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1. INTRODUCTION 

Means have interested mathematicians since antiquity. The most common means 
are power means, in particular the arithmetic, geometric and harmonic mean (with 
or without weights). For positive numbers a and b these means (with equal weights) 
are defined by the formulae 

A = -t±-, G = Vab, H= 2ab 

a + ľ 

respectively. There are many examples of iterated means. For example, if we start 
with any two given numbers a and b and repeatedly form the arithmetic and the 
harmonic mean, in that order, i.e. we reiterate the map which to the pair (a,b) 
assigns a new pair (a',b') given by 

(I) a = — — , b = 
a + ò' 

then we obtain sequences a', a", a'",... and b', b", b'",... These sequences converge 

to the common limit G = y/ab. The algorithm defined by (1) is sometimes called 
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the Newton algorithm (see [1]). Another algorithm, the algorithm studied by Gauss 
for the arithmetic-geometric mean, is obtained by taking instead successively the 
arithmetic and the geometric mean (in that order). Thus the map will in this case 
be 

(2) a ' = ^ T ' b' = y/ab. 

A more general algorithm which contains both the Newton algorithm and the Gauss 
algorithm can be found in [17]. 

In this paper we will study a related type of iterated means: Let x > 0, let ra, n € 
{1,2 , . . .} , p > 1, 0 < v ^ 1 and consider the weighted means Am, Pm: R+ -» R+ 
defined by 

Am(x) = ax + (3, 

Pm(x)={1x^+6)1-p, 

where 7 = v™, a = v^~ and 7 + 6 = a + /3 =1. The iterated means (^4mPm)m(x) 
and (Pm^4m)m , and their limits, were introduced and studied in [7], [14] and [15] (here 
"multiplication" between Am and Pm and "exponentiation" in ra denote composition 
in the obvious way). 

They appear naturally in connection with estimation of certain effective prop­
erties for multiscaled materials involving the so-called reiterated homogenization 
(see e.g. [4], [12], [13] and the references given there). Moreover, these iterated means 
converge to the same limit as ra goes to infinity. Generally this limit is difficult to 
find, but in the case p = 2, it turns out to be the mean 

nv(x — 1) 
1 + v ' n+(\-v)(x-\y 

which is the well known Hashin-Shtrikman lower bound if x > 1 and Hashin-
Shtrikman upper bound if x < 1 (see [11]). This fact was proved in [14] by obtaining 
explicit formulae for these means. 

In this paper we derive the same formulae by another method. Moreover, we 
discuss some alternative presentations of these means and their common limit in 
general. 

The paper's organization is as follows. In Section 2 we review the corresponding 
result from [14] indicating a matrix proof for it and consider also the case n = 1 
(Example 3). Section 3 is about the general case. In particular, in Remark 4 it is 
indicated that the expressions (AmPm)7n and (Pm j4m)m are conjugate (as operators) 
to certain products of power means. This is important, because (see again Remark 5) 

344 



it opens up a connection with the theory of interpolation functions (see [5], in par­

ticular Section 5.4, and the references to papers by J. Peetre given there). Finally, 

we consider some limiting cases in Section 4. 

2. T H E CASES p = 2 AND n = 1 

We first note that if 

where 

then 

Thus, if 

then the iterate Fm is given by 

(3) 

where 

a'' 

Ь'. 
= A 

a 

.6. 

A = 
k ľ 

s r 

a' _ ka/b +1 
V sa/b + r 

kx + 1 
sx + r' 

F(x) = 

a(m) 
Fm(x) = ^ r т , 

v ' ь( m ) 

a ( m ) 

&(m) 
= Л^ 

Now, assume in addition that / = 1 — k and 5 = 1 — r, i.e. the matrix A is row-

stochast ic (We call a matrix row-stochastic if all elements are non-negative numbers 

and if the sum of the elements on any row is unity. Replacing the word row by column 

we, similarly, obtain the notion of column-stochastic) By finding eigenvectors and 

eigenvalues we obtain that 

A = PDP~1, 

where 

P = 

Thus 

1 l-k 

1 r - 1 
P'l = 

k + r-2 

r-\ k-\ 

- 1 1 
D = 

1 0 

0 k+r-1 

Am = PDmp-\ 
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where 
' 1 0 

.0 (fc + r - 1 ) * 

Accordingly we have a closed form expression for the iterate Fm. We observe that 

Dm = 

Am-I = P(DШ - I)P~l = ( f c + / 1 ) m l 

v ' fc+r-2 
fc-1 - ( f c - 1 ) 

- ( r - 1 ) r - 1 

l.Є. 

Aш = 
(fc + r - l ) m - l 

fc + r - 2 
fc-1 ~ ( f c - l ) 

- ( r - 1 ) r - 1 
+ J. 

