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Abstract. Internal parameters, eigenstrains, or eigenstresses, arise in functionally graded
materials, which are typically present in particulate, layered, or rock bodies. These param-
eters may be realized in different ways, e.g., by prestressing, temperature changes, effects of
wetting, swelling, they may also represent inelastic strains, etc. In order to clarify the use of
eigenparameters (eigenstrains or eigenstresses) in physical description, the classical formu-
lation of elasticity is presented, and the two most important Lagrange’s and Castigliano’s
variational principles are formulated in the sequel. Then the classical Hashin-Shtrikman
principles are recalled and the involvement of eigenparameters is studied in more detail.

Keywords: extended Hashin-Shtrikman variational principle, eigenparameter, transfor-
mation field analysis

MSC 2000: 74E30, 74B10, 49S05

1. INTRODUCTION

Eigenstresses and eigenstrains play a very important role in many branches of
applied mechanics, e.g., in composites, geotechnics, concrete structures, etc. In pre-
vious papers, [13], [14], the authors have formulated an effective approach to the
analysis and optimization of nonhomogeneous bodies with prescribed boundary dis-
placements or tractions and have used the transformation field analysis for relating
the components of stress or strain tensors and of eigenstrains or eigenstresses. The
transformation field analysis established by Dvorak in [2] has been applied to local-
ization of stresses and strains in two-phase composites. The eigenstresses stood for
relaxation stresses while eigenstrains represented plastic strains. This idea was ex-
tended in (3], [4], [15], where applications of a large scale of combinations of internal
material situations together with prestress of composite structures were considered.

* This work was supported by grant No. 103/041178 of the Grant Agency of the Czech
Republic and by the project MSM 210000001,3.
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In [3], thick-walled cylindrical structures were studied while in [4] and [15] sub-
merged cylindrical laminates with different properties in combination with prestress
were discussed.

R. Hill in [10] presented one of the first comprehensive approaches on how to solve
elastic problems with sudden change of material parameters in terms of variational
principles. An introduction of special material constants belongs also to Hill, who
enabled researchers to split three-dimensional problems into pure shear and pure
compression (tension) problems.

In [12] and [17] an interesting attempt at obtaining effective material properties
of a nonlinear isotropic composite has been made. A new variational approach was
proposed that provides the effective energy potentials of nonlinear composites in
terms of the corresponding energy potentials for linear composites with the same
microstructural distributions. When using the eigenparameters in the sense of [2]
and generalize it to the macrostructure (localization) of composites, one can obtain
procedures that involve a very wide scale of nonlinear problems (plasticity, visco-
plasticity, damage, etc.). This is why we have been interested in such a variational
formulation which is naturally valid for composites and allows us to extend the well-
known variational principles using eigenparameters. To this end the most appropriate
means are Hashin-Shtrikman variational principles [7], [9], which have been applied to
estimation of material bounds in [8]. Using Eshelby’s trick [6], an integral formulation
can be stated [14], and the boundary element method is then applicable [1]. In
comparison with the finite element method the boundary element method appears
to be far more efficient in this case.

It is worth noting that the eigenparameters are an extension of, among other,
the influence of change of temperature (eigenstrain); this has been discussed in the
well-known paper by Levin [11].

Our approach is based on the idea of augmented Hashin-Shtrikman variational
principles. This paper deals with extended primary and dual variational principles
for nonhomogeneous bodies. By means of internal parameters, eigenstrains or eigen-
stresses, involved in H-S principles, it is possible to obtain new bounds on mechanical
properties of the trial material, increase the bearing capacity of structures, and to
minimize the stress excesses.

The paper deals with the deterministic solution of overall properties of composite
materials. Randomly distributed phases (fibers) in connection with H-S principles
have recently been studied by Willis [16], and Drugan and Willis [5].
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1. BASIC RELATIONS

We start with basic relations which are valid in mechanics of continuum and are
appropriate for our next considerations.

Denote by §2 € R3 = 0z, 7273 a bounded domain, I' =T, UL}, (I, NI, = 0) being
its Lipschitz’s boundary, both representing the trial body. On I, the displacement
vector @ = {@, 2, U3} € [H %(I‘u)]3 is prescribed, and on I}, the vector of tractions
p = {p1,P2,P3} € [L2(I}))® is given. Recall the relation stresses-tractions on the
boundary I,: p;(§) = 0i;(€)n;(£€), where n = {n1,n2,n3} is the outward unit normal
to the boundary T, £ = {&,&2,&3} € T}

Hooke’s law for anisotropic and nonhomogeneous field is introduced in the form

(2.1) o(x) = L(x): e(x) + A(x), e(x)=M(x): o(x)+ p(x)
or
035(x) = Lijir(X)ert (%) + Xij(x),  €:5(%) = Mijru(x)or(x) + pij(x),

where o = [0;;] € H" () is the stress tensor, € = [e;;] € Hg, () is the strain
tensor, A = [\;j] € HY."(Q) is the eigenstress tensor, p = [u;;] € Hyy () is the
eigenstrain tensor, x = {z1, 2,23} € Q is a position at which the material relations
are studied, L = Lijki, Lijr € L*(R) is the material stiffness tensor and M = M,
M;jx € L™(Q) is its compliance material tensor, both with the standard symmetry;
the subscripts run the set {1,2,3},

sym 80',"
o] € Hy, () = ((Uij)?,jzl € Ly(%2), _6:1;? € L2(2), 0y = Uji)-
i
Moreover, we have

1
(2-2) LijkiMiimn = Lijmn,  lijmn = 5(6im6jn + 6indjm),

where I = I;j4 is the fourth-order unit tensor, J;; is the Kronecker delta.
Note that for a homogeneous and isotropic material the tensor L has the form

(2.3) L{jk[ = /\6-,'1'6];[ + 2IlIijkl,

where A and p are Lame’s constants. Instead of u, the shear modulus G is sometimes
introduced.
Comparing the two equations (2.1), we get

(2.4) Aij = —Lijriptet,  pi; = —MijriAer.
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Kinematic equations may be written as
1/6u; Ou;
2.5 =z 2.
(2:9) =3 (ax,- + 89:,-)

Note that displacements u € [H'(R)]?® and u = @ € [H3(L},)]3 are prescribed.
They are said to be kinematically admissible if the relation (2.5) holds.

