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Abstract. We study the nonstationary Navier-Stokes equations in the entire three-
dimensional space and give some criteria on certain components of gradient of the velocity 
which ensure its global-in-time smoothness. 
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1. INTRODUCTION 

Consider the three-dimensional Cauchy problem for the Navier-Stokes equations, 

i.e. the system of PDE's (as the numerical values of the constant viscosity and the 

constant density do not play any role here, they are assumed to be equal to 1) 

du \ 
— + u • Vu - Au + Vp = 0 

(1.1) dt V in (0 ,T)x U3 

div u = 0 J 
u(0,x) = uo(x) in R3, 

•This work was supported by the grants No. 201/00/0768 and No. 201/02/P091 of the 
Grant Agency of the Czech Republic and by the Council of the Czech Government 
(project No. 113200007). 
Part of the research was done during the stay of the first author at the Mathematical 
Institute of the Academy of Sciences of the Czech Republic and part of the research was 
done during the stay of the second author at the University of Toulon. 
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where u : (0,T) x U3 -> IR3 is the velocity field, p: (0,T) x {R3 -> R is the pressure, 

0 < T -̂  oo, u 0 : R3 -.> IR3 with divu0 = 0 is the initial velocity. For simplicity, the 

external force is taken to be zero. 

It is well known that for uo G L2((R3) with divuo = 0 there exists at least one 

weak solution (see [7] or also [5] for other types of domains). Nevertheless, the 

fundamental question of the uniqueness and regularity of such solutions is still open. 

On the other hand, there are many criteria which ensure that the weak solution is 

a strong one and thus unique in the class of all weak solutions satisfying the energy 

inequality. Let us summarize here some of them 

• u G L'(I; L5), 2/t + 3/s < 1, 2 ^ * < oo, 3 < 5 < oo (see [16], for the case 5 = 3 

see [14], [4]) 

• u3 G Ll(L, Ls), 2/t + 3/5 ^ \, 4 ^ * < oo, 6 < s < oo (see [9]) 

• u3e L£l(I;LSl), uuu2 G L<2(I;LS2), 

2 ^ s2,t2 ^ oo 

2 ^ h ^ oo, 3 < s_ ^ oo, 2/h + 3/si ^ 1 

(2/t2 + 3/52) + (2/ti + 3/si) < 2 

2/tx+2/t2 ^l,2/Sl+2/s2<l 

(see [10]; the proofs in [9] and [10] are done for the suitable weak solutions as local 

regularity criteria; nevertheless one can easily transform the proofs for the Cauchy 

problem to get global regularity criteria) 

• CJI,O;2 G L£(I;LS), 2/t + 3/s ^ 2, 1 < t ^ oo, § < 5 < oo (see [2]) 

(We denote by uoi the ith component of the vorticity.) 

• Vvx,Vv2 G L*(I;LS), 2/t + 3/s ^ 1, 2 ^ £ ^ oo, 3 ^ 5 ^ oo (see [2]) 

• p G L*(I; Ls), 2/t + 3/s ^ 2, 1 ^ £ ^ oo, § < 5 ^ oo (see [3]) 

• Vu3 G L£(I;LS), 2/t + 3/s ^ §, | ^ t^ oo, 2 <£ 5 ^ oo (see [12], independently 

also [18]) 

• p_ bounded from below, see [15] 

(By p_ we understand the negative part of the pressure.) 

• p_ G L'1 (I; LS1 (17)), 2/h + 3/si ^ 2, 1 < h ^ oo, § < sx ^ oo and 

u G Lt2(I;LS2(V)), 2/t2+3/s2 -̂  1, 3 < *2 < oo, 3 < s2 < oo with 

U = {(x,t) G Q T ; t0-r
2/Q2 <t<t0, Qy/to - t < | x - x 0 | < r } , 

V = {(x, t) G Q T ; *O - r2 /^2 <t<t0, |x - x0 | < ^ V ^ 7 ! } (see [8])1. 
V. Scheffer investigated in [13] for the first time partial regularity of weak solutions 

and studied the Hausdorff dimension of the set of their possible singularities. His 
approach, later on adapted by [1], forms the basic idea of the regularity criteria in [8], 
[9] and [10]. 

1 This implies that the point (xo, to) is a regular point; it is not obvious how to transform 
this local regularity criterion into a global one. 

484 



In what follows, we denote by LP(IR3) the Lebesgue spaces, 1 ^ p ^ oo, by 
Wk>p(U3) the Sobolev spaces for k G ^ and 1 < p < oo, both endowed with the 
standard norms || • \\p^ and || • |U,P,IR3 , respectively. The anisotropic Lebesgue spaces 
L t(0,T;Ls(IR3)) will be denoted, for brevity, by L^S(QT), 1 ^ t,s ^ oo, QT = 

(0,T) x 1R3. If no misunderstanding can occur we will omit writing QT and IR3, 
respectively. 

All generic constants will be denoted by C. Their values can vary, even on the 
same line or in the same formula. 

We will also use the summation convention; unless otherwise stated, the summa­
tion over repeated indices will be used, from 1 to 3 . 

2 . MAIN THEOREMS 

The main goal is to prove the following four theorems. 

Theorem 1. Let u be a weak solution to the Navier-Stokes equations (1.1) corre­

sponding to the initial condition uo G VV1'2 with divuo = 0 such that u satisfies the 

energy inequality. Moreover let u3 G L t l , S l , 2/ti+3/si ^ l , 2 ^ £ i ^ o o , 3 < s i ^ o o 

and one of the following conditions holds true 

(a) dui/dx3, du2/dx3 belong to L t2 'S2 with 2/t2 + 3/s2 ^2,l^t2^oo, 

| < s2 ^ oo, 

(b) dui/dx2, du2/dxx belong to L'3'S3 with 2/t3+3/s3 ^ 2, 2 ^ t3 < oo, 2 ^ s3 ^ 3, 

(c) du2/dx3 G L*4'S4, dux/dx2 G LtG'S5, 2/U + 3/s{ ^ 2, i = 4,5, 1 ^ U ^ oo, 
| < s4 ^ oo, 2 ^ t$ ^ oo, 2 ^ s5 ^ 3. 

