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Abstract. The present paper does not introduce a new approximation but it modifies a 
certain known method. This method for obtaining a periodic approximation of a periodic 
solution of a linear nonhomogeneous differential equation with periodic coefficients and 
periodic right-hand side is used in technical practice. However, the conditions ensuring the 
existence of a periodic solution may be violated and therefore the purpose of this paper is 
to modify the method in order that these conditions remain valid. 
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1. INTRODUCTION 

1.1. Preliminaries 

Many oscillation problems lead to a periodic differential equation 

(1.1) y{n) + ax ( % ( n - 1 } + . . . + an(t)y = g(t), 

where n is a positive integer, yW = dky/dtk, k = l , . . .,n, and a i , . . . ,a n , g are 

periodic continuous complex functions of the real variable t G U = (—oo,oo) with a 

common positive period a;, or to a system of periodic linear differential equations (in 

matrix form) 

(1.2) x = A(t)x + f(t), 
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where x = dx/dt, A is an ^-periodic continuous complex square matrix function of 

nth order and / is an o;-periodic continuous complex column matrix function of the 

real variable t € R with n elements. 

1.2. Technical practice 

In technical practice given problems are simplified and the right-hand side in (1.1) 

or (1.2) is replaced by a few first terms of its Fourier expansion. Terms which 

are small in some sense are neglected. However, these simplifications can destroy 

conditions warranting the existence of a periodic solution of (1.1) or (1.2). The 

aim of this paper is not to introduce a new approximation method but to define 

conditions and an approach ensuring the well-posedness of the simplified problem. 

The justification of this method has not been examined in literature. Here we will 

show a constructive method based on an approximation of the right-hand side by a 

periodic trigonometric polynomial such that the necessary and sufficient condition 

for the existence of a periodic solution is preserved while the periodic solution of the 

simplified problem approximates uniformly on IR the corresponding periodic solution 

of the original problem with arbitrary accuracy given in advance. 

1.3. Some notions, notation and assertions 

The set of all real numbers is denoted by IR. The symbol 0 denotes the number zero 

or the zero matrix the type of which is evident from the context. If C is a complex 

matrix then CT is its transposed and C* its transposed and complex conjugated 

matrix. If C is a square matrix then det C is its deteminant. The unit matrix of nth 

order is denoted by In or J. If r, ra are two positive integers then by C r X m we denote 

the space of all (constant) complex matrices of the type r x ra, i.e. with r rows and 

ra columns. The space C r X m becomes a Banach space (B-space) if it is equipped by 

one from the following norms | • | i , | • |2, | • | given for any matrix A = (aij) E C r X m : 

|.A|i = m a x < ^ | a ť i | : i = l , . . . , r L 
S = i j 

|A |2 = maxj^laý-l : j = l , . . . , r a L 

\A\ = max{\A\u\A\2}-

In the sequel we will use the norm | • | for which \A*\ = \A\ and |/| = 1 is true. Here 
and in what follows let a; be a given positive number. A periodic function defined 
on IR with the period UJ is called cj-periodic. 

If a complex matrix function (f is defined and continuous on the closed interval 
[0,u>] then the nonnegative number \(p\ = sup \ip(t)\ = sup{|cp(£): t 6 [0,CJ]} is the 
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norm of the function </?. If the function if has a continuous derivative <p on the closed 
interval [0,cJ| then we define another norm ||</?|| = max{|<D|, |</b|} of the function </>. 

If k is a nonnegative integer and r, m positive integers then we denote by CkP^xrn 

the space of all complex u;-periodic matrix functions with r rows and m columns 
which are defined and have cj-periodic continuous derivatives on R up to the fcth or­
der. For k = 0 or m = 1 or r = 1 we use the notation CPrXrn = C0P*Xrn, 

Ckpr = ckPrXl, CP' = C°P', CP„ = CPU. CP'Xrn and ClP'Xrn are B-spaces 
with norms | • | and || • ||, respectively. In the space CP* we define an inner prod­
uct by the formula (u,v) = ^ f£ v* (t)u(t) dt and obtain the corresponding norm 
\u\ = y/(u,u). It is evident that the inequalities \u\ ^\u\ and (u,v) ^ \u\ • \v\ ^ 

\u\ \v\ hold. In the case of constant functions u, v from CP* their inner product is 
(u,v) = v*u. 

For brevity of notation in some operations with two arbitrary matrix functions g 

of a type I x k and h of a type / x m continuous on the interval [0,u;], where k, 

/, m are positive integers, we introduce their "inner product" (g, h) by the formula 
(g, h) = ^ f£ h*(t)g(t) dt. It is evident that (g, h) G Crnxk and for constant / , g we 
have (g, h) = h*g. If h = g holds then (g,g) G Ckxk and det (g,g) is a nonnegative 
number, which is Gram's determinant for the columns of g. If the columns of g 

are linearly independent then det (g, g) is a positive number and the inverse matrix 
(<7>0)_1 t o (9,9) exists. Analogously the inequality |(<7, h)| ^ \g\ |ft| is valid. 