Eventually, static equations or equations of equilibrium yield

80'.‘]'

3.’Ej =0

(2.6)

provided no volume weight forces are taken into account. The last relation has to be
taken in the sense of distributions.

Note that one says that the stress tensor is statically admissible or its components
are statically admissible, if [03;] € H3.,"(), statistical boundary conditions on T},
are prescribed and (2.6) is fulfilled.

Substituting the kinematical equations into the equations of equilibrium leads to
Lame’s equations for the unknown displacement vector u = {u;,us,u3} € H(Q),
which are written in the sense of distributions:

o[ Our  Ouy | .
. | Lijri| m— + 53— — 2 = Q,
(2.7) oz; | J"’(ax, + Oz ukl)_ 0 mn
or alternatively
o Our Oy | .
. L (2% 4+ 2) Loxs| =0 in 0
(2.8) a5, | ]H(ax, + axk) + 3| in

for a given field g, or A, both in [HF"(Q)]3.

Recall that on the part I, of the boundary I' the displacement vector a €
[Hz(T,)]? is prescribed, and the traction field p is given on T}, € [L?(I})]®. Assum-
ing smooth enough fields u € (2, we can formulate a variational principle which is
equivalent to the equation (2.7) or (2.8):

Lagrange’s primary principle: For given tractions p = p on I}, find the mini-
mum value of the functional IT,(u) = I1¥(u) + II*(u) on the set of kinematically
admissible displacements (u = {u;,u2,u3}) on Iy, i.e, u=ua € [H %(l"u)]3 and U3 is
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prescribed, where
1 1
o) Mw=; [ Wan=; [ (o) - 0] 100 : le(u(x) - n(0]d0
1
= 5 ] Loy ax0) = s e () - () 40
= l/ o(x) : M(x) : o(x)d2
2 Ja
1
= E/ Mijri(x)0:;(x)ori(x) AR,
Q
(2.10) TM*(u) = — / B(x) - u(x) d(x) = — / Bs(x)us () dT.
b4 PP
Here I1¥ is the the energy of internal forces, potential energy, whereas II} is the
energy of external forces. W is the density of internal energy.
Assuming the validity of (2.5), the principle is equivalent to (2.1), or, if (2.1) and
the boundary condition on I, are fulfilled, then the variational principle is equivalent
to (2.5).

The dual, or Castigliano’s principle can be formulated for the stress tensor o
in (2.7), or (2.8):

Castigliano’s principle: For given boundary displacements u = @ on I, find the
maximum of the functional II, (o) = I1? () +I12(o) on the set of statically admissible
stress fields on the boundary T}, i.e., o(x) - n(x) = p(x) € [L%(I})]?, where n is the
unit outward normal to the boundary I, and p are prescribed tractions:

(2.11) I(o)

= %/QW* dQ(x) = %/{;[a(x : M(x) : o(x) + 20 (x) : pu(x)]dQ
= % / [Mijk(%)055 (x)oki (%) + 2035(x) pij (%)) A
Q
- % /Q{["(x) = AX)] : M(x) : [or(x) — A(x)] — A(x) : M(x) : A(x)} dQ

- % /Q{M"j"‘ (x)[os5(x) = Aij ()] [oki (%) — Ak (x)]
— Mijri(x)Aij (x) A (x) } dQQ,
(2.12) (o)

= = [ (060 56 dre0) = = [ 0350x) - n(x)sm(x) dr,

u

I1? is the complementary energy of internal forces, whereas II? is the ezternal energy.
W* is the density of the complementary energy of internal forces.
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In the sense of Legendre’s transformation we have, see Fig. 2.1:

(2.13) H}‘+Hf:/0'(x):s(x)dﬂ.
Q
A HH 7
T w*
Ao o
AT W HH
AT H
y.dil 111
T E— 1 TH) e

"€ ' €

Figure 2.1. Internal energies for primary and dual principles.

3. EXTENDED HASHIN-SHTRIKMAN VARIATIONAL PRINCIPLES

In this section we extend the Hashin-Shtrikman variational principle [15], by in-
troducing both the eigenstrain and eigenstress fields into the formulation. For the
sake of simplicity assume that no body forces are present.

3.1. Preliminary considerations

The idea of Hashin and Shtrikman consists in introducing new variables 7;; or ~;;
(components of polarization tensors) to get another free variables which may be used
for “the best” estimation of bounds on overall material properties of nonhomogeneous
and anisotropic media.

Let us consider a bounded domain © with bounded Lipschitz’s boundary I' and
with subdomains Q;, i = 1,...,n, describing local inhomogeneities, see Fig. 3.1.

Following the Hashin and Shtrikman idea, let us split the procedure into two
steps. First, let €); and o; be the strain field and the stress field, respectively. The
stresses a?j and the small strains s?j are related by linear homogeneous isotropic
Hooke’s law:

(3.1) U?j = L?jklegl in 2,
or
(3.2) €?j = M?jklal(c)l in 2,
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Figure 3.1. Geometry and denotation of the trial body.

where LY, and M?jk, are constant components of material stiffnesses and compli-
ances, respectively. Subscripts in (3.1) and (3.2) run from 1 to 3. It is worth noting
that the stresses o;
in the above comparison media of the trial body (the quantities in which are denoted
by 0). Similarly, kinematic equations (¢9; = du?/dz; 4+ dul/dz;) are valid to get
the proper relation between the components of the strain tensor and the displace-
ment vector. These conditions will be necessary in what follows. In this sense, the

quantities with 0 are considered to be given.

are in (2 statically admissible, since linear elasticity is considered

In the second step a geometrically identical body is considered, which is anisotropic
and nonhomogeneous. Displacements u;, strains €;; and stresses o;; are unknown
and the generalized Hooke’s law including the eigenstresses A;; can be written as

(3.3) 0ij = Lijriert + Xij,  Aij = —Lijrpr, in £,
where py; are the eigenstrains. The inverse Hooke’s law holds in the form
(3.4) €ij = Mijior + pij,  pij = —Mijri A, in .