Then (u,p) with p the corresponding pressure is the strong solution to the Navier-

Stokes equations which is unique in the class of all weak solutions satisfying the 

energy inequality. 

R e m a r k 1. Note that in (b) it might be interesting to replace the conditions 
on du\/dx2 and du2/dx\ by the same condition on u)3. Unfortunately, this does not 
seem to be possible, at least by the present technique. 

R e m a r k 2. In part (a) we can replace the assumptions on du\/dx3, du2/dx3 

by analogous assumptions on du2/dx3, du2/dx2, or du2/dx3, dui/dxi, or du\/dx3, 
du2/dx2, or du\/dx3, du\/dx\. Similarly, instead of (c), we can assume du\/dx3 G 
L i4 'S4, du2/dxi eLtr^S5. 

R e m a r k 3. It will be clear from the proof why 53 and 55 satisfy more restrictive 
conditions than s2 and s4. For 53 and s5 > 3 or from (yf, 2) we can still obtain some 
conditions implying the regularity; however these conditions are more restrictive, 
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i.e. they do not lie on the same scale as those in Theorem 1; see the note at the end 
of Step 3 (ii) in the proof of Theorem 1 below. 

R e m a r k 4. The limit cases, i.e. in (a) u3 G L°°'3, in (b) s2 = §, t2 = oo and 

in (c) s4 = §, £4 = oo do not imply the regularity. We have to add the assumption 

that the above mentioned norms are sufficiently small. The same holds also for the 

limit case in Theorem 3 below. 

In the following Theorems 2-4 we assume similarly as in Theorem 1 that u is 
a weak solution to the Navier-Stokes equations (1.1) corresponding to the initial 
condition Uo G VV1'2 with divuo = 0 such that u satisfies the energy inequality. 

Theorem 2. Letdu3/dx3 G L00 '00. Then(u,p) with p the corresponding pressure 

is the strong solution to the Navier-Stokes equations which is unique in the class of 

all weak solutions satisfying the energy inequality. 

Theorem 3. Let du3/dx3,du2/dx2 G L*1'*1, 2/h + 3/«i ^ 2, 1 ^ ti ^ oo, 
§ < s\ ^ oo. Then (u,p) with p the corresponding pressure is the strong solution 
to the Navier-Stokes equations which is unique in the class of all weak solutions 
satisfying the energy inequality. 

Theorem 4. Let one of the following conditions be satisfied 

(i) du/dx3 G L*1'*1, 2/h + 3/si ^ §, f ^ tx ^ oo, 2 ^ sx ^ oo, or 

(ii) du3/dx3 G L'2 'S2, 2/t2 + 3/s2 ^ 1, 2 ^ t2 ^ oo, 3 ^ s2 ^ oo and du{/dx3 G 

L<3'*3, 2/*3 + 3/s3 < 2, 1 ^ t3 ^ oo, § < 53 ^ oo, i = 1,2. 
Then (u,p) with p the corresponding pressure is the strong solution to the Navier-
Stokes equations which is unique in the class of all weak solutions satisfying the 
energy inequality. 

R e m a r k 5. Note that the regularity assumption in Theorem 2 can be written 

as du3/dx3 G Ll>s with 2/t + 3/s = 0. 

R e m a r k 6. Comparing results from [2] with any of the results from Theo­
rem 3-4, we see that we require here less in the sense that we need only three (or 
two) components of the gradient to satisfy less restrictive conditions than in the 
above cited paper. 

R e m a r k 7. Let us also note that, even though we consider here the right-
hand side of the Navier-Stokes equations to be zero, similar results as presented 
in Theorems 1-4 hold also if some f ^ 0 appears in the right-hand side; only the 
smoothness of the solution depends on the smoothness of f. 
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3 . AUXILIARY RESULTS 

For a moment, let (u,p) be a smooth solution to the Navier-Stokes equations such 

that u £ L2(0,T; JV*'2), ut G L2(0,T; Wfc~2 '2), k > 3 . Then we have the following 

equation for the pressure 

(3.1) 

and thus 

- Ap = div div(u <g> u) in (0, T) x U3 

Lemma 1. The following estimates for the pressure hold true 

IШtKC-INV*), 
дp 

дxi (*) < c £ I d(ujUk) 

j,fc=i 
ӘXІ 

(t) 

for 1 < q < oo. 

P r o o f . This is an easy consequence of equation (3.1), standard Lq estimates for 

the Laplace equation in the entire space (i.e. the Marcinkiewicz multiplier theorem, 

see e.g. [17]) and the fact that Vp(t) e L2. • 

Next, let us consider our weak solution to the Navier-Stokes equations as given in 

Theorems 1-4. As u 0 G VV1,2, we know (see [6]) that there is t0 > 0 such that there 

exists a smooth solution to the Navier-Stokes equations on (0,£o) corresponding to 

the initial condition un. Moreover, since this solution is unique in the class of all 

weak solutions satisfying the energy inequality, it coincides with "our" weak solution 

on this time interval. Denote by t* the supremum of all i > 0 such that on (0, i) 

there is a smooth solution to the Navier-Stokes equations. Note that t* > 0. Assume 

now t* < oo. Evidently on any compact subinterval of (0, t*) "our" weak solution 

coincides with this smooth solution (and it is, due to the absence of the right-hand 

side, C°°([S,t* -S]x IR3), 0 < S < t*). 

If we show that some norm of u (or Vu), sufficient to ensure the smoothness of 

the Navier-Stokes equations, remains bounded independently of t as t —•> £*, we can 

extend our solution (due to the result from [6]) after the time instant t* which would 

contradict the definition of t* and thus t* = oo. In the following sections we will 

show such estimates. We will always work on some subintervals of (0, £*) and thus 

all equations will be satisfied pointwise. Before starting with these estimates let us 

recall some useful inequalities. We have (for the proof see [11]) 
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Lemma 2. Let h be a function such that h G Lq and Vh G Ls, s G [1, oo], r ^ q 

and r ^ oo if s > 3, r < oo if s = 3 and r ^ 3s(3 - s ) - 1 if s < 3. Then there exists 

a constant C such that 

11% ^ C||V^||ft||J-a, aG[0,l], 

where 1/r = a( l/s - | ) + (1 - a)l/q. 