Multiplying by [x, 1]T we obtain the equations 

a m = s ( ( f c - l ) ( : r - l ) ) + . 2 ; , 

bm = s(-(r-l)(x-l)) + l, 

where 

This gives 

5 = 
(fc + r - l ) m - l 

fc+r-2 ' 

a m _ s((k - l)(д? - 1)) + x - (s(-(r - l)(x - 1)) + 1) 

bm s(-(r - l)(x - 1)) + 1 

(s- l)(g(fc + r - 2 ) + l) 

s ( l - r ) ( а г - l ) + l ' 

and we get that 

(£-0"'- + 
s{l-r) 

<bm J (x- l ) (s ( fc + r - 2 ) + l) s(fc + r - 2 ) + l* 

Thus we have obtained the following result: 

Theorem 1. We have 

(a i i - L_ 
( ) \b^~ ) " (fc + r - l ) m ^ T I ' h 

In the case p = 2 where 

1 1 , ((Jfc + r - l ) т о - 1)(1 - г) 

(k + r-iy (* + г - 2 ) ( * + r - l ) " 

Pm-A-m^X) — 

AmirnyX) = 

ax + ß 
aőx + (7 + ßà)' 
ßöx + (a + ßy) 

Sx + 7 
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the corresponding matrices are 

A = 

and 

A = 

a ß 
aõ 7 -ł- ßö 

a + ßő ßч 

6 7 

respectively (which both are row-stochastic). Thus by (4) we obtain the following 

result: 

Corollary 2. For p = 2 we have 

/ i v - i . - - ( £ ) m * 
VFm-^тnj )

m(x) -1 \-ya) x-1 1 - - ^ 7 ' 

1 = /_1_ \ m _ l _ 1 ~ ( ^ ) m g 
(-4mPm)™(a;) - 1 \ya) x-1 l - i cry" 

R e m a r k 1. A different proof of this theorem can be found in [14]. In our opinion 

the above proof is more straightforward and offers a better understanding of the final 

result. 

R e m a r k 2. Prom a mathematical point of view the theory of Markov chains 

is about iteration of column-stochastic square matrices. Thus the iterated means 

(PrnAm)rn and ( j 4 m P m ) m could be interpreted as Markov chains for p = 2. In the 

case of general p we can now say that (PrnArn)
m and (ArnPrn)

m represent some kind 

of generalized Markov chains. 

R e m a r k 3. By using the equalities 7 = v ^ , a = v^-~ and 7 + 8 = a + /? = 1, 

we obtain 

(5) lim (PmAmyn = lim ( 4 m P m ) m = 1 + ™ (* " / } .. 
m-+oo m-*oo n + (1 — V)\X — 1) 

(cf. Section 1). 

Let 

Uml-E/ = = -4m-i m ( £ J , 

vm(x) = pmAm{x). 

The general case p ^ 2 is much more difficult to handle. However, in the case n = 1 
we can give explicit formulae for any m. 
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E x a m p l e 3. If n = 1 then a = 1 and ft = 0 and so one gets 

Um(x) = Vm(x) = ( 7 ^ + ^ " ' . 

Let us compute the square of Um: 

Ul(x) = (1(jx^+S)+S)1-p = (y2x^ +1S + 5)1-p, 

and similarly we obtain 

U3
m(x) = ( 7 ( 7 * ^ + S) + rf)1_P = ( 7

j x ^ + (ij~l + 7J'"2 + • • • + 1)*)1 _ P 

/ 3 1 \ 1~~ P 

= f y x ^ p + ^ - 7 7 * ) = (ljx^~ + 1 - 7 j ) 1 _ P . 

In particular, for j = m we obtain that 

U£(x) = V£(x) = (7 m x^? + 1 - 7 m ) 1 _ P = (vx^~ + 1 - t/)1 _ p . 

3. ON THE GENERAL CASE 

By putting x = t1~p and y = sl~p in the formulae y = Um(x) and y = Vm(x) we 
obtain the relations 

(6) sl-p = a(-)t + S)l-p + t3 

and 

(7) sl~p = (y(atx~p + 0)^~ +S)l~p, 

respectively. Equivalently we can write this as 

(8) s = (a(jt + S)x-p + 0)~h 

and 

(9) a = i(atl~p + 0)-h + S, 

respectively. 
In deriving (6) and (7) we have transformed the two equations involved separately. 

Let us apply the same transformation to both variables in equations (8) and (9), 
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namely let us set t = t\ q and s = s\ p = si q, where q is the conjugate exponent 
of p, i.e. q = p/(p - 1). Then (8) gives 

or 

8i=a(yt\-q+6)^+0. 

Similarly from (9) we derive 

s\-q=<y(at?-q){1-p) +(3)^+6 

or 

8i = (y(atx + P)x-q + 8)*^. 

Let us now rewrite the two equations derived side by side, beginning with the last 
one: 

s1 = ( 7 ( a t i + / ? ) 1 - « + J ) ^ , 

Sl =a(7t\~q+8)^ + /?, 

and compare them with (8) and (9): 

5 = (a(7* + S)l~p + 0)^, 

s = -y(atx-p + 0)^p +S. 

Then a remarkable fact evolves. The two sets of equations have exactly the same 
shape! Only q has been replaced by p and, moreover, a and 7 are interchanged and, 
likewise, ft and S. Returning to the self-dual case p = q = 2, where the equations are 
written in terms of nomographic transformations, we see that they are a reflection 
of this duality. 

Put Tp(t) = tp and use the notation Bp(t) = (atp+p)p and B-q(t) = (-yt~q+S)-«. 
We observe that 

Bp = T-lAmTp and B-q =Tp-
lPrnTp. 