Similarly to the classical Hashin-Shtrikman principles, define the symmetric stress
polarization tensor 7;; and the symmetric strain polarization tensor +;; by

(35) gij = L?jk,ekl + Tij,
(3.6) €ij = M:pjklakl + vij.
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The definition of polarization tensors follows from a comparison of (3.3) and (3.5)
(for ) and from a comparison of (3.4) and (3.6) (for v):

(3.7) Tij = [Lijrilers + Aij
and

(3.8) Yij = [Mijetlowt + pij,
where

[Lijkt) = Lijit — Ly, [Mijra] = Mijia — M3y

Define also
(3.9) wi=u;—u, o};=o0;-0% inQ,

and the kinematic equations

. ) 0 0
(3.93.) e = €ij — 0 — du; c')uJ _ (aui 3 au] ) .

A 6uj - a_m E‘Lj Bu,-

Let us introduce two assumptions:

Assumption A: the surface displacements @; € [H %(I‘u)]3 are prescribed along
the entire boundary ' = [, and u?(€) = @;(£), £ € T, hence u}(§) = @;(¢) —ud(€) =
0, erl.

Assumption B: the tractions p; € [L%([',)]® are given along the entire boundary
' =T}, and p?(€) = pi(€), & € T, hence p(€) = o};(€)n;(€) = pi(§) —p(€) =0,
el

Lemma 1. In the case of Assumption A together with the equilibrium (2.6) and

the kinematic equations, for the stress fields o;;, a?j, aﬁj we have

/a;jeﬁjdﬂz/a?jeide:/021-523- dQ =o0.
Q Q Q

In the case of Assumption B and assuming the validity of kinematic equations, for
the stress fields 0;, 0¥;, 0}; obeying (2.6) we have

/ oijsij dQ = / aﬁje?j dQ = / g'::jg‘:j dQ =0.
Q Q Q
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Proof. For example,

't 1 ’ au: au‘; )
0i;€:;dQ = A i\ 52 + B dQ = {from Green’s theorem} =0
Q j i

as either u} = 0, or o};n; = 0 on I and o7; fulfils (2.6). In the same manner one gets
the other expressions in Lemma 1.

Lemma 2. Denoting the first variation (Gateau’s derivative in the direction of
a small change of the vector by which we differentiate) by §, we have

/Q(E;czéfkl — Tribeg) A2 = 0.

Proof.

/9(6;:167“ bt TkléE;[)dQ
= /Q(Elt‘sTkl — Tribey + L?jklE;j‘SE;:l - L?jkle'ij‘sE;:l) dQ
{because of the symmetry LY, = L2,;;, (3.5) and (3.1)}

=fs)(€;¢t5‘7;=1 — o de)y) dQ.

The last integral is equal to zero by virtue of the next lemma.

Lemma 3. For the second polarization tensor one has
/(;(021-67,-1- — 7i;00%;) dQ = 0.
Proof.
/0(051-67,-,- - %ij007;) dQ '
= /(;(‘7:,'5’751' - ’Yij‘sa;j + M?jkla;j(so;:l - M?jktagj‘s";cz) dQ
= /ﬂ(a:-jéeﬁj — €;007;) dL.

The last integral vanishes because of result of Lemma 1. a
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3.2. Extended primary Hashin-Shtrikman variational principle
Let Assumption A be fulfilled. Subtracting (3.1) from (3.5) yields

(310) 0':] = L‘(i)jkle;cl + Tij-

Since both 0;; and of; are statically admissible, and u; and u{ are kinematically
admissible, taking into consideration (3.10) the following equations have to be satis-
fied in the sense of distributions:

dol;  A(LYpieky + 7i5)

3.11 4= =0 in Q
(3-11) oz; ozx; 0 inf
(312) Tij — [Lijkl]ekl - /\ij =0 in Q,
(3.13) u:=0 on T,
where

[Liju] = Lijit = Ljias
and (3.13) follows from Assumption A.
Formula (3.12) can be recast as

(3.14) Cijkt(Tht — M) — €4 = 0,
where [Lijrs]Crskt = Lijki-

Theorem 3.1. If(3.11) to (3.13) and (3.9a) are fulfilled, the following variational
principle can be formulated: find the stationary point of the extended functional U
defined as

1

(3.15) U(rij,ey;) =U° - > /Q{Cijkl(Tij = Xij) (Tt — M) — 27i5€8;

— €43 Tij — Mijrihij A} A9
In (3.15) we have denoted

1 1
U° = 3 /;Z oheg; d = 5 /Q LYe%;e0, A2
Proof. The first variation of (3.15) with respect to the two independent fields

7;; and egj yields

1 1
(SU = — / [Cijkl('rij - /\ij)(STk[ - 62,(5Tk[ - ‘2‘Tkl55;;[ — EEL,&TH] dQ
Q

1 /
= — / {[C,-jk,(*rij - /\,‘j) - Ekl]67'kl + :2-[8;‘,6Tk1 - Tkldsk,]} dQ.
Q

From (3.14), the first term is zero and the second term vanishes because of Lemma 2.
O
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Theorem 3.2. The functional U is equal to the actual potential strain energy
stored in the anisotropic and heterogeneous body—see Fig. 2.1:

U=/ W dQ,
Q

where 1
W= '2‘Lijkl(5ij — pij)(€kt — Mrt)s  Pi; = —Mijir At

Proof. Substituting A;; for p;;, and owing to (3.14), the integrand of (3.15)
may be written as

e LY kien — €i(Tij + Lijrupint) + 275569 + €357i5 + paj Lijri et
{sum up all terms at 7, and use the definition (3.12)}

_ 070 _0 0 0 0 _11.0
= €35 Lijri€r — €ijLijriprl + [Lijri(eij — mij) — Lijr€s; — Lijri€isler + pij Lijeipet-
On the other hand,

(€i5 — pij)Lijri(ext — prt) = €ijLijriert — €ijLijripier — phijLijri€rt + pij Lijii ot

Comparing the right-hand sides of the last two relations, integrating the result, and
taking into consideration Lemma 1, one arrives at

Q Q

and one obtains the assertion of the theorem. O

Theorem 3.3. Assuming the conditions of Theorem 3.1, the functional U
in (3.15) attains its absolute maximum if L is positive definite, and it attains its
absolute minimum if C + M° is negative semidefinite.

Proof. The second variation of the functional U is
(3.16) 62U = - L{CijklaTijJTkl - 5621-61'5]'} dq.
Substituting from (3.10) to (3.16) for 7;; only in the second term results in
U = — /‘;{C,-jklér.-j&rk, — 6€;;(80%; — Li;0€r,)} AN

The second term vanishes because of Lemma 1. Since L?jk, is the tensor of elastic
material constants, it has to be positive definite. Consequently, if the tensor C;jx is
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also positive definite, i.e. so is its inverse [L;;x], the second variation of U is negative
and in this case the maximum is attained (sufficient condition).