Recall also that if div u = 0 then 

(3.2) Ci | |curlu | | , ^ | |Vu| |9 ^ C2(q)\\cm\u\\q, 

1 < q < oo (and C\ remains bounded if q -> 1 or q —> oo while C 2 (<l) -» oo in this 

case). 

4. P R O O F OF THEOREM 1 

We will proceed in several steps: 

Step 1: Estimates of the vorticity 

Let us recall that u) = curl u satisfies the following system 

-^- - Au + u • Vu) - u) • Vu = 0 in (0, T) x (R3 

CJ(0,X) = curlun(x) in IR3. 

Multiply the equation by u) and integrate over IR3. Then 

I d . . l l 9 11T_. l l 9 f duj 

If j = 3 then 
f du3 f du)3 
l u){ —— UJ3 = - / U3U)i —— 

JM* oxi JU3 dxi 

and recalling that u)i = Sijkduk/dxj (eijk is the Levi-Civita skew-symmetric tensor) 

we get 

3 2 
----л ^-л ľ дuj _ f дu2 дu2 дщ f дu2 

^л.лJм* l дxi J JRЗ дxз дx3 дxi Juз дxi 
г = l 7 = 1 

f dui dui du2 f du\ 
JU3 dx3 dx3 dx2 JU3 dx2 

/ Cij 
JRЗ 

+ / CijklmU3 

du2 du2 du\ 

dx3 dx3 

du\ du2 du\ 

dx3 dx3 

dui d2uk 

dxj dxidxm 
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with Cijkim a constant matrix. Thus 

-- IMIH + 
2dť" "2 

ЦVu,||2
2 = / 

JR 

du2 du2 du\ 

U3 dx3 dx3 dx\ 

+ 

+ 

ľ дu\ дu\ дu2 ľ дu\ дu2 дu\ 

Juз дx3 дx3 дx2 Juз дx2 дx3 дx3 

ľ ӘUІ д2Uk 
I CijklmU3~ "r -г . 

Juз дxj дxiдxrn 

Step 2: Estimates of u3 

Now 

JR 

дщ д2Uk 
' U37T-a a" < l |V 2 u| |2 | |u 3 | | s | |Vu | | 2 s ( s _ 2 ) - 1 (by means of (3.2)) 
U3 &%j OXiOXfn 

< C | | V c ; | | ( ' + 3 ) 8 " 1 | | a ; | | ( - 3 ) ' " 1 | | u 3 | | -

<^ l |Vo; | | l + C | | a ; | | i | | « 3 | l 2 ' ( - 3 r l , 

i.e. if u3 G Lt,s, 2/t + 3/s ^ 1, s > 3, we can estimate this term by putting the first 

term to the left-hand side and applying the Gronwall inequality to the other one; if 

s = 3 we need that the L°°'3 norm of u3 is sufficiently small. 

Step 3: Estimates of V~i», i = 1,2 

(i) du\/dx3, du2/dx3 

Evidently, using Lemma 2 the last remaining terms can be estimated as follows 

(i,j,fc,/ = l,2) 

JR 

дщ дuj дuk 

uз дx3 дx3 дxi 
< 

дщ 

дxз 
IIVuЦ 2 

2s(s -1)- < С | | У а ; | | Г | № 
3/S\\,,\\(2S~3)S~ дщ 

дxz 

< ^ l | V o ; | | 2 + C||a;||2 дщ 

дxз 

2s(2s-3) _ 

and if dui/dx3 G Lt,s, 2/t + 3/s ^ 2 we put the first term to the left-hand 

side and estimate the other term by means of the Gronwall inequality. Thus 

part (a) with du\/dx3, du2/dx3 of Theorem 1 is shown. Similarly, using also 

the continuity equation, we can show the first part of Remark 2. 

(ii) du\/dx2, du2/dx\ 

Here we have to integrate by parts in two terms. We get 

í du2 du2 du\ í du\ du\ 
JU3 dx3 dx3 dx\ JU3 dx3 dx3 

дu2 

з дx2 

= -2 í 2 дU2u -2 í 
Juз дx\дx3 дx3

 l Ju 

d2U\ du\ 

U3 dx2dx3 dx3 
u2 
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t f du2 du2 du\ f dui du\ du2 

' JU3 dxx dx3 dx3 JU3 dx2 dx3 dx3 

Ju 

дx3 дx3 juз 

д2u2 дu2 ••I 
Ju: 

d2u\ du\ 

lU3 dx2 dxi JU3 dx2 dx2 

The first two terms can be estimated as above. For the other two we get 

( t , j = 1,2, i^j) 

\Ju 
д2щ дщ 

uз дx2 дxj 3 < 
дщ 
дxj s 

д2щ 
дx\ |Pil|2S(.5-2)-i. 

Now for 2 ^ s ^ 3 (i.e. 6 ^ 2s(s — 2) l ^ oo) we can apply Lemma 2 to get 

I^C 
дщ 
дxj 

J|vиi.ť'IMI.,2'~3)в~1 < -W^Wl + CJдщ/дxj 
2 s ( 2 s - 3 ) _ 1 

IMIa 

and we estimate this term as above. For s > 3 we proceed as in [12], but 

the result is more restrictive (dui/dxj G L6s(5s_6) »s, s > 3) or for s < 2 

we can estimate the term by | |^i/9a:j | |2 | |V 2u|l2 | |u | | 0 0 and interpolate the L2-

norm between Ls and L6; we get again a more restrictive condition (dui/dxj G 
^ ( l l . s - 1 8 ) - 1 , ^ 11 ^ 5 ^ 2 ) . 

(iii) Proof of (c) 

We can combine parts (i) and (ii) to show (c) as well as the second part of 

Remark 2. Theorem 1 is proved. • 

5. P R O O F S OF THEOREMS 2-4 

P r o o f of Theorem 2. 

