mB) flops. The
matrix-vector products Cµ in the CGM are performed by successively evaluating
the term B(A−1(B>µ)). Assuming that the CGM terminates after m iterations
and one multiplication Cµ is needed per iteration, the computational costs of the

Step 2 are m(nA† + 2mB) flops.

Lemma 2. Algorithm 4.1 requires (m + 2)nA† + 2(m + 1)mB flops.

4.2. Algorithm for the singular case
Let A be singular and let (8) and (12) be satisfied. We will use Theorem 2 in

order to propose the algorithm. First we compute the pair (λ, α) solving the linear
system (10) and then we evaluate u by means of (11). In order to simplify the
presentation, we introduce new notation:

C = BA†B>, p = BA†f − g,

D = −N>B>, q = −N>f ,

where C is an (m×m) positive definite matrix, D is an (l×m) full row-rank matrix,
p is an m-vector and q is an l-vector. Then the linear system (10) reads as follows:

(14)

(
C D>

D 0

) (
λ

α

)
=

(
p
q

)
.
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Since C is non-singular, we can eliminate the first unknown λ from (14). We obtain

λ = C−1(p−D>α)(15)

and

Eα = r,(16)

where E = DC−1D> is a positive definite (l × l) matrix and r = DC−1p − q is an
l-vector.

Let us point out that, under our assumptions, D, E, p, q and r are relatively
small. On the other hand, C is large and non-sparse and therefore we shall propose
the algoritm so that it is not neccesary to assemble C. The key idea is the same as
in Algorithm 4.1 and consists in the fact that the matrix-vector products Cµ can be

computed in the CGM iterations by successively evaluating the term B(A†(B>µ)).

Algorithm 4.2

Step 1.a: Assemble D = −N>B>.

Step 1.b: Assemble p = BA†f − g.
Step 1.c: Assemble q = −N>f .
Step 1.d : Solve the linear systems CX = D> by the CGM.

Step 1.e: Solve the linear system Cx = p by the CGM.
Step 1.f : Assemble E = DX.
Step 1.g : Assemble r = Dx− q.
Step 1.h: Solve the linear system Eα = r.
Step 2: Assemble λ = x−Xα.

Step 3: Assemble u = A†(f −B>λ) + Nα.

Let us point out that the formula in Step 2 is in fact (15) because X and x are
computed in Step 1.d and Step 1.e so that X = C−1D> and x = C−1p, respectively.
The computational costs of Algorithm 4.2 are determined above all by Step 1.a,

Step 1.d and Step 1.e. The flops required by the other steps are not significant and
therefore we do not count them. Step 1.a requires mnA† flops. Let us point out

that Step 1.d represents l linear systems of order m solved by the CGM. Since one
CGM requiresm(nA†+2mB) flops, Step 1.d and Step 1.e require (l+1)m(nA†+2mB)
flops.

Lemma 3. Algorithm 4.2 requires O((l + 2)mnA† + 2(l + 1)mmB) flops.
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5. Fast implementation

In this section we will show how to evaluate efficiently the matrix-vector prod-
ucts A†v, Nα and N>v in Algorithm 4.2 provided A is of the form (7), i.e.

(17) A = Ax ⊗ Iy + Ix ⊗Ay,

where Ax, Ay are circulant symmetric positive semi-definite, Ix, Iy are identities
and ⊗ stands for the Kronecker product. The subscripts x, y indicate that the

corresponding matrix is of the order nx, ny, respectively. Since we will use the FFT,
we assume that nx, ny are powers of two.

The multiplying procedures forA are based on properties of the circulant matrices.

5.1. Circulant matrices and the DFT

A matrix A is called the circulant matrix if

A =




a1 an . . . a2

a2 a1 . . . a3

a3 a2 . . . a4
...

...
. . .

...
an an−1 . . . a1




,

i.e. each column of A is a cyclic shift of the preceding column to the bottom. Let us
denote the first column of A by a, i.e. a = (a1, a2, . . . , an)>.
There are important conections between the circulant matrices and the DFT. A

DFT matrix is defined by F = (ω(k−1)(l−1))n
k,l=1, ω = e−i2 � /n. The DFT of the

n-vector v is

v̂ = Fv.