In order to prove the condition of minimum of the functional (3.15), let us consider
the integral

I=/(;M?jk,(57'ij5Tk1 dQ,

where M, is inverse to L;,,. Substituting from (3.10) for 7;; and 7 yields

The last term vanishes because of Lemma 1. Since both the tensors M, and LY,
are positive definite, we conclude

[)M?jk’(sTij(sTkl dQ=L{Mgk150:J50L[ +L?]k1661165;=l}d9
i/M.?jkllsTijéTkldQ>/‘L?jkl(segj(seildn-
Q Q .

Coming back to the second variation (3.16) we find out that a sufficient condition
for the minimum of the functional U is: C + M is negative semidefinite. O

3.3. Extended dual Hashin-Shtrikman variational principle

In this section we extend the dual Hashin-Shtrikman variational principle to a
body with prescribed surface tractions p; and obeying Assumption B. Assume again
that no body forces are present.

Following the classical dual Hashin-Shtrikman theorem, define the symmetric
strain polarization tensor +;; by (3.6). Further, let the primed system be defined
by (3.9).

Subtracting (3.2) from (3.6), we obtain
(3.17) 82]- =€ij — E?j = M?jk,a;c, + vij.

Since both the fields €;; and €; are kinematically admissible, and the stresses o;
and of; are statically admissible, (3.11) still holds in the sense of distributions:

Ooi; .
(3.18) o 0 in Q,
J
(3.19) Yij — [Mijri)ok — pi; =0 in Q,
(3.20) oi;n; =0 on T,
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where
[Miju] = Mijia — My,

1,

and (3.20) follows from Assumption B.
The definition of the polarization tensor (3.19) can be rewritten as

(3.21) Dijki (et — pirt) — 045 = 0,
where [M;jrs]|Drsii = %(6{,,6,-, + 0:10jx) = Lijri is the fourth-order unit tensor.

Theorem 3.4. If (3.17) to (3.20) are fulfilled, the dual extended H-S variational
principle can be formulated, namely, the variation of the functional

. ' 1
(322) U*(yj,0l) =U% - 2 A{Dijkl (vij — i) (Tt — i) — 271505 — 045735} Q2

attains its stationary value with respect to the fields v;; and o;;. In (3.22) we have

denoted 1

. 1
Proof. The first variation of (3.22) leads to the following expression:
. 0 1, 1,
oU* = - A Dijea(vis — 1i)0mm — obmm — 5756035 — 5045675 dQ
1
= - /Q{[Dijkl (vij — mij) — 035107k + 5[0%5%';' - ’7ij50§,-]} dq.

The last integral is zero. The first part of it vanishes because of the validity of (3.21)
and the second part is zero according to Lemma 3. : a

Theorem 3.5. The functional U* is equal to the actual complementary energy
stored in the anisotropic and heterogeneous body, see Fig. 2.1:

Us* = / w*dQ,
Q
where
1
wW* = E(Mijklaijakl + 20ijl-lij)-
Proof. By virtue of (3.21) and (3.9) the integrand of (3.22) may be written as

MZ,02%00 + 0ijpi; + (035 + 209 — 045) 1
{using (3.6) for removing <;; and by virtue of (3.9)}

= 0ijbij + €503 — 035)-
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Integration over the domain 2, Lemma 1, and (2.13) result in the assertion of the
theorem. O

Theorem 3.6. Assuming the conditions of Theorem 3.4, the functional U*
attains its absolute maximum if [M] is positive definite, and it attains its absolute
minimum if D + LO is negative semidefinite.

Proof. The second variation of U* can be expressed as
22U = — /Q {Dijuubyii v — 6015675} dT.
Substituting for ;; from (3.17) in the second term of the above integral yields
8% = - /Q {Dijki6vij0vi1 — 807 (0e; — My 80%,)} AQ.

The second term disappears due to Lemma 1. Since M3, is the tensor of elastic
material constants, it has to be positive definite. Consequently, if the tensor Cjjx is
also positive definite, i.e. so is its inverse [L;;xi], the second variation of U is negative
and in this case the maximum is attained.

In order to prove the condition of the minimum of the functional (3.22), consider
the integral

I‘ = /QL?jkl(s’hJ(s’Ykl dQ.
Substituting from (3.17) for §v;; and éyki, we get
I = /Q{L?jklésgjéefd + My, 80%;60}, — 2607;0¢;;} dS2.

The last term disappears because of Lemma 1. Since both the tensors LY;,, and

M3, are positively definite, we conclude

‘/QL?]’CIJ’Y‘JJ’W" dQ = L{L?Jk16€£JJEL’ + Mgkldoijéd;d} dQ

=>‘/QL?]kl‘$71]67kl dQ>‘/QMgk[60':J50'Ll df.

From the last inequality follows that a sufficient condition for minimum of the
functional U* is: D + LO is negatively definite. O
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4. APPLICATIONS

Mechanically nonlinear behavior can be introduced using eigenparameters (plastic
strain, relaxation stresses), and using these parameters visco-elastic or visco-plastic
material can be described. In this way, time dependent problems or hereditary
problems can be involved in the eigenparameters. Shape optimization of prestressed
fibers can start with the above principles. From the H-S principles a very weak
integral formulation directly follows, and the BEM is applicable to nonlinear and
time dependent problems [13]. The unpleasant term involving hypersingular integral,
which has to be integrated in the sense of Hadamard, can be avoided by Eshelby’s
trick.

A typical application of the above established extended principles is an introduc-
tion of the change of temperature instead of the eigenstrains. The bounds obtained
here can be derived in a similar manner as the classical H-S bounds on material con-
stants [8]. But, to derive bounds on the overall temperature characteristics requires
very extensive calculation.

5. CONCLUSION

In this paper, classical Hashin-Shtrikman has been extended by the eigenparame-
ters (eigenstrains or eigenstresses). These internal parameters can stand for a large
range of quantities, which are studied in mechanics of solid media. Basically, a
similar process to that published in [8] on how to calculate bounds on nonlinear or
time-dependent characteristics describing mechanical properties can be applied. On
the other hand, each such a problem requires a specific treatment and the solution
is not trivial.