Let E be a B-space and k a positive integer. Given k mutually distinct real 
numbers Ai , . . . , A* and k non-zero elements 6 1 , . . . , 6* from E, the function Q de­
fined by the formula Q(t) = b\ exp (i\\t) + . . . + 6* exp(iAfctf), t G R, is called an 
E-trigonometric or simply a trigonometric polynomial (exp(s) denotes the usual ex­
ponential function es). 

2. APPROXIMATION THEOREMS 

2.1. Weierstrass approximation theorem 
Since we deal with uniform approximations of continuous u;-periodic functions 

by k>periodic trigonometric polynomials, we will recall the following approximation 
theorems. 

Theorem 2.1. For every function f G CPW and every positive number e there 

exists a trigonometric polynomial Q G CPW such that \f — Q\ < e holds. 

Corollary 2.2. For every matrix function f from CP£Xrn and any positive num­
ber e there exists a trigonometric polynomial Q G CP*Xrn such that \f — Q\ -̂  e 
holds. 

271 



3. EXISTENCE OF A PERIODIC SOLUTION 

3.1. Homogeneous and conjugated equations 

In what follows we shall treat only (1.2) since (1.1) can be modified to the form 

of (1.2) which induces the homogeneous equation 

(3.1) y = A(t)y, t e R, 

and the conjugated equation with (3.1) 

(3.2) z = -A*(t)z, teR. 

The conditions given above in 1.1 ensure the existence and uniqueness of a solution 

of the Cauchy problem for the equations (1.1), (12), (3.1), (3.2), 

Let Y = Y(t), t e R, be a fundamental matrix (of solutions) of (3.1) and let Z = 

Z(t), t e R, be a fundamental matrix of (3.2). The validity of the following relations 

can be easily verified: Y(t) = (Z*(t))~lZ*(0)Y(0), Y~l(t) = Y~l(0)(Z*(0))-lZ*(t), 

te R. 

3.2. Periodic solutions 

If x is an o;-periodic solution of (1.2) then the equality 

(3.3) x(u>) - x(0) = 0 

holds. This equality is not only a necessary but also a sufficient condition for the 

u;-periodicity of the solution x of (1.2). 

If H is a fundamental matrix of (3.1) then the general solution x of (2.1) can be 

written in the form 

(3.4) x = x(t) = H(0H_1(0)a:o + H(t) [ H~1(s)f(s) ds, teU (x(0) = x0). 
Jo 

R e m a r k 3.1. Note that owing to the validity of the relations H(t)H~l(s) = 

H(t)H~l(s) for any real numbers s, t and arbitrary fundamental matrices H, H 

of (3.1) the integral part H(t) /0* H~1(s)f(s)ds1 t e R, of a solution of (1.2) stays 

unchanged for every given / from CP™ and for an arbitrary fundamental matrix H 

of (3.1). 

The condition (3.3) has now the form 

0 = X(LJ)-X(0) = (H(U)-H(0))H'1(0)XO + H(UJ) f H~l(s)f(s)ds, 

Jo 

I.Є. 

(3.5) (H(u>) - H(0))H~l(0)xo = -H(UJ) / H~l(s)f(s)ds 
Jo 
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with the unchanged right-hand side for every given / and for an arbitrary fun­
damental matrix H of (3.1), owing to Remark 3.1. The system (3.5) has n linear 
algebraic equations with n unknowns which are elements of the initial matrix-column 
XQ G C n x l and it can be arranged into the system 

(3.5*) (H(«) - Jf(0))tio = - ( z ' M ) - 1 (f,Z)u> 

with the unknown matrix-column UQ = H~X(0)XQ G C n x l (XQ = H(0)UQ) and an ar­
bitrary fundamental matrix Z of (3.2) (with unchanged right-hand side independent 
ofZ). 

Definition 3.2. 
a) We denote by B\ the space of all functions / £ CP£ for which Equation (1.2) 

has an u;-periodic solution and denote by B2 the space CXP™. 
b) For a given function / from B\ we denote by V) the space of all u;-periodic 

solutions of Equations (1.2). For / = 0 we have the space Vo of all o;-periodic 
solutions of Equation (3.1). 

c) We denote by VQ* the space of all ^-periodic solutions of Equation (3.2). 

R e m a r k 3.3. The spaces B\y V0 and VQ* are B-spaces. 

If (3.5) or (3.5*) has a solution x0 then (3.3) is for this x0 fulfilled and (1.2) has 
an cj-periodic solution (3.4). 

It is known the two following valid theorems. 

Theorem 3.4. The necessary and sufficient condition for the existence of an 
u-periodic solution of Equation (1.2) is the validity of the equality 

(3.6) </,*> = - r z*(t)f(t)dt = 0 
v Jo 

for every oj-periodic solution z of Equation (3.2), i.e. for every z from VQ . 

Theorem 3.5. The B-space VQ has the same Bnite dimension as the B-space V0*. 