It is enough to show (see [9] or [10]) that u3 G Ll>s for 2/t + 3/s ^ \, s > 6. To 

this aim let us multiply the equation for u3 by |w3|4W3 and integrate over 1R3. Then 

š£i«fi+§ivi*re--/i,M*«.- Һ-

Now, integrating by parts in the term on the right-hand side we obtain 

I du3 I 
I l i K ť / IPI | ? I«3|

4 < IM4
6 

JR3 OX3 
дx: x3 

u 

If f^ is bounded in L00'00, we get that 

IKIILoo,c + | | v | W 3 | 3 | | L 2 , 2 ^ c . 

But ||w3||L6,i8 < C||V|u3|
3||L2 2 and thus Theorem 2 is shown. 
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P r o o f of Theorem 3. 

The idea is more or less the same as previously. It is enough to show that u is 

bounded in L t , s for 2/t + 3/s ^ 1, s ^ 3. To this aim, let us multiply the ith 

component of the Navier-Stokes equations by \ui\ui and integrate over IR3. We get 

t(i5"*fi + l'vN,fi)-Ett,Sl-.l«.-A-
i = l i = l 

We integrate by parts on the right-hand side and use the continuity equation. Then 

I dui I II2І < C £ / w 

*CE(« 
i=l 

3 

i=l 

W 4 , 

дU2 

дX2 

дxi 

+ 

| fť| 

\du3 

\dx% us 

\du: 

)lkll Ssís-lJ-MlulU^s-l)-1 

E (\\ÓU2 - J I " " 3 II v̂li us 

<п^л^(тг""^3 
12 » * дxз 

2s(2s-ЗУ 
1 ) І І«ІІIІ ) . 

After employing the Gronwall inequality, under the assumption that du2/dx2 and 

dus/dx3 are bounded in L*,s, 2/£ + 3/s ^ 2, s > §, we get 

| |u|Uco,з + J З | | V | t t í | - | | i / » . a < í 7 

and thus u is bounded in L°°>3 which gives the global-in-time regularity of the so­

lution. For 5 == § we have to assume that the corresponding norms are sufficiently 

small. D 

P r o o f of Theorem 4. 

We will now use Theorem 1 part (a). Since we know that in both cases dui/dx3, 

i — 1,2, satisfy the assumptions of Theorem 1, it is enough to verify that U3 G LtiS 

for 2/t + 3/5 ^ 1, s > 3. To this aim we multiply the equation for u3 by |u3|iz3 and 

integrate over IR3. Then 

iél-B + !i™»fi = -j(,f^l«.l-= h. 
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Now 

lIsKof IPI 
дuъ 

<C 
дuя (ll£ 

дxs 

i 2 s ( s - 3 ) - 1 

tel<o|ë-| INII3IH 
Il a a ^ Ils 

6s (2s -3 ) - ! 

+ |U||1)||U||(S-3)S-1 | |U3 | |3 

and using the Gronwall inequality we finish the proof of the case (ii) as us is bounded 
in L3 '9. 

To prove (i) we will use Lemma 1. We proceed as above but we do not integrate 

by parts on the right-hand side and get 

(a) s ^ 6 

| 4 | < I E I , " * B < P E | S | W - ^ - M 
дщ 

з 

^ E l«з||I 
І = l 

3 

дщ 

дx3 

iiб 
s+6)/(2s)и ,|(s-6)/(2s) 

U 

<cj;Kiiiiin| |(- ) / ( 2 , )(| |-
i=l 

4 s ( 3 s - 6 ) _ 1 

+ ЦullS) 

and if dui/dxs € L£'s, 2/t + 3/s -̂  | , s ^ 6, we can estimate this term by means 

of the Gronwall inequality, 

(b) 2 ^ s < 6 

If 2 < s < 6 then 

IIзK 
дp 

дxя 1=1 

1|и||з«(25-3)-Н1^з|1з2|кз||9
2 

<gl|VЫ*|ß + oX>з||з||u|| 
І = l 

(Зs-6)s 
2 - ( 

дщ 

дxз 

4 s ( 3 s - 6 ) _ 1 

ЦullS), 

i.e. again after employing the Gronwall inequality we get that us is bounded 

in L 3 ' 9 and thus the solution is smooth. Similarly we proceed for 5 = 2. Theo­

rem 4 is proved. • 

R e m a r k 8. Note that in part (ii) we could replace the assumption on dui/dxs 

and du^/dxs by any assumption from Theorem 1 (a), (b), (c) or from Remark 2. 

But these results seem to be less interesting. Namely, we interpret the results of 

Theorem 4 as follows. If we control the flow in the "additional" third dimension, 

we get the regularity; this is in accordance with the expectation since in two space 

dimensions any weak solution is a strong one provided the data are smooth enough. 
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Abstract. We study the nonstationary Navier-Stokes equations in the entire three-
dimensional space and give some criteria on certain components of gradient of the velocity
which ensure its global-in-time smoothness.

Keywords: Navier-Stokes equations, regularity of systems of PDE’s
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1. Introduction

Consider the three-dimensional Cauchy problem for the Navier-Stokes equations,
i.e. the system of PDE’s (as the numerical values of the constant viscosity and the

constant density do not play any role here, they are assumed to be equal to 1)

∂u
∂t

+ u · ∇u−∆u +∇p = 0

div u = 0



 in (0, T )× � 3(1.1)

u(0,x) = u0(x) in � 3 ,

*This work was supported by the grants No. 201/00/0768 and No. 201/02/P091 of the
Grant Agency of the Czech Republic and by the Council of the Czech Government
(project No. 113200007).
Part of the research was done during the stay of the first author at the Mathematical
Institute of the Academy of Sciences of the Czech Republic and part of the research was
done during the stay of the second author at the University of Toulon.
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where u : (0, T )× � 3 → � 3 is the velocity field, p : (0, T )× � 3 → � is the pressure,
0 < T 6 ∞, u0 : � 3 → � 3 with div u0 = 0 is the initial velocity. For simplicity, the
external force is taken to be zero.

It is well known that for u0 ∈ L2( � 3 ) with div u0 = 0 there exists at least one
weak solution (see [7] or also [5] for other types of domains). Nevertheless, the
fundamental question of the uniqueness and regularity of such solutions is still open.