Acknowledgement. The authors thank to anonymous referee for his fruitful
suggestions.
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Abstract. Internal parameters, eigenstrains, or eigenstresses, arise in functionally graded
materials, which are typically present in particulate, layered, or rock bodies. These param-
eters may be realized in different ways, e.g., by prestressing, temperature changes, effects of
wetting, swelling, they may also represent inelastic strains, etc. In order to clarify the use of
eigenparameters (eigenstrains or eigenstresses) in physical description, the classical formu-
lation of elasticity is presented, and the two most important Lagrange’s and Castigliano’s
variational principles are formulated in the sequel. Then the classical Hashin-Shtrikman
principles are recalled and the involvement of eigenparameters is studied in more detail.

Keywords: extended Hashin-Shtrikman variational principle, eigenparameter, transfor-
mation field analysis
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1. INTRODUCTION

Eigenstresses and eigenstrains play a very important role in many branches of
applied mechanics, e.g., in composites, geotechnics, concrete structures, etc. In pre-
vious papers, [13], [14], the authors have formulated an effective approach to the
analysis and optimization of nonhomogeneous bodies with prescribed boundary dis-
placements or tractions and have used the transformation field analysis for relating
the components of stress or strain tensors and of eigenstrains or eigenstresses. The
transformation field analysis established by Dvorak in [2] has been applied to local-
ization of stresses and strains in two-phase composites. The eigenstresses stood for
relaxation stresses while eigenstrains represented plastic strains. This idea was ex-
tended in [3], [4], [15], where applications of a large scale of combinations of internal
material situations together with prestress of composite structures were considered.

* This work was supported by grant No. 103/041178 of the Grant Agency of the Czech
Republic and by the project MSM 210000001,3.
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In [3], thick-walled cylindrical structures were studied while in [4] and [15] sub-
merged cylindrical laminates with different properties in combination with prestress
were discussed.

R. Hill in [10] presented one of the first comprehensive approaches on how to solve
elastic problems with sudden change of material parameters in terms of variational
principles. An introduction of special material constants belongs also to Hill, who
enabled researchers to split three-dimensional problems into pure shear and pure
compression (tension) problems.

In [12] and [17] an interesting attempt at obtaining effective material properties
of a nonlinear isotropic composite has been made. A new variational approach was
proposed that provides the effective energy potentials of nonlinear composites in
terms of the corresponding energy potentials for linear composites with the same
microstructural distributions. When using the eigenparameters in the sense of [2]
and generalize it to the macrostructure (localization) of composites, one can obtain
procedures that involve a very wide scale of nonlinear problems (plasticity, visco-
plasticity, damage, etc.). This is why we have been interested in such a variational
formulation which is naturally valid for composites and allows us to extend the well-
known variational principles using eigenparameters. To this end the most appropriate
means are Hashin-Shtrikman variational principles [7], [9], which have been applied to
estimation of material bounds in [8]. Using Eshelby’s trick [6], an integral formulation
can be stated [14], and the boundary element method is then applicable [1]. In
comparison with the finite element method the boundary element method appears
to be far more efficient in this case.

It is worth noting that the eigenparameters are an extension of, among other,
the influence of change of temperature (eigenstrain); this has been discussed in the
well-known paper by Levin [11].

Our approach is based on the idea of augmented Hashin-Shtrikman variational
principles. This paper deals with extended primary and dual variational principles
for nonhomogeneous bodies. By means of internal parameters, eigenstrains or eigen-
stresses, involved in H-S principles, it is possible to obtain new bounds on mechanical
properties of the trial material, increase the bearing capacity of structures, and to
minimize the stress excesses.

The paper deals with the deterministic solution of overall properties of composite
materials. Randomly distributed phases (fibers) in connection with H-S principles
have recently been studied by Willis [16], and Drugan and Willis [5].
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1. BASIC RELATIONS

We start with basic relations which are valid in mechanics of continuum and are
appropriate for our next considerations.

Denote by 2 € R = Oz12223 a bounded domain, I' =T, UL, (I, NI}, = 0) being
its Lipschitz’s boundary, both representing the trial body. On I, the displacement
vector @ = {@y, @iz, U3} € [H2(I,)]? is prescribed, and on T}, the vector of tractions
p = {p1,P2,p3} € [L*(T,)]® is given. Recall the relation stresses-tractions on the
boundary I}, p;(§) = 0i;(&)n; (), where n = {ny, na, n3} is the outward unit normal
to the boundary T', & = {&1,62, &3} € T,

Hooke’s law for anisotropic and nonhomogeneous field is introduced in the form

(2.1) o(x) =L(x): e(x) + A(x), e(x)=M(x): o(x)+ p(x)
0ij (%) = Lijrr(X)er(x) + Aij (%), €4(x) = Miji (%) (%) + piz (),

where o = [0y;] € H"(Q) is the stress tensor, € = [g;;] € HY." () is the strain
tensor, A = [\;;] € H"(Q) is the eigenstress tensor, p = [u;;] € HY" () is the
eigenstrain tensor, x = {x1, 22, x5} € Q is a position at which the material relations
are studied, L = Ly, Lijii € L°°(Q) is the material stiffness tensor and M = Mk,
Miji € L™(Q) is its compliance material tensor, both with the standard symmetry;
the subscripts run the set {1, 2, 3},

o 0o ij
03] € HE () = ((Uz'j)?,j:1 € La(), 6:; € La(Q), o4 = Uji)-
j
Moreover, we have
1
(2.2) LijiMpimn = Lijmn,  Lijmn = 5(5im5jn + 0indjm)s

where I = I 1 is the fourth-order unit tensor, ¢;; is the Kronecker delta.
Note that for a homogeneous and isotropic material the tensor L has the form

(2.3) Lijri = Nijorr + 20dijk1,

where )\ and p are Lame’s constants. Instead of p, the shear modulus G is sometimes
introduced.
Comparing the two equations (2.1), we get

(2.4) Aij = —Lijripirr,  ti; = —Mijri et
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Kinematic equations may be written as

o 1 8u1 (’)uj

Note that displacements u € [H'(€2)]> and u = @ € [Hz(I},)]? are prescribed.
They are said to be kinematically admissible if the relation (2.5) holds.

Eventually, static equations or equations of equilibrium yield

8(71']'

(2.6) =

=0

provided no volume weight forces are taken into account. The last relation has to be
taken in the sense of distributions.