4 . TRANSFORMATIONS 

4 .1. B-spaces 
Recall that the spaces CP£ and B\ with the norm | • | and the space B2 = ClP£ 

with the norm || • || are B-spaces. The space B2 can be viewed as the space of 
all o;-periodic solutions of (1.2) with any right-hand sides from B\. Namely, if x is 
from B2 then x is an o;-periodic solution of (1.2) with the right-hand side / = x — Ax. 
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4.2. Fundamental matrix H = (H',H") 

Definition 4.1. The set of all fundamental matrices H of Equation (3.1) whose 
first k columns create a basis of V0 with k = dim V0 is denoted by W0. For every H 

from W0 we introduce its decomposition H = (H',H") where H' is from C1Pnxk. 

The set of all fundamental matrices Z of Equation (3.2) whose first k columns create 
a basis of V0 is denoted by W0 . 

4 .3. Periodic solutions 
For any / from B\ and an arbitrary H = (H',H") from W0 every o;-periodic 

solution x from V} can be expressed in the form 

(4.1) x = x(t) = H'(t)u'0 + H"(t)u'0' + H(t) [ H~1(s)f(s)ds, te R, 
Jo 

where x0 = x(0) = x(u), u'0 e Ckxl, u'0' e C^~k^xl, u0 = (u'0
T,u'^T)T = H^^XQ, 

x0 = H(0)u0. 

In this section and further we use a fixed given fundamental matrix H = (H', H") 

from Wo, unless stated otherwise. Let a function / from B\ be given. If we have a 
particular ^-periodic solution 

(4.V) u = u(t) = H'(t)u'0 + H"(t)u'0' + H(t) f H~x(s)f(s) ds, t e R, 
Jo 

with fixed u'0, u0 then we decompose this solution into a "homogeneous part" UH = 
H'u0 and a "particular part" 

Uf = uf(t) = H"(t)u'0' + H(t) [ H~1(s)f(s)ds, t e R. 
Jo 

So we have u = UH + Uf where UH e V0 and Uf eVf. The part Uf is uniquely 
determined by / € B\. Indeed, if we have another particular o;-periodic solution 

(4.1") u = u(t) = H'(t)u'0 + H"(t)u'0' + H(t) [ H-1 (s)f(s) ds, t e R, 
Jo 

with fixed u'0 G Ckxl, u0 e C^n~k^xl, then evidently the a;-periodic solution u-u-
UH +UH = H"(u0 - u0) is from V0. Since the columns of H' create a basis of Vo the 
equality u0 = u0 necessarily holds. This uniqueness of u0 we record by u0 = u0(f). 
So we get: 

274 



Lemma 4 .2. For every function f from B\ all solutions from Vf have the same 

"particular part". 

Now we complete the solution of (3.5*) for u0. Since H'(u) — H'(0) = 0 we get 
from (3.5*) the equivalent system 

(3.5") ( i / » - ff"(0)K = - ( Z ' M ) - 1 (/, Z) u, 

in which u'0 does not occur, i.e. the k elements of u'0 play here the role of k arbitrary 
complex parameters independent of / " B\. (If we have u0 = u0(f) then it follows 
from (3.5**) that x0 = H(0)u0 = H'u'0-\-H"u'0' remains unchanged for all u'0 € Ckxl.) 

For shortness of the record we denote by K the matrix H"(u) — H"(0). The n — k 

columns of K are linearly independent. This follows besides other from the uniqueness 
of u0(f). So Grain's determinant det {K> K) = det(K*K) is a positive number and the 
inverse matrix (/c, K)~ to (AC, K) = K*K exists. If we multiply (3.5**) by the matrix 
(/c, K)~ K* from the left then we get 

(4.2) u0' = < ( / ) = - (K, K)-1 K*(Z'(U))-X (f, Z) u, 

for Z eV0* and the estimates 

(4.3) K ( / ) K 2 a ; | / f | | Z | | z - 1 | ( K , / c ) - 1 | | / | , 

(4.3') | U 0 ' ( / ) | < 2 W | H | 2 | F - 1 | | ( « , K ) - 1 | | / | 

hold since \K\ = \K*\ ^ 2|H|. The estimate (4.3') follows from 

(3.5;) (H"(u) - H"(0))u'o' = H(u>) [" H~1(s)f(s) ds 
Jo 

in the analogous way as (4.3) from (3.5**). 

4.4. Transformations 
On the basis of the above results we obtain the following assertions. 

Lemma 4.3. The mapU: B\ -> C( n -* ) x l given by the formula Uf = u'£(f) for 
any f from B\ is a linear and bounded operator. 

P r o o f . The linearity of U is evident from (4.2). The boundedness of U follows 
for a fixed given Z from (4.3) and from (4.3') by the choice of the positive constant 

(4.4) K0 = 2u>\H\ | (K, K)'1 \ max{\Z\ \Z~l\, \H\ | i? - x | } 

for the estimate 

(4.5) \Uf\ ^ K0\f\ 

for every / from B\, where Ifn does not depend on / . • 
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Theorem 4.4. If a map A: B\ —> Vf is defined so that for every f from B\ its 

image Af is equal to the common "particular part" of any solution u from Vf, i.e. 

(4.6) (Af)(t) = H"(tK + H(t) f H~l(s)f(s)ds, t € R, 
Jo 

then the operator A is linear and bounded. 