It is now manifested that our iteration of the original reiteration of the means Am 
and Pm becomes reiteration of the power means B. More precisely, we have 

BpB-q=T-l(ArnPm)Tp and B-qBp = T-1(PmArn)Tp. 
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Iterating we find 

(BpB.qr=T-1(AmPm)rnTp and (B-qBp)
m = Tp-

1(PmAm)rnTp. 

R e m a r k 4. This shows that ( i4mPm )m and (Pm>im)m , as well as their limits, 
are conjugate operations to the products (_?p_?_9)

m and (_?_9£?p)m, respectively. 

R e m a r k 5 (On the connection with interpolation functions). Remark 4 opens 
up interesting new vistas. We refer the reader to the excellent book [5], in particular 
Section 5.4, and the references to papers by J. Peetre given there; the latter can 
be easily identified by looking up in MatSciNet, for example. Roughly speaking, it 
is seen that the expressions mentioned in Remark 4, as well as their limits when 
m —> oo, arise by repeatedly forming certain Kp- and J9-functionals and passing to 
the limit. We intend to return to this connection in subsequent publications. 

In the case p ^ 2 and n / l w e have not found any explicit formulae as above, but 
we have done some numerical experiments also for such cases. 

E x a m p l e 4 (cf. [7]). Let p = 5, v = 0.5, n = 2, x = 0.01. In the case m = 100 

we obtain that 

(AmPmV = 0.3704 and (P m A m ) m = 0.3714. 

These values have been found by using Excel. 

4. LIMITING CASES 

Our main result in this section reads: 

Theorem 5. We have 

lim (PmAmT = lim (_4mPm)m = z, 
m—>oo m—>-oo 

where z is the solution of the first order differential equation 

, x f -nv — = (p — n)z + (1 - p)zp~1 + n - 1 
(10) { dv ^ 

[z(l)=x 

Moreover, 
(11) (-4mPm)m < Z ^ (PmAmr 

for all m. 
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P r o o f . Using that 7 = v»»» and a = v"™* we obtain the relations a = 
(1 - S)n~l. Differentiating Vm(x) = Pm(Am(x)) and Um(x) = Am(Pm(x)) with 
respect to S we obtain the estimate 

Vm(x) = x + ((1 - p)x^ + x(p - n) + n - l)£ + 0(£2) , 

Um(x) = x + ((1 - p ) x ^ + (p - n)x + n - l)£ + 0(52) , 

where ifi depends only on p, n and x. Observe that the first two terms in the power 
series representation for Vm(x) and Um(x) are equal. We now continue by using 
similar ideas to those used for the so called differential effective medium theory, 
a theory which was initiated by Bruggeman in 1935 [8], and further developed in 
the 80's (see [2]). Letting ym (= (PmAm)™') be obtained iteratively by 

(12) ym = t/m-i + ((1 - p ) v S i + t f m - i ( p - n) + n - l)6 + 0(S2), 

and putting t = lim m£, we observe that (12) is a discretization of the ordinary 
m—;>oo 

differential equation 

(13) y'(t) = (y(t)^(l -p) + y(t)(p-n) + n - l ) . 

The convergence ym -> y(t) follows by the standard Euler or tangent line method 
for discretization of differential equations (see e.g. [6, pp. 399-410]). In our case 
S = 1 — t;™, so 

mS -> lim ((l — v™)m) = — \ n v ( = t ) . 
m-J>oo v v ' ' n 

Thus, using that 
dv 
Tt=~nv 

and setting z(v(t)) = y(t) we obtain (10). The initial condition 2(1) = x follows by 
inserting S = 1 — 1™ = 0 into any iteration of AmPm and PmAm. For the proof of 
the inequality (11), we refer to [14] or [15]. • 

We see that (10) is a separable differential equation. Thus, letting J(x) be a 
primitive of 

K(x) = 1 

Ì.Є. 

(p — n) + x ^ 1 (1 - p) + n — 1' 

J(x)= f K(x)dx, 
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we can find the limit z from the relation 

(14) J(z) = J(x)--lnv. 
n 

R e m a r k 6. Actually, since x = 1 is a singular point, we have to consider one 

primitive of K(x) for x > 1 and another for x < 1. However, this is not an obstacle, 

since z always lies on the same side of 1 as a: (see Section 4.2 below). 

R e m a r k 7. In the casep = 2 we have 

J(z) = / — — dz = - In — . 
v ' J -(z - l)(z - 1 + n) n z-1 

Thus (14) implies 
, z — 1 + n . x — 1 + n 
In — = In — — , 

z — 1 v(x — 1) 

which (certainly) yields the same expression for z as in (5). 

R e m a r k 8. The inequalities (11) in Theorem 5 are generalizations of the in­

equality 

which has been known for a long time, see e.g. [3]. 

4.1. The case when p is an integer 

In the case p ^ 2 and n ^ 1 it seems difficult to find an explicit formula for 

the limit z. When p is an integer > 1 we can make the substitution x = t i p _ 1 , 

dx = (p — l)up~2 du and obtain 

c <"id„ 

where 

*»-fЩ 

G(u) = (p-l)up-2 

and 

F(u) = (p - n)tx p _ 1 4- up(l -p) + n-l. 