On the other hand, there are many criteria which ensure that the weak solution is
a strong one and thus unique in the class of all weak solutions satisfying the energy

inequality. Let us summarize here some of them

• u ∈ Lt(I ; Ls), 2/t + 3/s 6 1, 2 6 t 6 ∞, 3 6 s 6 ∞ (see [16], for the case s = 3
see [14], [4])

• u3 ∈ Lt(I ; Ls), 2/t + 3/s 6 1
2 , 4 6 t 6 ∞, 6 < s 6 ∞ (see [9])

• u3 ∈ Lt1(I ; Ls1), u1, u2 ∈ Lt2(I ; Ls2),
2 6 s2, t2 6 ∞
2 6 t1 6 ∞, 3 < s1 6 ∞, 2/t1 + 3/s1 6 1
(2/t2 + 3/s2) + (2/t1 + 3/s1) 6 2
2/t1 + 2/t2 6 1, 2/s1 + 2/s2 < 1

(see [10]; the proofs in [9] and [10] are done for the suitable weak solutions as local

regularity criteria; nevertheless one can easily transform the proofs for the Cauchy
problem to get global regularity criteria)

• ω1, ω2 ∈ Lt(I ; Ls), 2/t + 3/s 6 2, 1 < t 6 ∞, 3
2 < s < ∞ (see [2])

(We denote by ωi the ith component of the vorticity.)

• ∇v1,∇v2 ∈ Lt(I ; Ls), 2/t + 3/s 6 1, 2 6 t 6 ∞, 3 6 s 6 ∞ (see [2])
• p ∈ Lt(I ; Ls), 2/t + 3/s 6 2, 1 6 t 6 ∞, 3

2 < s 6 ∞ (see [3])
• ∇u3 ∈ Lt(I ; Ls), 2/t+3/s 6 3

2 ,
4
3 6 t 6 ∞, 2 6 s 6 ∞ (see [12], independently

also [18])

• p bounded from below, see [15]

(By p we understand the negative part of the pressure.)

• p ∈ Lt1(I ; Ls1(U)), 2/t1 + 3/s1 6 2, 1 < t1 6 ∞, 3
2 < s1 6 ∞ and

u ∈ Lt2(I ; Ls2(V )), 2/t2 + 3/s2 6 1, 3 6 t2 6 ∞, 3 < s2 6 ∞ with
U = {(x, t) ∈ QT ; t0 − r2/%2 < t < t0, %

√
t0 − t < |x− x0| < r},

V = {(x, t) ∈ QT ; t0 − r2/%2 < t < t0, |x− x0| < %
√

t0 − t} (see [8])1.
V. Scheffer investigated in [13] for the first time partial regularity of weak solutions

and studied the Hausdorff dimension of the set of their possible singularities. His
approach, later on adapted by [1], forms the basic idea of the regularity criteria in [8],

[9] and [10].

1 This implies that the point (x0, t0) is a regular point; it is not obvious how to transform
this local regularity criterion into a global one.
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In what follows, we denote by Lp( � 3 ) the Lebesgue spaces, 1 6 p 6 ∞, by
W k,p( � 3 ) the Sobolev spaces for k ∈ � and 1 6 p 6 ∞, both endowed with the
standard norms ‖·‖p, � 3 and ‖·‖k,p, � 3 , respectively. The anisotropic Lebesgue spaces
Lt(0, T ; Ls( � 3 )) will be denoted, for brevity, by Lt,s(QT ), 1 6 t, s 6 ∞, QT =
(0, T ) × � 3 . If no misunderstanding can occur we will omit writing QT and � 3 ,
respectively.

All generic constants will be denoted by C. Their values can vary, even on the
same line or in the same formula.

We will also use the summation convention; unless otherwise stated, the summa-
tion over repeated indices will be used, from 1 to 3.

2. Main theorems

The main goal is to prove the following four theorems.

Theorem 1. Let u be a weak solution to the Navier-Stokes equations (1.1) corre-
sponding to the initial condition u0 ∈ W 1,2 with div u0 = 0 such that u satisfies the
energy inequality. Moreover let u3 ∈ Lt1,s1 , 2/t1+3/s1 6 1, 2 6 t1 6 ∞, 3 < s1 6 ∞
and one of the following conditions holds true

(a) ∂u1/∂x3, ∂u2/∂x3 belong to Lt2,s2 with 2/t2 + 3/s2 6 2, 1 6 t2 6 ∞,
3
2 < s2 6 ∞,

(b) ∂u1/∂x2, ∂u2/∂x1 belong to Lt3,s3 with 2/t3+3/s3 6 2, 2 6 t3 6 ∞, 2 6 s3 6 3,

(c) ∂u2/∂x3 ∈ Lt4,s4 , ∂u1/∂x2 ∈ Lt5,s5 , 2/ti + 3/si 6 2, i = 4, 5, 1 6 t4 6 ∞,
3
2 < s4 6 ∞, 2 6 t5 6 ∞, 2 6 s5 6 3.

Then (u, p) with p the corresponding pressure is the strong solution to the Navier-

Stokes equations which is unique in the class of all weak solutions satisfying the

energy inequality.
�����������

1. Note that in (b) it might be interesting to replace the conditions

on ∂u1/∂x2 and ∂u2/∂x1 by the same condition on ω3. Unfortunately, this does not
seem to be possible, at least by the present technique.
�����������

2. In part (a) we can replace the assumptions on ∂u1/∂x3, ∂u2/∂x3

by analogous assumptions on ∂u2/∂x3, ∂u2/∂x2, or ∂u2/∂x3, ∂u1/∂x1, or ∂u1/∂x3,
∂u2/∂x2, or ∂u1/∂x3, ∂u1/∂x1. Similarly, instead of (c), we can assume ∂u1/∂x3 ∈
Lt4,s4 , ∂u2/∂x1 ∈ Lt5,s5 .
�����������

3. It will be clear from the proof why s3 and s5 satisfy more restrictive

conditions than s2 and s4. For s3 and s5 > 3 or from ( 18
11 , 2) we can still obtain some

conditions implying the regularity; however these conditions are more restrictive,
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i.e. they do not lie on the same scale as those in Theorem 1; see the note at the end

of Step 3 (ii) in the proof of Theorem 1 below.
�����������

4. The limit cases, i.e. in (a) u3 ∈ L∞,3, in (b) s2 = 3
2 , t2 = ∞ and

in (c) s4 = 3
2 , t4 = ∞ do not imply the regularity. We have to add the assumption

that the above mentioned norms are sufficiently small. The same holds also for the
limit case in Theorem 3 below.