Proo f . The linearity of A is evident from Lemma 4.3 and from (4.6). Further, 
an estimate 

(4.7) \Af\^K\\f\ 

holds owing to (4.5) and (4.6) for K\ = (K0 +u\H~1\)\H\, where K0 is from (4.4). 
The constant K\ does not depend on / . D 

R e m a r k 4.5. If H = (Hf, H") and H = (H', H") are two arbitrary fundamental 
matrices from W0 then by virtue of the properties of the matrices H', H" and H', H" 
there exist regular matrices C\ € Ckxk, C2 G C(n-A:)x(n"*) and C = d iag(d,C 2 ) 
such that H' = H'C\, H" = H"C2 and H = HC. 

Theorem 4.6. The operator A from Theorem 4.4 does not depend on the choice 
of a fundamental matrix H from W0. 

Proo f . Let / be a given function from JBi. Let two arbitrary fundamen­
tal matrices H = (H',H") and H = (H',H") from W0 be given. Assume 
that besides a particular u;-periodic solution u from (4.1') belonging to Vf there 
exists another particular u;-periodic solution u = u(t) = H'(t)u0 + H"(t)u0 + 
H(t)f^H~1(s)f(s)ds, t £ K, from Vf. Owing to Remark 3.1 and Remark 4.5 the 
relations H(t) /0* H~1(s)f(s) ds = H(t) /0* H-X(s)f(s) ds are true for any t e R, so 
that the solution u-u-uH+uH = H"u%-H"u% = H"(UQ-C2U%) belongs to V0. But 
this is possible only for tig = C2u", i.e. u% = C2

-1<, H"u% = H"C2C^u^ = H"u^ 
so that Uf = Uf. D 

Corollary 4.7. For every function f from B\ the space Vf has the representation 
Vf = Af + V0, i.e. Vf is a k-dimensional manifold in B2 = C1P^ and B2= (J Vf. 

/ € B i 

Consider now a map B = B(-,-) defined on B\ x B\ the values of which are one-
to-one operators B(f,g): Vf -> Vg for any two functions / , g from B\ and which 
satisfies B~l(f,g) = B(g,f): Vg —> Vf. If two functions / , g from B\ are given then 
with regard to our intention to approximate elements u = UH + Af from Vf by their 
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images B(f,g)u = u = uH + Ag from Vg we choose the simplest way and define the 

approximation by the formula 

(4.8) B(f, g)u = u = uH+Age Vg for ueVf 

(i.e. uH = U>H)- For another definition of B(f,g) we could solve optimalization 
problems. However, for our purposes we can always approximate u by B(f, g)u more 
precisely so that the approximation of / by g will be also more precise as we shall 
see in the sequel. 

Owing to (4.7) and (1.2) we get the estimates 

(4.9) \u - B(f,g)u\ = \A(f - g)\ < Kt\f - g\, 

(4.10) | 1 ( « - B(f,g)u)\ = \A(u - B(f,g)u) + f - g\ < (\A\KX + l)\f - g\, 

(4.11) \\(u-B(f,g)u\\^K\f-g\ 

for any u from V) with the positive constant K = max{K\,l + |-4|ifi} independent 

of / and g from Bx. (ftAf = AAf + f and u - B(f,g)u = A(f - g).) 

R e m a r k 4.8. From the estimates (4.9) and (4.11) it follows that for g sufficiently 
close to / in B\ also u = B(f, g)u is sufficiently close to u in B2. The accuracy of such 
approximation can be chosen arbitrarily small positive. (For any positive number rj 
there exists a positive number e such that \f — g\ -̂  e implies ||ti — B(f,g)u\\ ^ 
K\f-g\^Ke^r)foie^ri/K). 

5 . APPROXIMATION OF PERIODIC SOLUTION 

5.1. Auxiliary assertions 

In the sequel we build up the results obtained and the notation and suppose that 
we have a fixed given fundamental matrix H = (H1, H") from Wo. 

Let A; be a positive integer. The space Ckxk equipped with the norm | • | and the 
usual arithmetic operations, addition4 and multiplication, for its elements (in addition 
to the multiplication of these elements by scalars) is a Banach algebra with the unit 
I = Ik (\I\ = 1 and \AB\ ^ \A\ \B\ for any A, B from Ckxk). 

The following two assertions are well-known from the theory of Banach algebras. 
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Lemma 5.1. If for a matrix B from Ckxk the inequality \I — B\ < 1 holds then 
oo 

in Ckxk the inverse matrix B~l to B exists (B~l = I + £ (I - B)171). Moreover, 
7 7 1 = 1 

the estimates 

<"> l ' - B " l « T J q 7 ^ > l f i " l« THTT-gj 

are vaiid. 