Note that one says that the stress tensor is statically admissible or its components
are statically admissible, if [o;;] € HJ" (), statistical boundary conditions on T},
are prescribed and (2.6) is fulfilled.

Substituting the kinematical equations into the equations of equilibrium leads to
Lame’s equations for the unknown displacement vector u = {u1,u2,uz} € H(),
which are written in the sense of distributions:

0 [ <3uk 3ul )
ijkl

2.
(2.7) 8,@] ox;  Oxy

or alternatively

0 Oup = Ow

2. L;
(28) ax] Jkl((?x +8xk

)+2/\” =0 inQ

for a given field u, or A, both in [H"(Q)]3.

Recall that on the part I, of the boundary I' the displacement vector @ €
[H=(T,)]? is prescribed, and the traction field P is given on T}, € [L2(I}))]?. Assum-
ing smooth enough fields u € ), we can formulate a variational principle which is
equivalent to the equation (2.7) or (2.8):

Lagrange’s primary principle: For given tractions p = p on I, find the mini-
mum value of the functional IT,(u) = IT¥(u) + II¥(u) on the set of kinematically
admissible displacements (u = {u1, u2,us}) on I, i.e., u =i € [H2(T},)]? and s is
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prescribed, where
9) M) =5 [ W= 3 [ o)~ u60] L) : E(ux) — (0] 40

- §/QLUM( )[Elj(u( X)) — NU( x)|[er(a(x)) — pri(x)] dQ

1
=3 /Qa(x) s M(x) : o(x) d2

= % /Q Mijkl (X)O’ij (X)O’kl (X) dQ,
(2.10) II¢(u) = 7/1“ p(x) -u(x)dI'(x) = 7/1“ Di(x)u;(x) dT.

b b

Here II} is the the energy of internal forces, potential energy, whereas II¥ is the
enerqgy of external forces. W is the density of internal energy.

Assuming the validity of (2.5), the principle is equivalent to (2.1), or, if (2.1) and
the boundary condition on I, are fulfilled, then the variational principle is equivalent
o (2.5).

The dual, or Castigliano’s principle can be formulated for the stress tensor o
n (2.7), or (2.8):

Castigliano’s principle: For given boundary displacements u = 1 on I, find the
maximum of the functional IT, (o) = II¥ (/) +II2 (o) on the set of statically admissible
stress fields on the boundary I}, i.e., o(x) - n(x) = p(x) € [L?(I},)]3, where n is the
unit outward normal to the boundary I, and p are prescribed tractions:

(2.11) I¥(o)

/ W*dQ(x /[ (x: M(x) : o(x) + 20(x) : p(x)] dQ
= 5 [ M0 (00000 + 203, (o, (0] 40
= /{ x)] : M(x) : [o(x) — A(x)] — A(x) : M(x) : A(x)}dQ

3 /Q{Mijkl (x)[0i (%) — Aij (x)][on1(x) — A (x)]

= Miji () Aij (%) Awr (x) } dS2,
(2.12) TI?(o)

-/ o) n0) - W Ar(x) = - / 1,0 i) 7o)

117 is the complementary energy of internal forces, whereas II? is the external energy.

W* is the density of the complementary energy of internal forces.
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In the sense of Legendre’s transformation we have, see Fig. 2.1:

(2.13) Hi“Jer:/U(x):s(x)dQ.
Q
A T =
Y T 7
N
11 W*
AT HH d g
AW e
il 1T 57
Painn am
T c— 4 | e—p
"¢ "€

Figure 2.1. Internal energies for primary and dual principles.

3. EXTENDED HASHIN-SHTRIKMAN VARIATIONAL PRINCIPLES

In this section we extend the Hashin-Shtrikman variational principle [15], by in-
troducing both the eigenstrain and eigenstress fields into the formulation. For the
sake of simplicity assume that no body forces are present.

3.1. Preliminary considerations

The idea of Hashin and Shtrikman consists in introducing new variables 7;; or v;;
(components of polarization tensors) to get another free variables which may be used
for “the best” estimation of bounds on overall material properties of nonhomogeneous
and anisotropic media.

Let us consider a bounded domain € with bounded Lipschitz’s boundary I" and
with subdomains €2;, ¢ = 1,...,n, describing local inhomogeneities, see Fig. 3.1.

Following the Hashin and Shtrikman idea, let us split the procedure into two
steps. First, let E?j and 0% be the strain field and the stress field, respectively. The

0

stresses U?j and the small strains ¢;; are related by linear homogeneous isotropic

Hooke’s law:

0 _ 70 _0 :
(3.1) 05 = Lijer  in €2,
or

0 _ 270 0
(3.2) €ij = MO 1M Q,



Figure 3.1. Geometry and denotation of the trial body.

where L?j x and Mioj 4 are constant components of material stiffnesses and compli-

ances, respectively. Subscripts in (3.1) and (3.2) run from 1 to 3. It is worth noting
in the above comparison media of the trial body (the quantities in which are denoted

that the stresses o7 are in (2 statically admissible, since linear elasticity is considered

by 0). Similarly, kinematic equations (¢f; = duf/0z; 4+ dul/dx;) are valid to get
the proper relation between the components of the strain tensor and the displace-
ment vector. These conditions will be necessary in what follows. In this sense, the
quantities with 0 are considered to be given.

In the second step a geometrically identical body is considered, which is anisotropic
and nonhomogeneous. Displacements u;, strains €;; and stresses o;; are unknown

and the generalized Hooke’s law including the eigenstresses \;; can be written as
(3.3) 0ij = Lijrier + Nij,  Aij = —Lijrpnr, in €,

where pg; are the eigenstrains. The inverse Hooke’s law holds in the form

(3.4) €ij = Mijraor + pij,  pij = —MijrA, in Q.

Similarly to the classical Hashin-Shtrikman principles, define the symmetric stress

polarization tensor 7;; and the symmetric strain polarization tensor +;; by

(35) Oi5 = L?jklgkl + Tij,

(3.6) €ij = iojklo'kl + Vij-
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The definition of polarization tensors follows from a comparison of (3.3) and (3.5)
(for 7) and from a comparison of (3.4) and (3.6) (for ~):

(3.7) Tij = [Lijmler + Aij
and

(3.8) Yij = [Mijilow + frij,
where

[Liji] = Lijkt — Ly [Mijra] = Mijer — M.