In the following Theorems 2–4 we assume similarly as in Theorem 1 that u is
a weak solution to the Navier-Stokes equations (1.1) corresponding to the initial

condition u0 ∈ W 1,2 with div u0 = 0 such that u satisfies the energy inequality.

Theorem 2. Let ∂u3/∂x3 ∈ L∞,∞. Then (u, p) with p the corresponding pressure

is the strong solution to the Navier-Stokes equations which is unique in the class of

all weak solutions satisfying the energy inequality.

Theorem 3. Let ∂u3/∂x3, ∂u2/∂x2 ∈ Lt1,s1 , 2/t1 + 3/s1 6 2, 1 6 t1 6 ∞,
3
2 < s1 6 ∞. Then (u, p) with p the corresponding pressure is the strong solution

to the Navier-Stokes equations which is unique in the class of all weak solutions

satisfying the energy inequality.

Theorem 4. Let one of the following conditions be satisfied
(i) ∂u/∂x3 ∈ Lt1,s1 , 2/t1 + 3/s1 6 3

2 ,
4
3 6 t1 6 ∞, 2 6 s1 6 ∞, or

(ii) ∂u3/∂x3 ∈ Lt2,s2 , 2/t2 + 3/s2 6 1, 2 6 t2 6 ∞, 3 6 s2 6 ∞ and ∂ui/∂x3 ∈
Lt3,s3 , 2/t3 + 3/s3 6 2, 1 6 t3 6 ∞, 3

2 < s3 6 ∞, i = 1, 2.
Then (u, p) with p the corresponding pressure is the strong solution to the Navier-

Stokes equations which is unique in the class of all weak solutions satisfying the

energy inequality.
�����������

5. Note that the regularity assumption in Theorem 2 can be written

as ∂u3/∂x3 ∈ Lt,s with 2/t + 3/s = 0.
�����������

6. Comparing results from [2] with any of the results from Theo-

rem 3–4, we see that we require here less in the sense that we need only three (or
two) components of the gradient to satisfy less restrictive conditions than in the

above cited paper.
�����������

7. Let us also note that, even though we consider here the right-
hand side of the Navier-Stokes equations to be zero, similar results as presented

in Theorems 1–4 hold also if some f 6= 0 appears in the right-hand side; only the
smoothness of the solution depends on the smoothness of f .
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3. Auxiliary results

For a moment, let (u, p) be a smooth solution to the Navier-Stokes equations such
that u ∈ L2(0, T ; W k,2), ut ∈ L2(0, T ; W k−2,2), k > 3. Then we have the following
equation for the pressure

(3.1) −∆p = div div(u⊗ u) in (0, T )× � 3

and thus

Lemma 1. The following estimates for the pressure hold true

‖p‖q(t) 6 C‖u‖2
2q(t),

∥∥∥ ∂p

∂xi

∥∥∥
q
(t) 6 C

3∑

j,k=1

∥∥∥∂(ujuk)
∂xi

∥∥∥
q
(t)

for 1 < q < ∞.
 !��"#"%$

. This is an easy consequence of equation (3.1), standard Lq estimates for
the Laplace equation in the entire space (i.e. the Marcinkiewicz multiplier theorem,

see e.g. [17]) and the fact that ∇p(t) ∈ L2. �

Next, let us consider our weak solution to the Navier-Stokes equations as given in
Theorems 1–4. As u0 ∈ W 1,2, we know (see [6]) that there is t0 > 0 such that there
exists a smooth solution to the Navier-Stokes equations on (0, t0) corresponding to
the initial condition u0. Moreover, since this solution is unique in the class of all

weak solutions satisfying the energy inequality, it coincides with “our” weak solution
on this time interval. Denote by t∗ the supremum of all t̄ > 0 such that on (0, t̄)
there is a smooth solution to the Navier-Stokes equations. Note that t∗ > 0. Assume
now t∗ < ∞. Evidently on any compact subinterval of (0, t∗) “our” weak solution
coincides with this smooth solution (and it is, due to the absence of the right-hand
side, C∞([δ, t∗ − δ]× � 3 ), 0 < δ < t∗).
If we show that some norm of u (or ∇u), sufficient to ensure the smoothness of

the Navier-Stokes equations, remains bounded independently of t as t → t∗, we can

extend our solution (due to the result from [6]) after the time instant t∗ which would
contradict the definition of t∗ and thus t∗ = ∞. In the following sections we will
show such estimates. We will always work on some subintervals of (0, t∗) and thus
all equations will be satisfied pointwise. Before starting with these estimates let us

recall some useful inequalities. We have (for the proof see [11])
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Lemma 2. Let h be a function such that h ∈ Lq and ∇h ∈ Ls, s ∈ [1,∞], r > q

and r 6 ∞ if s > 3, r < ∞ if s = 3 and r 6 3s(3− s)−1 if s < 3. Then there exists
a constant C such that

‖h‖r 6 C‖∇h‖a
s‖h‖1−a

q , a ∈ [0, 1],

where 1/r = a(1/s− 1
3 ) + (1− a)1/q.

Recall also that if div u = 0 then

(3.2) C1‖curlu‖q 6 ‖∇u‖q 6 C2(q)‖curlu‖q,

1 < q < ∞ (and C1 remains bounded if q → 1 or q → ∞ while C2(q) → ∞ in this
case).

4. Proof of Theorem 1

We will proceed in several steps:
Step 1 : Estimates of the vorticity

Let us recall that ω = curlu satisfies the following system

∂ω

∂t
−∆ω + u · ∇ω − ω · ∇u = 0 in (0, T )× � 3

ω(0,x) = curlu0(x) in � 3 .

Multiply the equation by ω and integrate over � 3 . Then

1
2

d
dt
‖ω‖2

2 + ‖∇ω‖2
2 =

∫

� 3
ωi

∂uj

∂xi
ωj .