Corollary 5.2. Let matrices A, B be from Ckxk and let the inverse matrix A"1 

to A exist in Ckxk. If the inequality \A - B\ < \A~1\~l holds then in Ckxk the 

inverse matrix B~l to B exists. Moreover, the estimates 

(5.2) l A - ' - r ' ^ i ^ r , }t~B} p „ | 5 - X K | i 4 _ 1 ' 
l - | i 4 - 1 | | . 4 - B | ' ' ' " I-\A-1\\A-B\ 

are vaiid (B~x = A'1 + £ (J - A^B^A'1). 
7 7 1 = 1 

R e m a r k 5.3. If a nonnegative number g is such that for matrices A, B from 
Corollary 5.2 the equality \A - B\ = g\A~x\~l < | A _ 1 | - 1 holds then the estimates 

(5.20 i^ '-^Ki^1 . |B_1|<r~; 

are true. If we require that g € [0; | ] hold, i.e. \A — B\ ^ ^.A""1!""1, then we get 
estimates 

(5.2") l ^ - z r 1 ! ^ - 1 ! , | 5 - 1 | ^ 2 | y i - 1 | . 

Lemma 5.4. Let a positive integer k be given. For a positive number e and func­

tions f,z\,...,Zk from CP" there exists a trigonometric polynomial Qs from CP£ 

such that the relations 

(5.3) | / - Q€\ < e, 

(5.4) {f,Zj) = {Q£,Zj), j = l,...,k, 

are valid. 

P r o o f . We can assume that the functions z\,...,Zk are linearly independent 
and we denote by Z\ the matrix (z\,...,Zk) € CP£xk. The equalities (5.4) have 
now the form 

(5.4') {f,Z1) = {Qe,Z1). 
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Further, we define the matrix function M = M(AZ) = (Z\ + AZ,Z\) for AZ G 

Cpnxk and d e n o t e M Q ___. M ( 0 ) = (zuZ\). Since |M0 - M | = | ( A Z , Z i ) | ^ 
|AZ| |Zi|, the estimates IMQ"1 - M~l\ ^ IMQ"1! and IM"1! ^ 2IM0"1! are true by 
virtue of (5.2") for |AZ| ^ I IZi l" 1

 I M Q - 1 ! " 1 , (detM0 = det(Zi ,Z x) is a positive 
number). Let €o be a positive number the magnitude of which will be determined 
later and let £\ be a positive number satisfying the inequality E\ -̂  | | Z i | _ 1

 I M Q - 1 ! " 1 . 

Let Q0 £ CP£ and Qi e CP£xk be trigonometric polynomials such that | / - Qo| < 
£0 and \Z\ — Q\\ ^ s\. The existence of Qo and Qi follows from Corollary 2.2. We 
will find q eCkxl such that the trigonometric polynomial Qe = Q0 + Q1Q from CP£ 

satisfies the relations (5.3) and (5.4;). That means that (f,Z\) = (Qe,Z\) = 

(Qo,Z\) + (Q\,Z\)q. Consequently, (Q\,Z\)q = (f-Q0,Z\). Note that Qi = 
Z\+(Q\-Z\) = Z\+AZ, AZ = Q\-Zu \AZ\ ^ e\. So (Q\,Z\) = M = M ( Q i - Z i ) 
and |M0 -M\ = |M0 - M(Qi - Z\)\ < \Q\ - Z\\ \Z\\ ^ WM^-1 < \M0~

l\~\ Ac­
cording to Lemma 5.2 the inverse matrix M _ 1 = M _ 1 ( Q i — Zi) to M exists for 
which owing to Remark 5.3 the estimate | M _ 1 | -̂  2IMQ-1! is valid. 

So we get q = M~l (f — Q0, Zi) which ensures the validity of (5.4'). The inequal­
ities |Qi| ^ \Z\\+e\ ^ |Zi| + l /(2|Zi | |M0-1 | ) = (2|Zi|2 |Mo-1 | + l ) / (2 |Zi | |M0-1) , 
\q\ ^ 2 |M 0 - 1 | |Z i | | / - Qo| ^ 2|Zi||M0-1 |£o hold. Finally, we have \f - Q£\ ^ 

1/ - Qo| + |Qi| \q\ ^ 2e0(l + |Zi |2 iMo"1)) ^ e if e0 ^ e/(2(l + IZiflMo"1!)), which 
ensures the validity of (5.3). This completes the proof. D 

5.2. Approximat ions 

We can already start to construct an approximation of an u;-periodic solution 
of (1.2). 

Theorem 5.5. Let a given function f be from B\ and let n be a given positive 
number. There exists a trigonometric polynomial g = gv from B\ such that for every 
solution u from Vf its image u under the map B(f,g): V) -> Vg from (4.8) satisfies 
the estimate \\u — u\\ = \\u — B(f,g)u\\ ^ 77. 