If n is a power of two, then it is possible to evaluate this product by the FFT with
O(n log2 n) flops [7]. In this case, we will use the notation v̂ := fft(v). Let us point
out that F is symmetric and fulfils FF

>
= nI so that

(18) v =
1
n
Fv̂,

if v has real entries. In view of (18), the inverse DFT can be evaluated again by
the FFT with O(n log2 n) flops, which will be denoted by v := ifft(v̂).
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Lemma 4. Let A be a circulant matrix. Then A = F−1ΛF, where Λ = diag(â).
���������

. It is well known that the Fourier transform changes translation opera-
tors into modulation ones [10]. The equality of columns in FA = ΛF represents this
property. �

Let us point out that diagonal entries of Λ are eigenvalues of A and columns
of F−1 are corresponding eigenvectors. Lemma 4 proves that the eigenvalues of a

circulant matrix can be computed very cheaply by the FFT of its first column a
and, moreover, the eigenvectors need not be computed at all because they are known

apriori.

Lemma 5. Let A be a circulant matrix, Λ = diag(â) and let Λ† be defined

so that the non-vanishing entries of Λ are inverted. Then A† = F−1Λ†F is the
Moore-Penrose pseudoinverse to A.
���������

. It is easy to verify that A† fulfils the relations defining the Moore-

Penrose pseudoinverse, see e.g. [7]. �

Using Lemma 5, we can evaluate the matrix-vector product A†v by the following
three steps:

1◦ v := fft(v), 2◦ v := Λ†v, 3◦ A†v := ifft(v).

Since Λ† is diagonal, it requires O(2n log2 n + n) flops and the preliminary compu-
tation of â.
Using Lemma 4, we can evaluate the matrix-vector products Nα and N>v, where

the columns ofN span the null space of the circulant matrixA. We can suppose that
N consists of eigenvectors from F−1 corresponding to the positions of the vanishing
eigenvalues ofA, i.e. to the vanishing entries of â. In order to determine the positions
of the desirable columns in F−1, we introduce the operation indâ,

α ∈ 
 l ⇐⇒ vα := indâ(α) ∈ 
 n ,

where the entries of α are put in vα to the positions of zeros in â and the remaining
entries of vα vanish. Let us denote by ind

−1
â the reverse operation to indâ, i.e.

α := ind−1
â (vα).

It is easily seen that

Nα = F−1indâ(α),

N>v = ind−1
â (F−1v).
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Hence the matrix-vector products Nα and N>v can be evaluated by two steps:

1◦ vα := indâ(α), 2◦ Nα := ifft(vα)

and

1◦ v := ifft(v), 2◦ N>v := ind−1
â (v),

respectively. The computational costs are O(n log2 n) flops in both cases.

5.2. Kronecker product

Consider matrices Ax and Ay. Their Kronecker product is defined by

Ax ⊗Ay =




ay
11Ax . . . ay

1ny
Ax

...
. . .

...

ay
ny1Ax . . . ay

nyny
Ax


 ,

where ay
kl are the entries of Ay. In other words, Ax ⊗Ay is the n× n matrix (with

n = nxny) whose (k, l)th block is ay
klAx. The relationship between the Kronecker

product and the matrix-matrix product is given by the equality [7]:

(19) (Ax ⊗Ay)(Bx ⊗By) = AxBx ⊗AyBy.

Let us point out that (19) implies

(20) (Ax ⊗Ay)−1 = A−1
x ⊗A−1

y .

It is a favourable feature of the Kronecker product that matrix-vector products

(Ax ⊗Ay)v can be split into multiplications by the particular matrices Ax and Ay.
To this end, we introduce the operation vec,

V = (v1, . . . ,vny ) ∈ 
 nx×ny ⇐⇒ vec(V) =:




v1
...

vny


 ∈ 
 nx ny .

Denote by vec−1 the reverse operation to vec, i.e. if v := vec(V), then V :=
vec−1(v).
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Lemma 6. The identity

(Ax ⊗Ay)v = vec(AxVA>
y )

holds, where V := vec−1(v).

���������
. The proof follows by direct evaluation of the products. �

Using Lemma 6, we can evaluate the matrix-vector product (Ax ⊗Ay)v in the
following way:

V := vec−1(v), V := AxV, V := VA>
y , (Ax ⊗Ay)v := vec(V).