If j = 3 then ∫

� 3
ωi

∂u3

∂xi
ω3 = −

∫

� 3
u3ωi

∂ω3

∂xi

and recalling that ωi = εijk∂uk/∂xj (εijk is the Levi-Cività skew-symmetric tensor)
we get

3∑

i=1

2∑

j=1

∫

� 3
ωi

∂uj

∂xi
ωj =

∫

� 3

∂u2

∂x3

∂u2

∂x3

∂u1

∂x1
−

∫

� 3

∂u2

∂x1

∂u2

∂x3

∂u1

∂x3

+
∫

� 3

∂u1

∂x3

∂u1

∂x3

∂u2

∂x2
−

∫

� 3

∂u1

∂x2

∂u2

∂x3

∂u1

∂x3

+
∫

� 3
cijklmu3

∂ui

∂xj

∂2uk

∂xl∂xm
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with cijklm a constant matrix. Thus

1
2

d
dt
‖ω‖2

2 + ‖∇ω‖2
2 =

∫

� 3

∂u2

∂x3

∂u2

∂x3

∂u1

∂x1
−

∫

� 3

∂u2

∂x1

∂u2

∂x3

∂u1

∂x3

+
∫

� 3

∂u1

∂x3

∂u1

∂x3

∂u2

∂x2
−

∫

� 3

∂u1

∂x2

∂u2

∂x3

∂u1

∂x3

+
∫

� 3
cijklmu3

∂ui

∂xj

∂2uk

∂xl∂xm
.

Step 2 : Estimates of u3

Now
∣∣∣∣
∫

� 3
u3

∂ui

∂xj

∂2uk

∂xl∂xm

∣∣∣∣ 6 ‖∇2u‖2‖u3‖s‖∇u‖2s(s−2)−1 (by means of (3.2))

6 C‖∇ω‖(s+3)s−1

2 ‖ω‖(s−3)s−1

2 ‖u3‖s

6 1
C
‖∇ω‖2

2 + C‖ω‖2
2‖u3‖2s(s−3)−1

s ,

i.e. if u3 ∈ Lt,s, 2/t + 3/s 6 1, s > 3, we can estimate this term by putting the first
term to the left-hand side and applying the Gronwall inequality to the other one; if

s = 3 we need that the L∞,3 norm of u3 is sufficiently small.
Step 3 : Estimates of ∇ui, i = 1, 2
(i) ∂u1/∂x3, ∂u2/∂x3

Evidently, using Lemma 2 the last remaining terms can be estimated as follows

(i, j, k, l = 1, 2)
∣∣∣∣
∫

� 3

∂ui

∂x3

∂uj

∂x3

∂uk

∂xl

∣∣∣∣ 6
∥∥∥ ∂ui

∂x3

∥∥∥
s
‖∇u‖2

2s(s−1)−1 6 C‖∇ω‖3/s
2 ‖ω‖(2s−3)s−1

2

∥∥∥ ∂ui

∂x3

∥∥∥
s

6 1
C
‖∇ω‖2

2 + C‖ω‖2
2

∥∥∥ ∂ui

∂x3

∥∥∥
2s(2s−3)−1

s

and if ∂ui/∂x3 ∈ Lt,s, 2/t + 3/s 6 2 we put the first term to the left-hand
side and estimate the other term by means of the Gronwall inequality. Thus

part (a) with ∂u1/∂x3, ∂u2/∂x3 of Theorem 1 is shown. Similarly, using also
the continuity equation, we can show the first part of Remark 2.

(ii) ∂u1/∂x2, ∂u2/∂x1

Here we have to integrate by parts in two terms. We get

∫

� 3

∂u2

∂x3

∂u2

∂x3

∂u1

∂x1
+

∫

� 3

∂u1

∂x3

∂u1

∂x3

∂u2

∂x2

= − 2
∫

� 3

∂2u2

∂x1∂x3

∂u2

∂x3
u1 − 2

∫

� 3

∂2u1

∂x2∂x3

∂u1

∂x3
u2
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= 2
∫

� 3

∂u2

∂x1

∂u2

∂x3

∂u1

∂x3
+ 2

∫

� 3

∂u1

∂x2

∂u1

∂x3

∂u2

∂x3

+ 2
∫

� 3

∂2u2

∂x2
3

∂u2

∂x1
u1 + 2

∫

� 3

∂2u1

∂x2
3

∂u1

∂x2
u2.

The first two terms can be estimated as above. For the other two we get
(i, j = 1, 2, i 6= j)

I =
∣∣∣∣
∫

� 3

∂2ui

∂x2
3

∂ui

∂xj
uj

∣∣∣∣ 6
∥∥∥ ∂ui

∂xj

∥∥∥
s

∥∥∥∂2ui

∂x2
3

∥∥∥
2
‖uj‖2s(s−2)−1 .

Now for 2 6 s 6 3 (i.e. 6 6 2s(s− 2)−1 6 ∞) we can apply Lemma 2 to get

I 6 C
∥∥∥ ∂ui

∂xj

∥∥∥
s
‖∇ω‖3/s

2 ‖ω‖(2s−3)s−1

2 6 1
C
‖∇ω‖2

2 + C
∥∥∥∂ui/∂xj

∥∥∥
2s(2s−3)−1

s
‖ω‖2

2

and we estimate this term as above. For s > 3 we proceed as in [12], but
the result is more restrictive (∂ui/∂xj ∈ L6s(5s−6)−1,s, s > 3) or for s < 2
we can estimate the term by ‖∂ui/∂xj‖2‖∇2u‖2‖u‖∞ and interpolate the L2-
norm between Ls and L6; we get again a more restrictive condition (∂ui/∂xj ∈
L8s(11s−18)−1,s, 18

11 6 s 6 2).
(iii) Proof of (c)

We can combine parts (i) and (ii) to show (c) as well as the second part of
Remark 2. Theorem 1 is proved. �

5. Proofs of Theorems 2–4

 !��"#"%$
of Theorem 2.

It is enough to show (see [9] or [10]) that u3 ∈ Lt,s for 2/t + 3/s 6 1
2 , s > 6. To

this aim let us multiply the equation for u3 by |u3|4u3 and integrate over � 3 . Then

1
6

d
dt
‖u3‖6

6 +
5
9
‖∇|u3|3‖2

2 = −
∫

∂p

∂x3
|u3|4u3 ≡ I1.