We note that 

F(u) = (p- n)(uv-x - 1) + (1 - p)(up - 1) 

= (u-l)((p-n)Y^ui + (l-p)J2u^=-(u-l)H(u)' 
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where 

Moreover, 

p - 2 

н(U) = (n -1) 53 ** + (P - І)"""1 • 

p-2 

(»--)5>ť 

i = 0 

^ K P - I K " 1 ! 

on each circle \u\=r > n — l. [This is clear for n = 1 or p = 2. For n > 1 and p > 2 
we have that \u\ > 1, so 

5>* ^ i+5>i* < i«i+5>ra < (P-i)i«r2-
i=0 i = l i = l 

Thus 
p - 2 

(И-i)5V 
i = 0 

<|t.|(p-i)|«r3 = |(p-i)«^1|.] p- l l 

Thus, by Rouche's Theorem all zeros of H(u) lie on the closed disc \u\ ^ n — 1. 

Moreover, we observe that F(u) has p disjoint zeros when n > 1. This is seen by 

the fact that the only zeros of F'(u) = (p - l)up"2(p — n— pu) are 0 and (p — n)/p, 

none of which are zeros of F(u). Thus 

(15) 
G(u) 
F(u) 

._JL_ + yJ*_, 
n(u — 1) 4^i u — 7І ' 

where 71 -... - 7p-i a r ^ the zeros ofH(u) and the residues M» are found by the formula 

Mi = ^ = l . 
F'(7i) p-n-pr)i 

We see directly that none of these zeros can be positive real numbers. Now, assume 

that p ^ n > 1. We note that H(0) = n - 1 and 

H(-(n - 1)) = i ( ( l - n)>- 1(n(p - 2) + 1) - (1 - »)), 
n 

the latter being positive for odd p and negative for even p. Since F'(u) has the same 

sign for negative values of u, this shows that none of the zeros are real for odd p and 

precisely one of them is real (actually negative) when p is even. We also note that 

if 7 = a + 6i is a zero of H(u) then so is its conjugate 7 = a — bi. The sum of each 

pair of the corresponding conjugated terms in (15) is real. Indeed, 

1 1 
p — n — p(a + Ы) p — n— p(a — òi) _ 2(p — n — pa)(u — a) - 2pb2 

u - (a + òi) + u - (a - Ы) " ((p - n - pa)2 + p2ò2)((u - a)2 + б2)' 
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Thus (15) can be rewritten in the form 

G(u) _ 1 - ^ Aj2(u - a{) + Bj 
F(u)~ n ( u - l ) + Y ( w - a { ) 2 + 6 ? * 

By integrating (and using that x = up~l) we obtain that J(x) is of the form 

(16) J(x) = - - l n ^ - l u W ^ ^ 
n . \ b{ b{ ) 

E x a m p l e 6. As in Example 4 we set p = 5, v = 0.5, n = 2, a: = 0.01. By 
numerical computation we find all zeros of H(u) and next find z by solving (14) 
numerically (by using Mathematica): 

z = 0.370957. 

Note that this value agrees with (11) and Example 4 (as it should). 

4.2. The cases p -> 1 and p -> oo 
Since we are dealing with power means, it is easy to see that (Pm .Am)m lies be­

tween 1 and x, increase with p and is monotone in v, so this must also be true for 
the limit z (see e.g. [9] or [10]). Let us keep this in mind in the treatment below. 

We observe that the term ZP-1 (1 — p) -> 0 as p —>• 1 if 0 < x < 1. Solving (10) we 
obtain that 

( n —1 v n —1 

1 — V n J + V n X 
(i.e. the arithmetic mean of x and 1 with weights v1^ and 1 — v~~~). 

Moreover, the monotonicity of z shows that the limit of z as p -> 1 exists even for 
x > 1, but in this case (10) yields that 

z -> 1 for all 0 ^ v < 1. 

Thus, in general we have 
z -> min{l, A\} 

a s p - > 1. 

R e m a r k 9. This result implies that we can interchange the order of limits: 

lim lim (Pm .Am)m = lim l im(P m A m ) m . 
p—>1 m—foo m—foop->l 
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To see this we use the standard properties of power-means [9]: 

P m - > m i n { l , x } a s p - r l 

and the fact that 

lim ( l i m P m , 4 m ) m = lim (m in{l,,4 m }) m = lim (min{l,Am}) = m in{l,^i}. 
m—>oo p—-»1 m->oo m—->oo 

Asp -» oo the right-hand side of (10) goes to — \nz+(n—1)(1—z) and (10) reduces 

to 

(17) | _ 2 v | = _ m z + ( n _ i ) ( i _ , ) , 

I 2(1) = X. 

Observe that Pm converges to the geometric mean 

Gm = x^""'\ 

Moreover, by using the same procedure as in the proof of Theorem 5 we obtain that 

the limit 

(18) lim ( G m , 4 m ) m = Urn (_4 m G m ) m = z 
m—>oo m—>oo 

is the solution of the differential equation (17). 