P r o o f . Let a fixed fundamental matrix Z = (Z\,Z^) from WQ be given, 
Z\ E C1P£xk, k = dimVo = dimV0*- According to Lemma 5.4, for any positive 
number € there exists a trigonometric polynomial Qe from CP£ satisfying (5.3) and 
(5.4') which ensures Qe € B\. By means of the choice e = n/K we get \\u — u\\^n 
if we put g = grj = Qe hi (411), where K is from Remark 4.8. • 

Thus we have reached the aim of the present paper to justify the approximation 
method for periodic solutions used in technical practice. 
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6. APPLICATION AND ILLUSTRATION 

6.1. Application 

As an application of a linear differential equation with periodic coefficients and 

with a periodic right-hand side we can consider the simple technical device which is 

described in [8], This device is shown in the figure where we have a mass m attached 

to a thin cantilever linear spring, the effective length of which can vary with time t 

in any prescribed manner (y = y(t)) by moving the support S. Thus in discussing 

lateral vibrations of the mass m, we have a spring characteristic c that varies with 

time t (controlled by y(t)): 

Ш////Л 

We have the equation 

(б.i) ms = —c(t)s — aš + Q(t) 

with variable coefficients where s is the displacement of the mass m from its central 

position. For a periodic motion of the support S and for a periodic external force Q 

with the same positive period CJ, if we neglect the resistance of air, i.e. a = 0, then 

we have the u;-periodic equation of motion in the form 

(6.2) S + k(t)s = g(t) 

where k(t) = c(t)/m, g(t) = Q(t)/m, t e U. 

6.2. I l lustrat ion 

If there exists an tcJ-periodic nonconstant function F = F(t) with continuous 

derivatives up to and including the second order on R which satisfies the nonlin-
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ear equation F2 + F = —k(t) then the homogeneous linear equation 

(6.3) S + k(t)s = 0 

has the general solution in the form 

(6.4) s = d exp(F) + C2 exp(F) • G 

where G = G(t) = /0* exp (-2F(a)) dcr, t G R. 
Note that the function G is increasing because its first derivative exp(—2F) is 

positive with G(0) = 0. Thus G is not periodic and G(u) > 0. The motion equation 
of the technical device from the figure can be transformed into the system of linear 
equations 

(6.5) x = A(t)x + f(t) 

(in matrix notation) where 

^ • u !)• ••(:)•(;)• » -Q-
With System (6.5) we associate the homogeneous system 

(6.6) y = A(t)y 

and the adjoint homogeneous system 

(6.7) z = -A*(t)z. 

Here y, z are matrix-columns with two elements and A*(t) = AT(t) because the 
matrix A(t) is real for every t E R. 

We choose the matrix 

H = H(t) = ( e xP (F)> e xP (F)G \ 
U V-*exp(F), Fexp(F)G + e x p ( - F ) ; 

as the fundamental matrix H of the system (6.6) from Section 4.3. We denote by ft_, 
ft2 the columns of H, i.e. H = (ft_,ft2). Because detH = 1, the inverse matrix has 
the form 

„ _ ! _ „ _ ! _ / F e x p ( F ) o + exp( -F) , - e x p ( F ) G \ 
H ~H (*)=[ - F e x p ( F ) , exp(F) F 
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We denote by z±, Z2 the rows of the inverse matrix H *, i.e. H~l = ( ) . The 
\Z2j 

matrix H is real and therefore (H*) x = (H 1)T which is a fundamental matrix of 
solutions of System (6.7). 

The columns fti, zT are c*;-periodic solutions of Systems (6.6), (6.7), respectively. 
Since the function G is not periodic the columns /i2, zT are non-periodic solutions 
of Systems (6.6), (6.7), respectively, (fti, zT form bases of the sets of all u;-periodic 
solutions of Systems (6.6), (6.7), respectively.) Hence, if f£ exp (F(t))g(t) dt -= 0, 
i.e. (/, zT) = 0, then the condition (3.6) is fulfilled and therefore the existence of an 
cj-periodic solution of System (6.5) is ensured. According to the previous reasoning 
the function 

Af(t) = H"(t)v% + H(t) f H~1(s)f(s) ds 
Jo 

= h2(t)u02 + H(t) f H-X(s)f(s)ds, t e R, 
Jo 

where UQ = W02, satisfies the condition Af(u))—Af(0) = 0. Hence the linear algebraic 
system 

(6.8) [ft2M - ft2(0)]u02 = ~H(w) f H~l(s)f(s) ds 

is fulfilled because the equalities 

h»(u) - /i2(0) = ( p ) exp (F(W))G(tf), 

-H(w) J" H'1 (s)f(s) ds = H(u>)(1
Q)r G(s) exp (F(s))g(s) ds 

= ( p ^ ) exp (F(u)) £ G(s) exp (F(s))g(s) ds 

(due to (/, zj) = 0) are valid and the linear algebraic system (6.8) has the solution 
«02 + G M _ 1 £ G(s) exp (F(s))g(s) ds. 

By virtue of \H\ = l-ff-1! and | / | = |<;| we get the inequalities 

K 2 K M / exp(F(s))d5, 
./o 

\Af\ < K\g\ = K\f\, 

\\AF\\^k\g\ = k\f\, 

where K = |/.2| £ exp (F(s)) ds and K = max{AT, \A\K + 1}. 
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6.3. Example 
Now we consider the case F(t) = 2 cos*, g(t) = OQ + cost + ecos(qt), where OQ is 

a real number, _ is a positive integer greater than one, e is a real non-zero number 
with a very small absolute value and u = 2K. First we construct the Fourier series 
of the function exp (F). Notice that F(t) = 2cos* = exp (it) + exp (—it), hence 

OO j 

exp (F(t)) = exp (exp (i*) + exp (-if)) = Y^ "r(exP (-0 + e xP (~-*))P 

p = 0 ^ 

- ± ± ^ » - H - ~ ™ - g ± ^ 
A c o s ( 2 p + l - 2 f c ) * _ ҳ-л 1 ^- A cos (2p - 2fc)* A cos(2p + 1 - 2k)i 

-~UW+ hh (2p-fc)!fc! +h (-*+!-*)>« P=0 - ' p: 
OO - OO r o o 

_ _v^___ ^[...p________; -^___________ 
Һ>W+ ЫҺ (2P-*)!*! +Һ (2P+l-*)!*! 