Denote by nAx , nAy the number of flops needed for evaluation of the matrix-vector

products Axvx, Ayvy , respectively. Since vec and vec−1 do not require any flops,
the computational costs of (Ax ⊗Ay)v are nynAx + nxnAy flops.

5.3. Multiplying procedures

We will combine the techniques from the previous two sections in order to obtain
fast multiplying procedures for the matrix (17). We will use the following notation:

Fx, Fy denote the DFT matrices of the orders nx, ny, respectively; ax, ay denote
the first columns of the circulant matrices Ax, Ay, respectively.

Lemma 7. Let Ax, Ay be circulant matrices and A = Ax⊗ Iy + Ix⊗Ay. Then

A = F−1ΛF, where F = Fx ⊗ Fy, Λ = Λx ⊗ Iy + Ix ⊗ Λy, Λx = diag(âx) and
Λy = diag(ây).

���������
. Using Ax = F−1

x ΛxFx, Ay = F−1
y ΛyFy (see Lemma 4) and (19), we

obtain

A = F−1
x ΛxFx ⊗ F−1

y Fy + F−1
x Fx ⊗ F−1

y ΛyFy

= (F−1
x ⊗ F−1

y )(Λx ⊗ Iy + Ix ⊗Λy)(Fx ⊗ Fy).

Then (20) proves the lemma. �

Let us point out that Lemma 7 is formally the same as Lemma 4. Therefore a

lemma analogous to Lemma 5 holds.
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Lemma 8. Let Ax, Ay be circulant matrices, Λx = diag(âx), Λy = diag(ây),
F = Fx ⊗ Fy, and let Λ† be defined so that the non-zero entries of Λ = Λx ⊗ Iy +
Ix ⊗ Λy are inverted. Then A† = F−1Λ†F is the Moore-Penrose pseudoinverse to
A = Ax ⊗ Iy + Ix ⊗Ay.

Using this lemma, we can propose a multiplying procedure for the evaluation of

the matrix-vector product A†v:

Procedure Aplus v

Input: âx, ây, V := vec−1(v)
1◦ V := fft(V)
2◦ V := fft(V>)>

3◦ V := vec−1(Λ†vec(V))
4◦ V := ifft(V)
5◦ V := ifft(V>)>

Output: A†v := vec(V)

Here, we suppose that fft and ifft are independently performed for the individ-
ual columns of the matrices V or V>.

Lemma 9. The multiplying procedure Aplus v requires O(2n log2 n + n) flops.

���������
. Recall that V is an (nx × ny) matrix. The steps 1◦ and 2◦ involve

(21) nyO(nx log2 nx) + nxO(ny log2 ny) = O(n log2 n)

flops. The same flops are required by the steps 4◦ and 5◦. Since Λ† is diagonal, the

step 3◦ requires n flops. �

Lemma 10. Let Ax, Ay be symmetric positive semi-definite matrices with

lx = dimN (Ax), ly = dimN (Ay) and lx > 1, ly > 1, respectively. Let Nx, Ny

be matrices whose columns span the null spaces of Ax, Ay, respectively. Then the

columns of N = Nx ⊗Ny span the null space of A = Ax ⊗ Iy + Ix ⊗Ay.

���������
. Using (19), we obtain

AN = AxNx ⊗Ny + Nx ⊗AyNy = 0⊗Ny + Nx ⊗ 0 = 0.

Since the number of columns in N is the same as dimN (A), the lemma holds. �
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If Ax, Ay are cirulant matrices, we can identify Nx, Ny with the columns of F−1
x ,

F−1
y corresponding to the positions of the vanishing entries of âx, ây, respectively.
To this end, we introduce the operation Indâx,ây

,

α ∈ 
 lx ly ⇐⇒ Vα := Indâx,ây
(α) ∈ 
 nx×ny ,

so that the entries of α are taken as the entries of Vα with the row indices corre-

sponding to the positions of zeros in âx and with the column indices corresponding
to the positions of zeros in ây. The remaining entries of Vα vanish. Let us denote

by Ind−1
âx,ây

the reverse operation to Indâx,ây
, i.e.

α := Ind−1
âx,ây

(Vα).

Using Lemma 10 and Lemma 6, it is easy to verify that

Nα = vec(F−1
x Indâx,ây

(α)F−1
y ),

N>v = Ind−1
âx,ây

(F−1
x vec−1(v)F−1

y ).