R e m a r k 10. One of the interesting phenomena with (18) is that in the limit we 

obtain a Geometric-Arithmetic type mean. 
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Abstract. We consider iteration of arithmetic and power means and discuss methods for
determining their limit. These means appear naturally in connection with some problems
in homogenization theory.
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1. Introduction

Means have interested mathematicians since antiquity. The most common means

are power means, in particular the arithmetic, geometric and harmonic mean (with
or without weights). For positive numbers a and b these means (with equal weights)

are defined by the formulæ

A =
a + b

2
, G =

√
ab, H =

2ab

a + b
,

respectively. There are many examples of iterated means. For example, if we start
with any two given numbers a and b and repeatedly form the arithmetic and the

harmonic mean, in that order, i.e. we reiterate the map which to the pair (a, b)
assigns a new pair (a′, b′) given by

(1) a′ =
a + b

2
, b′ =

2ab

a + b
,

then we obtain sequences a′, a′′, a′′′, . . . and b′, b′′, b′′′, . . . These sequences converge
to the common limit G =

√
ab. The algorithm defined by (1) is sometimes called
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the Newton algorithm (see [1]). Another algorithm, the algorithm studied by Gauss

for the arithmetic-geometric mean, is obtained by taking instead successively the
arithmetic and the geometric mean (in that order). Thus the map will in this case
be

(2) a′ =
a + b

2
, b′ =

√
ab.

A more general algorithm which contains both the Newton algorithm and the Gauss
algorithm can be found in [17].
In this paper we will study a related type of iterated means: Let x > 0, let m, n ∈

{1, 2, . . .}, p > 1, 0 6 v 6 1 and consider the weighted means Am, Pm : � + → � +

defined by

Am(x) = αx + β,

Pm(x) =
(
γx

1
1−p + δ

)1−p
,

where γ = v
1

mn , α = v
n−1
mn and γ + δ = α + β = 1. The iterated means (AmPm)m(x)

and (PmAm)m, and their limits, were introduced and studied in [7], [14] and [15] (here

“multiplication” between Am and Pm and “exponentiation” inm denote composition
in the obvious way).

They appear naturally in connection with estimation of certain effective prop-
erties for multiscaled materials involving the so-called reiterated homogenization

(see e.g. [4], [12], [13] and the references given there). Moreover, these iterated means
converge to the same limit as m goes to infinity. Generally this limit is difficult to

find, but in the case p = 2, it turns out to be the mean

1 +
nv(x− 1)

n + (1− v)(x − 1)
,

which is the well known Hashin-Shtrikman lower bound if x > 1 and Hashin-
Shtrikman upper bound if x < 1 (see [11]). This fact was proved in [14] by obtaining
explicit formulæ for these means.

In this paper we derive the same formulæ by another method. Moreover, we
discuss some alternative presentations of these means and their common limit in

general.
The paper’s organization is as follows. In Section 2 we review the corresponding

result from [14] indicating a matrix proof for it and consider also the case n = 1
(Example 3). Section 3 is about the general case. In particular, in Remark 4 it is

indicated that the expressions (AmPm)m and (PmAm)m are conjugate (as operators)
to certain products of power means. This is important, because (see again Remark 5)
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it opens up a connection with the theory of interpolation functions (see [5], in par-

ticular Section 5.4, and the references to papers by J. Peetre given there). Finally,
we consider some limiting cases in Section 4.

2. The cases p = 2 and n = 1

We first note that if [
a′

b′

]
= A

[
a

b

]
,

where

A =
[

k l

s r

]
,

then
a′

b′
=

ka/b + l

sa/b + r
.

Thus, if

F (x) =
kx + l

sx + r
,

then the iterate F m is given by

(3) F m(x) =
a(m)

b(m)
,

where [
a(m)

b(m)

]
= Am

[
x

1

]
.

Now, assume in addition that l = 1 − k and s = 1 − r, i.e. the matrix A is row-

stochastic. (We call a matrix row-stochastic if all elements are non-negative numbers
and if the sum of the elements on any row is unity. Replacing the word row by column

we, similarly, obtain the notion of column-stochastic.) By finding eigenvectors and
eigenvalues we obtain that

A = PDP−1,

where

P =
[

1 1− k

1 r − 1

]
, P−1 =

1
k + r − 2

[
r − 1 k − 1
−1 1

]
, D =

[
1 0
0 k + r − 1

]
.

Thus

Am = PDmP−1,
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where

Dm =
[

1 0
0 (k + r − 1)m

]
.

Accordingly we have a closed form expression for the iterate F m. We observe that

Am − I = P (Dm − I)P−1 =
(k + r − 1)m − 1

k + r − 2

[
k − 1 −(k − 1)

−(r − 1) r − 1

]
,

i.e.

Am =
(k + r − 1)m − 1

k + r − 2

[
k − 1 −(k − 1)

−(r − 1) r − 1

]
+ I.

Multiplying by [x, 1]T we obtain the equations

am = s((k − 1)(x− 1)) + x,

bm = s(−(r − 1)(x− 1)) + 1,

where

s =
(k + r − 1)m − 1

k + r − 2
.

This gives

am

bm
− 1 =

s((k − 1)(x− 1)) + x− (s(−(r − 1)(x− 1)) + 1)
s(−(r − 1)(x− 1)) + 1

=
(x− 1)(s(k + r − 2) + 1)

s(1− r)(x − 1) + 1
,

and we get that

(am

bm
− 1

)−1

=
1

(x− 1)(s(k + r − 2) + 1)
+

s(1− r)
s(k + r − 2) + 1

.