E°° 1 oV^Гv^ cos2p* y ^ cos(2p+l ) t 

P=o5ІF+ Һ\Һ (*+*)'и íЬ (2ľ+ ! + *)!«. 
= -Sw+2Ш<от<Ь2* 

Ч±(2řTTT ш} c м < 2 ' ' + 1 ) 1 

^fc=0 
OO 

= — ap + 2 y ^ q p cosp* 
P = i 

(by virtue of the absolute convergence of this series for every <GR), where 

OO 1 OO -j 

a-» = E ( 2 p + * ) . * ! ' a-»+i = E ( 2 p + * + !)!*!' P = 0 ' 1 ' 2 ' -

Let there exist an u;-periodic solution of System (6.5). Then the equality OQ = 

—(ai +2ag)/ao follows from the validity of the condition (3.6). In a technical practice 

the "very small" term e cos qt of the right-hand side g could be neglected and g could 

be replaced by the trigonometric polynomial oo + cos*. This procedure, however, 

destroys the former valid necessary and sufficient condition for the existence of a 

2K-periodic solution of System (1.2). However, if g is replaced by the trigonometric 

polynomial gv(t) = do + cost with db = — (ai/ao)oo, which is equally simple as 

oo + cos*, then the existence of a 2rc-periodic solution is preserved, while \g — gv\ ^ 

283 



77 ̂  |e|(l + a q /oo) , \\Ag - Agv\\ ^ K\g - gv\ ^ K\e\(l + a<-/a0) < 2\e\K, because 

2 < ao, 2 < q, 0 < aq < e/q\ < 2. (Here e is the Euler's number.) 

6.4. Conclusion 

Recently, approximation methods for periodic solutions have concerned nonlinear 

differential equations. In the papers [9], [10] numerical methods supported by com­

puters are presented. [5], [7] deal with Fourier approximations of periodic solutions of 

nonlinear differential equations. Finally, the paper [1] generalizes this approximation 

problem to Banach spaces. 
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Abstract. The present paper does not introduce a new approximation but it modifies a
certain known method. This method for obtaining a periodic approximation of a periodic
solution of a linear nonhomogeneous differential equation with periodic coefficients and
periodic right-hand side is used in technical practice. However, the conditions ensuring the
existence of a periodic solution may be violated and therefore the purpose of this paper is
to modify the method in order that these conditions remain valid.

Keywords: oscillation problem, periodic differential equation, periodic solution, ω-
periodic solution, trigonometric polynomial, trigonometric approximation, Gram’s deter-
minant
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1. Introduction

1.1. Preliminaries
Many oscillation problems lead to a periodic differential equation

(1.1) y(n) + a1(t)y(n−1) + . . . + an(t)y = g(t),

where n is a positive integer, y(k) = dky/dtk, k = 1, . . . , n, and a1, . . . , an, g are

periodic continuous complex functions of the real variable t ∈ � = (−∞,∞) with a
common positive period ω, or to a system of periodic linear differential equations (in

matrix form)

(1.2) ẋ = A(t)x + f(t),

269



where ẋ = dx/dt, A is an ω-periodic continuous complex square matrix function of

nth order and f is an ω-periodic continuous complex column matrix function of the
real variable t ∈ � with n elements.

1.2. Technical practice
In technical practice given problems are simplified and the right-hand side in (1.1)

or (1.2) is replaced by a few first terms of its Fourier expansion. Terms which

are small in some sense are neglected. However, these simplifications can destroy
conditions warranting the existence of a periodic solution of (1.1) or (1.2). The

aim of this paper is not to introduce a new approximation method but to define
conditions and an approach ensuring the well-posedness of the simplified problem.
The justification of this method has not been examined in literature. Here we will

show a constructive method based on an approximation of the right-hand side by a
periodic trigonometric polynomial such that the necessary and sufficient condition

for the existence of a periodic solution is preserved while the periodic solution of the
simplified problem approximates uniformly on � the corresponding periodic solution
of the original problem with arbitrary accuracy given in advance.

1.3. Some notions, notation and assertions
The set of all real numbers is denoted by � . The symbol 0 denotes the number zero

or the zero matrix the type of which is evident from the context. If C is a complex
matrix then CT is its transposed and C∗ its transposed and complex conjugated

matrix. If C is a square matrix then det C is its deteminant. The unit matrix of nth
order is denoted by In or I . If r, m are two positive integers then by � r×m we denote

the space of all (constant) complex matrices of the type r ×m, i.e. with r rows and
m columns. The space � r×m becomes a Banach space (B-space) if it is equipped by

one from the following norms | · |1, | · |2, | · | given for any matrix A = (αij) ∈ � r×m :

|A|1 = max
{ m∑

j=1

|αij | : i = 1, . . . , r

}
,

|A|2 = max
{ r∑

i=1

|αij | : j = 1, . . . , m

}
,

|A| = max{|A|1, |A|2}.