3

Define also

I _ 0 /o 0 :
(3.9) Up = U —ug, 0 =0 — 0y in €

and the kinematic equations

(3.9a) €1 = €ij — €

o _ Oui  Ouj <8u? 8u9).

A (’)uj B (’)ui (9’11,]' B (’)ui
Let us introduce two assumptions:

Assumption A: the surface displacements @; € [H?(I,)]* are prescribed along
the entire boundary I' = T, and uf (&) = @;(€), € € T, hence u}(¢) = @;(€) —ud (&) =
0,§el.

Assumption B: the tractions p; € [L*(T,)]® are given along the entire boundary
I' =T, and pY(€) = pi(€), & € T, hence pj(§) = o};(£)n;(€) = pi(€) — p{(€) =0,
el

Lemma 1. In the case of Assumption A together with the equilibrium (2.6) and

ol. we have

the kinematic equations, for the stress fields o;;, o9 ’

K

/Uijggjdﬂz/U?jglideZ/Ugjsgde:O.
Q Q Q

In the case of Assumption B and assuming the validity of kinematic equations, for
the stress fields o0y, J?j, o}; obeying (2.6) we have

/agjaijdﬂz/ogjagde:/agjsgjdﬂzo.
Q Q Q
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Proof. For example,

1 roou)
/chgjsgj dQ = 3 /Q i (gz; + axZ) dQ = {from Green’s theorem} = 0

as either u; = 0, or of;n; = 0 on I and o7; fulfils (2.6). In the same manner one gets

the other expressions in Lemma 1.

Lemma 2. Denoting the first variation (Gateau’s derivative in the direction of

a small change of the vector by which we differentiate) by &, we have

/Q(é‘;cl(STkl — Tkl&}d) dQ = 0.

Proof.
‘/Q(Ei’cléTkl — Tklé‘g;gl) dQ
= /Q(E;czf;ﬂcl - Tklf;f;cl + L?jklggjé‘g;cl - L?jklggj(k;cl) dQ
{because of the symmetry L?jkl = Lglij, (3.5) and (3.1)}

:/9(5215021_0215521)(19-

O
The last integral is equal to zero by virtue of the next lemma.
Lemma 3. For the second polarization tensor one has
/Q(a;jmj - %-]60;]») dQ = 0.
Proof.
/Q(a;jmj —7ij00;;) dQ
= /Q(U;jé’yij - %‘jfgoéj + M?jkloéjfsofd - Miojklo'gjéo';d)dﬂ
= /Q(Ugjésgj — €3;007;) dQ.
O

The last integral vanishes because of result of Lemma 1.
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3.2. Extended primary Hashin-Shtrikman variational principle
Let Assumption A be fulfilled. Subtracting (3.1) from (3.5) yields

(310) 0'{» = Lzojklggcl + Tij-

]

Since both o;; and O’?j are statically admissible, and u; and u) are kinematically
admissible, taking into consideration (3.10) the following equations have to be satis-
fied in the sense of distributions:

day;  O(LYeh + 1)

3.11 Y= =0 in Q
( ) 6$j 8wj ln ’
(3.12) Tij — [Lijkl]gkl — )\ij =0 in Q,
(3.13) u,=0 on T,
where

[Lijia] = Lijit — Lijus
and (3.13) follows from Assumption A.
Formula (3.12) can be recast as

(3.14) Cijri(Tit — M) — €45 = 0,
where [Lijrs]crskl = Lijkl-

Theorem 3.1. If(3.11) to (3.13) and (3.9a) are fulfilled, the following variational
principle can be formulated: find the stationary point of the extended functional U
defined as

1
(315) U(Tl‘]7€;]) = UO — 5 / {Czjkl(le — Aij)(Tkl - )\kl) — 27'”5,'10]
Q
— glij Tij — Mijkl)\ijAkl} dQ.
In (3.15) we have denoted

1 1
0 _ 0_0 _ 0 _0_0
U° = 3 /Q 0ii€i dQ = 3 /Q l/ijkleijskl dQ.

Proof. The first variation of (3.15) with respect to the two independent fields
7;; and €, yields
0 1 ! 1 /
oU = — o Cijkl(Tij - )\ij)(STkl - Ekl§7kl - §Tkl65kl - §5kl§7-kl dQ
1
= - /Q{[Cijkl(Tij — Nij) — €xt]0THRt + 5[6215%1 - Tkl5€§gl]} d.

From (3.14), the first term is zero and the second term vanishes because of Lemma 2.
O
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Theorem 3.2. The functional U is equal to the actual potential strain energy
stored in the anisotropic and heterogeneous body—see Fig. 2.1:

:/WdQ,
Q

1
W = —Lijui(€ij — tij)(ent — tat)y  ij = —Mijrs M-

where

Proof. Substituting A;; for u;;, and owing to (3.14), the integrand of (3.15)

may be written as

E?jL?jkﬁgl — ¢€ij(Tij + Lijrapn) + 27@‘8% + &35 Tij + pig Lijri pirr
{sum up all terms at 7, and use the definition (3.12)}

= e Lmen — €ijLijkutn + [Lijki (€55 — pig) — Lijacsy — Liieijlen + tig Lijrifir -
On the other hand,
(€ij — i) Lijri(ert — prr) = €ijLijriert — €ij Lijripint — pijLijricrr + toij Lijri prt -

Comparing the right-hand sides of the last two relations, integrating the result, and

taking into consideration Lemma 1, one arrives at

/Uz'jfféj @ = / oiEi; A =0,
Q Q

and one obtains the assertion of the theorem. O

Theorem 3.3.  Assuming the conditions of Theorem 3.1, the functional U
in (3.15) attains its absolute maximum if L is positive definite, and it attains its
absolute minimum if C + MO is negative semidefinite.

Proof. The second variation of the functional U is
(316) 52U = — /Q{Cijkl(;TijaTkl — 56;]-57'1']'} dQ.
Substituting from (3.10) to (3.16) for 7;; only in the second term results in
62U = — /Q{Cijklénjéml — 8e}; (807, — Ly 05} A€

The second term vanishes because of Lemma 1. Since L?j « is the tensor of elastic
material constants, it has to be positive definite. Consequently, if the tensor C;jx; is
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also positive definite, i.e. so is its inverse [L;;x;], the second variation of U is negative
and in this case the maximum is attained (sufficient condition).