Thus we have obtained the following result:

Theorem 1. We have

(4)
(am

bm
− 1

)−1

=
1

(k + r − 1)m

1
x− 1

+
((k + r − 1)m − 1)(1− r)
(k + r − 2)(k + r − 1)m

.

In the case p = 2 where

PmAm(x) =
αx + β

αδx + (γ + βδ)
,

AmPm(x) =
βδx + (α + βγ)

δx + γ
,
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the corresponding matrices are

A =
[

α β

αδ γ + βδ

]

and

A =
[

α + βδ βγ

δ γ

]
,

respectively (which both are row-stochastic). Thus by (4) we obtain the following

result:

Corollary 2. For p = 2 we have

1
(PmAm)m(x) − 1

=
( 1

γα

)m 1
x− 1

+
1−

(
1

γα

)m

1− 1
γα

δ

γ
,

1
(AmPm)m(x) − 1

=
( 1

γα

)m 1
x− 1

+
1−

(
1

γα

)m

1− 1
γα

δ

αγ
.

��� �"!$#&%
1. A different proof of this theorem can be found in [14]. In our opinion

the above proof is more straightforward and offers a better understanding of the final

result.
��� �"!$#&%

2. From a mathematical point of view the theory of Markov chains

is about iteration of column-stochastic square matrices. Thus the iterated means
(PmAm)m and (AmPm)m could be interpreted as Markov chains for p = 2. In the
case of general p we can now say that (PmAm)m and (AmPm)m represent some kind
of generalized Markov chains.
��� �"!$#&%

3. By using the equalities γ = v
1

mn , α = v
n−1
mn and γ + δ = α + β = 1,

we obtain

(5) lim
m→∞

(PmAm)m = lim
m→∞

(AmPm)m = 1 +
nv(x− 1)

n + (1− v)(x − 1)

(cf. Section 1).

Let

Um(x) = AmPm(x),

Vm(x) = PmAm(x).

The general case p 6= 2 is much more difficult to handle. However, in the case n = 1
we can give explicit formulæ for any m.
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3. If n = 1 then α = 1 and β = 0 and so one gets

Um(x) = Vm(x) =
(
γx

1
1−p + δ

)1−p
.

Let us compute the square of Um:

U2
m(x) =

(
γ
(
γx

1
1−p + δ

)
+ δ

)1−p =
(
γ2x

1
1−p + γδ + δ

)1−p
,

and similarly we obtain

U j
m(x) =

(
γ
(
γx

1
1−p + δ

)
+ δ

)1−p =
(
γjx

1
1−p + (γj−1 + γj−2 + . . . + 1)δ

)1−p

=
(

γjx
1

1−p +
γj − 1
γ − 1

δ

)1−p

=
(
γjx

1
1−p + 1− γj

)1−p
.

In particular, for j = m we obtain that

Um
m (x) = V m

m (x) =
(
γmx

1
1−p + 1− γm

)1−p =
(
vx

1
1−p + 1− v

)1−p
.

3. On the general case

By putting x = t1−p and y = s1−p in the formulæ y = Um(x) and y = Vm(x) we
obtain the relations

s1−p = α(γt + δ)1−p + β(6)

and

s1−p =
(
γ(αt1−p + β)

1
1−p + δ

)1−p
,(7)

respectively. Equivalently we can write this as

s = (α(γt + δ)1−p + β)
1

1−p(8)

and

s = γ(αt1−p + β)
1

1−p + δ,(9)

respectively.

In deriving (6) and (7) we have transformed the two equations involved separately.
Let us apply the same transformation to both variables in equations (8) and (9),

348



namely let us set t = t1−q
1 and s = s1−p

1 = s
1

1−q

1 , where q is the conjugate exponent
of p, i.e. q = p/(p− 1). Then (8) gives

s1−p
1 =

(
α
(
γt1−q

1 + δ
)1−p + β

) 1
1−p

or

s1 = α
(
γt1−q

1 + δ
) 1

1−q + β.

Similarly from (9) we derive

s1−q
1 = γ

(
αt

(1−q)(1−p)
1 + β

) 1
1−p + δ

or

s1 = (γ(αt1 + β)1−q + δ)
1

1−q .

Let us now rewrite the two equations derived side by side, beginning with the last

one:

s1 = (γ(αt1 + β)1−q + δ)
1

1−q ,

s1 = α(γt1−q
1 + δ)

1
1−q + β,

and compare them with (8) and (9):

s = (α(γt + δ)1−p + β)
1

1−p ,

s = γ(αt1−p + β)
1

1−p + δ.

Then a remarkable fact evolves. The two sets of equations have exactly the same
shape! Only q has been replaced by p and, moreover, α and γ are interchanged and,

likewise, β and δ. Returning to the self-dual case p = q = 2, where the equations are
written in terms of homographic transformations, we see that they are a reflection

of this duality.
Put Tp(t) = tp and use the notation Bp(t) = (αtp+β)

1
p and B−q(t) = (γt−q+δ)−

1
q .

We observe that
Bp = T−1

p AmTp and B−q = T−1
p PmTp.