Now, integrating by parts in the term on the right-hand side we obtain

|I1| 6 C

∫

� 3
|p|

∣∣∣∂u3

∂x3

∣∣∣|u3|4 6 ‖u3‖4
6

∥∥∥∂u3

∂x3

∥∥∥
∞
‖u‖2

6.

If ∂u3
∂x3
is bounded in L∞,∞, we get that

‖u3‖L∞,6 + ‖∇|u3|3‖L2,2 6 C.

But ‖u3‖L6,18 6 C‖∇|u3|3‖L2,2 and thus Theorem 2 is shown. �
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 !��"#"%$
of Theorem 3.

The idea is more or less the same as previously. It is enough to show that u is
bounded in Lt,s for 2/t + 3/s 6 1, s > 3. To this aim, let us multiply the ith

component of the Navier-Stokes equations by |ui|ui and integrate over � 3 . We get

3∑

i=1

(1
3

d
dt
‖ui‖3

3 +
8
9
‖∇|ui|

3
2 ‖2

2

)
= −

3∑

i=1

∫

� 3

∂p

∂xi
|ui|ui ≡ I2.

We integrate by parts on the right-hand side and use the continuity equation. Then

|I2| 6 C

3∑

i=1

∫

� 3
|p|

∣∣∣∂ui

∂xi

∣∣∣ |ui|

6 C

3∑

i=1

(∥∥∥∂u2

∂x2

∥∥∥
s
+

∥∥∥∂u3

∂x3

∥∥∥
s

)
‖ui‖3s(s−1)−1‖u‖2

3s(s−1)−1

6 C

3∑

i=1

(∥∥∥∂u2

∂x2

∥∥∥
s
+

∥∥∥∂u3

∂x3

∥∥∥
s

)
‖ui‖3

3s(s−1)−1

6
3∑

i=1

(4
9
‖∇|ui|

3
2 ‖2

2 + C
(∥∥∥∂u2

∂x2

∥∥∥
2s(2s−3)−1

s
+

∥∥∥∂u3

∂x3

∥∥∥
2s(2s−3)−1

s

)
‖ui‖3

3

)
.

After employing the Gronwall inequality, under the assumption that ∂u2/∂x2 and
∂u3/∂x3 are bounded in Lt,s, 2/t + 3/s 6 2, s > 3

2 , we get

‖u‖L∞,3 +
3∑

i=1

‖∇|ui|
3
2 ‖L2,2 6 C

and thus u is bounded in L∞,3 which gives the global-in-time regularity of the so-

lution. For s = 3
2 we have to assume that the corresponding norms are sufficiently

small. �
 !��"#"%$

of Theorem 4.

We will now use Theorem 1 part (a). Since we know that in both cases ∂ui/∂x3,

i = 1, 2, satisfy the assumptions of Theorem 1, it is enough to verify that u3 ∈ Lt,s

for 2/t + 3/s 6 1, s > 3. To this aim we multiply the equation for u3 by |u3|u3 and

integrate over � 3 . Then

1
3

d
dt
‖u3‖3

3 +
8
9
‖∇|u3|

3
2 ‖2

2 = −
∫

� 3

∂p

∂x3
u3|u3| ≡ I3.
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Now

|I3| 6 C

∫

� 3
|p|

∣∣∣∂u3

∂x3

∣∣∣|u3| 6 C
∥∥∥∂u3

∂x3

∥∥∥
s
‖u3‖3‖u‖2

6s(2s−3)−1

6 C
(∥∥∥∂u3

∂x3

∥∥∥
2s(s−3)−1

s
+ ‖u‖2

6

)
‖u‖(s−3)s−1

2 ‖u3‖3

and using the Gronwall inequality we finish the proof of the case (ii) as u3 is bounded
in L3,9.

To prove (i) we will use Lemma 1. We proceed as above but we do not integrate
by parts on the right-hand side and get

(a) s > 6

|I3| 6
∥∥∥ ∂p

∂x3

∥∥∥
3
‖u3‖2

3 6 C
3∑

i=1

∥∥∥ ∂ui

∂x3

∥∥∥
s
‖u‖3s(s−3)−1‖u3‖2

3

6 C
3∑

i=1

‖u3‖2
3

∥∥∥ ∂ui

∂x3

∥∥∥
s
‖u‖(s+6)/(2s)

6 ‖u‖(s−6)/(2s)
2

6 C
3∑

i=1

‖u3‖2
3‖u‖(s−6)/(2s)

2

(∥∥∥ ∂ui

∂x3

∥∥∥
4s(3s−6)−1

s
+ ‖u‖2

6

)

and if ∂ui/∂x3 ∈ Lt,s, 2/t+3/s 6 3
2 , s > 6, we can estimate this term by means

of the Gronwall inequality.

(b) 2 6 s < 6
If 2 < s < 6 then

|I3| 6
∥∥∥ ∂p

∂x3

∥∥∥
3
2

‖u3‖2
6 6 C

3∑

i=1

∥∥∥ ∂ui

∂x3

∥∥∥
s
‖u‖3s(2s−3)−1‖u3‖

1
2
3 ‖u3‖

3
2
9

6 4
9
‖∇|u3|

3
2 ‖2

2 + C
3∑

i=1

‖u3‖3‖u‖(3s−6)s−1

2

(∥∥∥ ∂ui

∂x3

∥∥∥
4s(3s−6)−1

s
+ ‖u‖2

6

)
,

i.e. again after employing the Gronwall inequality we get that u3 is bounded
in L3,9 and thus the solution is smooth. Similarly we proceed for s = 2. Theo-
rem 4 is proved. �

�����������
8. Note that in part (ii) we could replace the assumption on ∂u1/∂x3

and ∂u2/∂x3 by any assumption from Theorem 1 (a), (b), (c) or from Remark 2.

But these results seem to be less interesting. Namely, we interpret the results of
Theorem 4 as follows. If we control the flow in the “additional” third dimension,

we get the regularity; this is in accordance with the expectation since in two space
dimensions any weak solution is a strong one provided the data are smooth enough.
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