In order to prove the condition of minimum of the functional (3.15), let us consider
the integral

I:/QMZ'Ojkl(STijéTkl dQ,

where Miojkl is inverse to L?jkl. Substituting from (3.10) for 67;; and d7y; yields
I— /Q (M0160% 607 + L0,y 8! 36y — 206,50} 0.

The last term vanishes because of Lemma 1. Since both the tensors M. Z-Oj o and L?j Kl
are positive definite, we conclude

/Q Mio_jk;léTij(;Tk:l dQ = /SZ{Mgkléo';]éU;d + L?jkléggjé‘g;cl} dQ
= / Miojkl(;TijéTkl dQ > / L?jkl(;g;](;g;cl dQ.
Q Q

Coming back to the second variation (3.16) we find out that a sufficient condition
for the minimum of the functional U is: C + MYV is negative semidefinite. ]

3.3. Extended dual Hashin-Shtrikman variational principle

In this section we extend the dual Hashin-Shtrikman variational principle to a
body with prescribed surface tractions p; and obeying Assumption B. Assume again
that no body forces are present.

Following the classical dual Hashin-Shtrikman theorem, define the symmetric
strain polarization tensor v;; by (3.6). Further, let the primed system be defined
by (3.9).

Subtracting (3.2) from (3.6), we obtain

/I .. _ 0 __ 0 / .
(3.17) €5 = €ij — €5 = M0 + Vij-

Since both the fields ¢;; and E?j are kinematically admissible, and the stresses o
and o7; are statically admissible, (3.11) still holds in the sense of distributions:

ao’z{j . .
(318) W = 0 m Q,
J
(3.19) Yij — [Mijkl]o'kl — [hij = 0 in Q,
(3.20) oynj=0 on T,



where
[(Mijri] = Mijr — M,

(2

and (3.20) follows from Assumption B.
The definition of the polarization tensor (3.19) can be rewritten as

(3.21) Dijit (i — pwt) — 045 = 0,

where [M;jrs|Drski = %((Sikéﬂ + 646;1) = Lijr is the fourth-order unit tensor.

Theorem 3.4. If (3.17) to (3.20) are fulfilled, the dual extended H-S variational
principle can be formulated, namely, the variation of the functional

* * 1
(3.22)  U*(yy,oi;) =U° —5/Q{Dijkl(%‘j—mj)(m—Mkl)—Q%'jU?j—UEj%‘j}dQ

attains its stationary value with respect to the fields v;; and o};. In (3.22) we have
denoted

1 1
0% _ 0.0 _ 0 00
U™ = 5/9 0ii€ij dQ = 5/9 Mijkloijokl dQ.
Proof. The first variation of (3.22) leads to the following expression:

oU*

1 1
— /Q [Dijkl (Vij — ij )Wkt — Tp Yk — 5%‘3‘5023' - 5%5%‘]‘] dQ

1
- [Dijr (Yij — tig) — 0107kt + 5 [07;07i5 — vijdoy;] ¢ A
Q 2

The last integral is zero. The first part of it vanishes because of the validity of (3.21)
and the second part is zero according to Lemma 3. 0

Theorem 3.5. The functional U* is equal to the actual complementary energy
stored in the anisotropic and heterogeneous body, see Fig. 2.1:

U** :/W* dQ,
Q
where

. 1
W" = i(MijklUijUkl + 20 11i5)-

Proof. By virtue of (3.21) and (3.9) the integrand of (3.22) may be written as

Mog00 + oijpij + (055 + 200 — 0ij)vi;
{using (3.6) for removing ~;; and by virtue of (3.9)}

= oijpij + €ij (0 — 075).-
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Integration over the domain 2, Lemma 1, and (2.13) result in the assertion of the
theorem. 0

Theorem 3.6. Assuming the conditions of Theorem 3.4, the functional U*
attains its absolute maximum if [M] is positive definite, and it attains its absolute
minimum if D 4+ L° is negative semidefinite.

Proof. The second variation of U* can be expressed as
U = — /Q{Dijkl&yijcs’)’kl — 607;6vi; 1 dr.
Substituting for ;; from (3.17) in the second term of the above integral yields
82U = — /Q{Dijklmjéwkl — 607 (0ei; — M 60%,)} A€

The second term disappears due to Lemma 1. Since Miojkl is the tensor of elastic
material constants, it has to be positive definite. Consequently, if the tensor C;j; is
also positive definite, i.e. so is its inverse [L;;x;], the second variation of U is negative
and in this case the maximum is attained.

In order to prove the condition of the minimum of the functional (3.22), consider

the integral

Substituting from (3.17) for dv;; and §vy, we get

The last term disappears because of Lemma 1. Since both the tensors L?jkl and

0
My,

, are positively definite, we conclude
/QL%M(S%J'MM dQ = /Q{L?jkl&gj&;cl + Miojkléagjéa;cl} df2
= /Q L?jklé’yijé’ykl dQ > /Q Mgkl(SU;](SU;Cl dQ.

From the last inequality follows that a sufficient condition for minimum of the
functional U* is: D + L is negatively definite. O
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4. APPLICATIONS

Mechanically nonlinear behavior can be introduced using eigenparameters (plastic
strain, relaxation stresses), and using these parameters visco-elastic or visco-plastic
material can be described. In this way, time dependent problems or hereditary
problems can be involved in the eigenparameters. Shape optimization of prestressed
fibers can start with the above principles. From the H-S principles a very weak
integral formulation directly follows, and the BEM is applicable to nonlinear and
time dependent problems [13]. The unpleasant term involving hypersingular integral,
which has to be integrated in the sense of Hadamard, can be avoided by Eshelby’s
trick.

A typical application of the above established extended principles is an introduc-
tion of the change of temperature instead of the eigenstrains. The bounds obtained
here can be derived in a similar manner as the classical H-S bounds on material con-
stants [8]. But, to derive bounds on the overall temperature characteristics requires

very extensive calculation.

5. CONCLUSION

In this paper, classical Hashin-Shtrikman has been extended by the eigenparame-
ters (eigenstrains or eigenstresses). These internal parameters can stand for a large
range of quantities, which are studied in mechanics of solid media. Basically, a
similar process to that published in [8] on how to calculate bounds on nonlinear or
time-dependent characteristics describing mechanical properties can be applied. On
the other hand, each such a problem requires a specific treatment and the solution
is not trivial.
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