It is now manifested that our iteration of the original reiteration of the means Am

and Pm becomes reiteration of the power means B. More precisely, we have

BpB−q = T−1
p (AmPm)Tp and B−qBp = T−1

p (PmAm)Tp.
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Iterating we find

(BpB−q)m = T−1
p (AmPm)mTp and (B−qBp)m = T−1

p (PmAm)mTp.

��� �"!$#&%
4. This shows that (AmPm)m and (PmAm)m, as well as their limits,

are conjugate operations to the products (BpB−q)m and (B−qBp)m, respectively.
��� �"!$#&%

5 (On the connection with interpolation functions). Remark 4 opens
up interesting new vistas. We refer the reader to the excellent book [5], in particular

Section 5.4, and the references to papers by J. Peetre given there; the latter can
be easily identified by looking up in MatSciNet, for example. Roughly speaking, it

is seen that the expressions mentioned in Remark 4, as well as their limits when
m → ∞, arise by repeatedly forming certain Kp- and Jq-functionals and passing to

the limit. We intend to return to this connection in subsequent publications.

In the case p 6= 2 and n 6= 1 we have not found any explicit formulæ as above, but
we have done some numerical experiments also for such cases.
' ()!$�+*-,.�

4 (cf. [7]). Let p = 5, v = 0.5, n = 2, x = 0.01. In the case m = 100
we obtain that

(AmPm)m = 0.3704 and (PmAm)m = 0.3714.

These values have been found by using Excel.

4. Limiting cases

Our main result in this section reads:

Theorem 5. We have

lim
m→∞

(PmAm)m = lim
m→∞

(AmPm)m = z,

where z is the solution of the first order differential equation

(10)

{
−nv

dz

dv
= (p− n)z + (1− p)z

p
p−1 + n− 1

z(1) = x

Moreover,

(11) (AmPm)m 6 z 6 (PmAm)m

for all m.
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/0#&12143
. Using that γ = v

1
mn and α = v

n−1
mn we obtain the relations α =

(1 − δ)n−1. Differentiating Vm(x) = Pm(Am(x)) and Um(x) = Am(Pm(x)) with
respect to δ we obtain the estimate

Vm(x) = x +
(
(1− p)x

p
p−1 + x(p− n) + n− 1

)
δ + O(δ2),

Um(x) = x +
(
(1− p)x

p
p−1 + (p− n)x + n− 1

)
δ + O(δ2),

where Ki depends only on p, n and x. Observe that the first two terms in the power

series representation for Vm(x) and Um(x) are equal. We now continue by using
similar ideas to those used for the so called differential effective medium theory,

a theory which was initiated by Bruggeman in 1935 [8], and further developed in
the 80’s (see [2]). Letting ym (= (PmAm)m) be obtained iteratively by

(12) ym = ym−1 +
(
(1− p)y

p
p−1
m−1 + ym−1(p− n) + n− 1

)
δ + O(δ2),

and putting t = lim
m→∞

mδ, we observe that (12) is a discretization of the ordinary

differential equation

(13) y′(t) =
(
y(t)

p
p−1 (1− p) + y(t)(p− n) + n− 1

)
.

The convergence ym → y(t) follows by the standard Euler or tangent line method
for discretization of differential equations (see e.g. [6, pp. 399–410]). In our case
δ = 1− v

1
mn , so

mδ → lim
m→∞

((
1− v

1
mn

)
m

)
= − 1

n
ln v (= t).

Thus, using that
dv

dt
= −nv

and setting z(v(t)) = y(t) we obtain (10). The initial condition z(1) = x follows by

inserting δ = 1− 1
1

mn = 0 into any iteration of AmPm and PmAm. For the proof of
the inequality (11), we refer to [14] or [15]. �

We see that (10) is a separable differential equation. Thus, letting J(x) be a
primitive of

K(x) =
1

x(p− n) + x
p

p−1 (1− p) + n− 1
,

i.e.

J(x) =
∫

K(x) dx,
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we can find the limit z from the relation

(14) J(z) = J(x)− 1
n

ln v.

��� �"!$#&%
6. Actually, since x = 1 is a singular point, we have to consider one

primitive of K(x) for x > 1 and another for x < 1. However, this is not an obstacle,
since z always lies on the same side of 1 as x (see Section 4.2 below).
��� �"!$#&%

7. In the case p = 2 we have

J(z) =
∫

1
−(z − 1)(z − 1 + n)

dz =
1
n

ln
z − 1 + n

z − 1
.

Thus (14) implies

ln
z − 1 + n

z − 1
= ln

x− 1 + n

v(x− 1)
,

which (certainly) yields the same expression for z as in (5).
��� �"!$#&%

8. The inequalities (11) in Theorem 5 are generalizations of the in-
equality

A1P1 6 P1A1,

which has been known for a long time, see e.g. [3].

4.1. The case when p is an integer
In the case p 6= 2 and n 6= 1 it seems difficult to find an explicit formula for

the limit z. When p is an integer > 1 we can make the substitution x = up−1,
dx = (p− 1)up−2 du and obtain

J(x) =
∫

G(u)
F (u)

du,

where

G(u) = (p− 1)up−2

and

F (u) = (p− n)up−1 + up(1− p) + n− 1.