Hence the matrix-vector products Nα and N>v can be evaluated by the following
multiplying procedures:

Procedure N alpha

Input: âx, ây, α

1◦ Vα := Indâx,ây
(α)

2◦ Vα := ifft(Vα)
3◦ Vα := ifft(V>

α)>

Output: Nα := vec(Vα)

Procedure Ntranspose v

Input: âx, ây, V := vec−1(v)
1◦ V := ifft(V)
2◦ V := ifft(V>)>

3◦ N>v := Ind−1
âx,ây

(V)
Output: N>v

Lemma 11. The multiplying procedures N alpha and Ntranspose v require

O(n log2 n) flops.
���������

. The computational costs are determined by (21) because Indâx,ây
and

Ind−1
âx,ây

do not require any flops. �
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5.4. Complexity of algorithms
We will assume the multiplying procedures Aplus v, N alpha and Ntranspose v

are used for evaluation of the matrix-vector productA†v,Nα andN>v, respectively.
Then

nA† = O(n log2 n)

in Lemma 2 and Lemma 3. Moreover,

mB = O(m)

since B is sparse. We obtain the following results.

Theorem 4. Algorithm 4.1 for solving the saddle-point system (1) with A non-
singular of the form (17) and with B sparse requires

O((m + 2)n log2 n) flops.

Theorem 5. Algorithm 4.2 for solving the saddle-point system (1) with A sin-
gular of the form (17) and with B sparse requires

O((l + 2)mn log2 n) flops.

Let us point out that faster implementations can be achieved by using paral-
lelizations which can be naturally realized on the level of the general scheme of the

algorithm (parallelization of the CGMs performed in Step 1.d and Step 1.e of Algo-
rithm 4.2) as well as on the level of its fast implementation (parallelization of the

mutually independent FFTs of columns in fft(V) and ifft(V)).

6. Numerical experiments

We will assess complexities of Algorithm 4.1 and Algorithm 4.2 experimentaly. Let
us consider the saddle-point linear system (1) arising in wavelet-Galerkin discretiza-

tion of the problem (2), (3), where ω = {(x, y) ∈ 
 2 : (x/0.2)2 + (y/0.3)2 6 1},
f(x, y) = 1 on 〈−0.5, 0.5〉 × 〈−0.5, 0.5〉, f(x, y) = 0 elsewhere, g ≡ 0 and Ω =
〈−1, 1〉 × 〈−1, 1〉.
If c > 0, then A is non-singular so that we use Algorithm 4.1.
If c = 0, then A is singular with l = 1 (= dimN (A)) and N has one column

whose entries are non-vanishing and equal, e.g. “1”. Since B describes the geometry
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of ω in Ω, we can deduce that B has vanishing columns. Therefore N 6∈ R(B>) so
that (13) is satisfied and Algorithm 4.2 can be used.

All numerical experiments have been performed by Matlab 6 on Pentium(R)4,
3.00GHz with 512MB RAM. We summarize them in Tab. 1. The relative tolerance

terminating the CGM is 10−4 in all cases. With respect to the theoretical results
of Theorem 4 and Theorem 5, the computational time of Algorithm 4.2 should be

approximately three times longer than the computational time of Algorithm 4.1 (for
the same n, m). We can see that the experimental results are better, since we have

sped up the multiplying procedures N alpha and Ntranspose v using the apriori
knowledge of N.
Let us point out that the experimental results affirm high efficiency of the fast

implementation of the proposed algorithm.

c = 1 c = 0
n m time CGM steps time CGM steps
1024 64 0.03 13 0.06 10 + 16
2048 88 0.05 17 0.08 14 + 21
4096 128 0.06 17 0.13 13 + 21
8192 180 0.17 23 0.30 20 + 29

16384 256 0.28 21 0.48 18 + 25
32768 360 0.67 27 1.20 25 + 33
65536 512 2.27 27 5.58 25 + 33

131072 716 7.22 35 15.17 33 + 43
262144 1024 14.72 34 29.33 29 + 38
524288 1432 35.70 45 73.41 43 + 53

1048576 2048 65.56 41 133.75 38 + 49
2097152 2868 173.53 54 347.41 50 + 62
4194304 4096 337.95 48 655.00 42 + 57

Table 1. CPU time (in seconds) and the CGM steps.
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