We note that

F (u) = (p− n)(up−1 − 1) + (1− p)(up − 1)

= (u− 1)
(

(p− n)
p−2∑

i=0

ui + (1− p)
p−1∑

i=0

ui

)
= −(u− 1)H(u),
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where

H(u) = (n− 1)
p−2∑

i=0

ui + (p− 1)up−1.

Moreover, ∣∣∣∣(n− 1)
p−2∑

i=0

ui

∣∣∣∣ < |(p− 1)up−1|

on each circle |u| = r > n− 1. [This is clear for n = 1 or p = 2. For n > 1 and p > 2
we have that |u| > 1, so

∣∣∣∣
p−2∑

i=0

ui

∣∣∣∣ 6 1 +
p−2∑

i=1

|u|i < |u|+
p−2∑

i=1

|u|p−2 6 (p− 1)|u|p−2.

Thus ∣∣∣∣(n− 1)
p−2∑

i=0

ui

∣∣∣∣ < |u|(p− 1)|u|p−2 = |(p− 1)up−1|.]

Thus, by Rouché’s Theorem all zeros of H(u) lie on the closed disc |u| 6 n− 1.
Moreover, we observe that F (u) has p disjoint zeros when n > 1. This is seen by

the fact that the only zeros of F ′(u) = (p− 1)up−2(p− n− pu) are 0 and (p− n)/p,
none of which are zeros of F (u). Thus

(15)
G(u)
F (u)

= − 1
n(u− 1)

+
p−1∑

i=1

Mi

u− γi
,

where γ1, . . . , γp−1 are the zeros ofH(u) and the residuesMi are found by the formula

Mi =
G(γi)
F ′(γi)

=
1

p− n− pγi
.

We see directly that none of these zeros can be positive real numbers. Now, assume

that p > n > 1. We note that H(0) = n− 1 and

H(−(n− 1)) =
1
n

((1− n)p−1(n(p− 2) + 1)− (1− n)),

the latter being positive for odd p and negative for even p. Since F ′(u) has the same
sign for negative values of u, this shows that none of the zeros are real for odd p and

precisely one of them is real (actually negative) when p is even. We also note that
if γ = a + bi is a zero of H(u) then so is its conjugate γ = a− bi. The sum of each
pair of the corresponding conjugated terms in (15) is real. Indeed,

1
p− n− p(a + bi)

u− (a + bi)
+

1
p− n− p(a− bi)

u− (a− bi)
=

2(p− n− pa)(u− a)− 2pb2

((p− n− pa)2 + p2b2)((u− a)2 + b2)
.
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Thus (15) can be rewritten in the form

G(u)
F (u)

= − 1
n(u− 1)

+
∑

i

Ai2(u− ai) + Bi

(u− ai)2 + b2
i

.

By integrating (and using that x = up−1) we obtain that J(x) is of the form

(16) J(x) = − 1
n

ln
(
x

1
p−1−1

)
+

∑

i

(
Ai ln

((
x

1
p−1−ai

)2+b2
i

)
+

Bi

bi
arctan

x
1

p−1 − ai

bi

)
.

' ()!$�+*-,.�
6. As in Example 4 we set p = 5, v = 0.5, n = 2, x = 0.01. By

numerical computation we find all zeros of H(u) and next find z by solving (14)

numerically (by using Mathematica):

z = 0.370957.

Note that this value agrees with (11) and Example 4 (as it should).

4.2. The cases p → 1 and p →∞
Since we are dealing with power means, it is easy to see that (PmAm)m lies be-

tween 1 and x, increase with p and is monotone in v, so this must also be true for
the limit z (see e.g. [9] or [10]). Let us keep this in mind in the treatment below.

We observe that the term z
p

p−1 (1− p) → 0 as p → 1 if 0 < x < 1. Solving (10) we
obtain that

z →
(
1− v

n−1
n

)
+ v

n−1
n x

(i.e. the arithmetic mean of x and 1 with weights v
n−1

n and 1− v
n−1

n ).
Moreover, the monotonicity of z shows that the limit of z as p → 1 exists even for

x > 1, but in this case (10) yields that

z → 1 for all 0 6 v < 1.

Thus, in general we have

z → min{1, A1}

as p → 1.
��� �"!$#&%

9. This result implies that we can interchange the order of limits:

lim
p→1

lim
m→∞

(PmAm)m = lim
m→∞

lim
p→1

(PmAm)m.

354



To see this we use the standard properties of power-means [9]:

Pm → min{1, x} as p → 1

and the fact that

lim
m→∞

( lim
p→1

PmAm)m = lim
m→∞

(min{1, Am})m = lim
m→∞

(min{1, Am
m}) = min{1, A1}.

As p →∞ the right-hand side of (10) goes to − ln z+(n−1)(1−z) and (10) reduces
to

(17)

{
−2v

dz

dv
= − ln z + (n− 1)(1− z),

z(1) = x.

Observe that Pm converges to the geometric mean

Gm = xv1/(nm)
.

Moreover, by using the same procedure as in the proof of Theorem 5 we obtain that

the limit

(18) lim
m→∞

(GmAm)m = lim
m→∞

(AmGm)m = z

is the solution of the differential equation (17).
��� �"!$#&%

10. One of the interesting phenomena with (18) is that in the limit we

obtain a Geometric-Arithmetic type mean.
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