In the sequel we will use the norm | · | for which |A∗| = |A| and |I | = 1 is true. Here
and in what follows let ω be a given positive number. A periodic function defined
on � with the period ω is called ω-periodic.

If a complex matrix function ϕ is defined and continuous on the closed interval
[0, ω] then the nonnegative number |ϕ| = sup |ϕ(t)| = sup{|ϕ(t) : t ∈ [0, ω]} is the
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norm of the function ϕ. If the function ϕ has a continuous derivative ϕ̇ on the closed

interval [0, ω] then we define another norm ‖ϕ‖ = max{|ϕ|, |ϕ̇|} of the function ϕ.
If k is a nonnegative integer and r, m positive integers then we denote by CkP r×m

ω

the space of all complex ω-periodic matrix functions with r rows and m columns

which are defined and have ω-periodic continuous derivatives on � up to the kth or-
der. For k = 0 or m = 1 or r = 1 we use the notation CP r×m

ω = C0P r×m
ω ,

CkP r
ω = CkP r×1

ω , CP r
ω = C0P r

ω, CPω = CP 1
ω . CP r×m

ω and C1P r×m
ω are B-spaces

with norms | · | and ‖ · ‖, respectively. In the space CP r
ω we define an inner prod-

uct by the formula 〈u, v〉 = 1
ω

∫ ω

0 v∗(t)u(t) dt and obtain the corresponding norm
|u| =

√
〈u, u〉. It is evident that the inequalities |u| 6 |u| and 〈u, v〉 6 |u| · |v| 6

|u| |v| hold. In the case of constant functions u, v from CP r
ω their inner product is

〈u, v〉 = v∗u.

For brevity of notation in some operations with two arbitrary matrix functions g

of a type l × k and h of a type l × m continuous on the interval [0, ω], where k,

l, m are positive integers, we introduce their “inner product” 〈g, h〉 by the formula
〈g, h〉 = 1

ω

∫ ω

0
h∗(t)g(t) dt. It is evident that 〈g, h〉 ∈ � m×k and for constant f , g we

have 〈g, h〉 = h∗g. If h = g holds then 〈g, g〉 ∈ � k×k and det 〈g, g〉 is a nonnegative
number, which is Gram’s determinant for the columns of g. If the columns of g

are linearly independent then det 〈g, g〉 is a positive number and the inverse matrix
〈g, g〉−1 to 〈g, g〉 exists. Analogously the inequality |〈g, h〉| 6 |g| |h| is valid.
Let E be a B-space and k a positive integer. Given k mutually distinct real

numbers λ1, . . . , λk and k non-zero elements b1, . . . , bk from E, the function Q de-

fined by the formula Q(t) = b1 exp (iλ1t) + . . . + bk exp (iλkt), t ∈ � , is called an
E-trigonometric or simply a trigonometric polynomial (exp(s) denotes the usual ex-
ponential function es).

2. Approximation theorems

2.1. Weierstrass approximation theorem
Since we deal with uniform approximations of continuous ω-periodic functions

by ω-periodic trigonometric polynomials, we will recall the following approximation

theorems.

Theorem 2.1. For every function f ∈ CPω and every positive number ε there

exists a trigonometric polynomial Q ∈ CPω such that |f −Q| 6 ε holds.

Corollary 2.2. For every matrix function f from CP r×m
ω and any positive num-

ber ε there exists a trigonometric polynomial Q ∈ CP r×m
ω such that |f − Q| 6 ε

holds.
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3. Existence of a periodic solution

3.1. Homogeneous and conjugated equations
In what follows we shall treat only (1.2) since (1.1) can be modified to the form

of (1.2) which induces the homogeneous equation

(3.1) ẏ = A(t)y, t ∈ � ,

and the conjugated equation with (3.1)

(3.2) ż = −A∗(t)z, t ∈ � .

The conditions given above in 1.1 ensure the existence and uniqueness of a solution
of the Cauchy problem for the equations (1.1), (1.2), (3.1), (3.2).

Let Y = Y (t), t ∈ � , be a fundamental matrix (of solutions) of (3.1) and let Z =
Z(t), t ∈ � , be a fundamental matrix of (3.2). The validity of the following relations
can be easily verified: Y (t) = (Z∗(t))−1Z∗(0)Y (0), Y −1(t) = Y −1(0)(Z∗(0))−1Z∗(t),
t ∈ � .

3.2. Periodic solutions
If x is an ω-periodic solution of (1.2) then the equality

(3.3) x(ω)− x(0) = 0

holds. This equality is not only a necessary but also a sufficient condition for the
ω-periodicity of the solution x of (1.2).

If H is a fundamental matrix of (3.1) then the general solution x of (2.1) can be
written in the form

(3.4) x = x(t) = H(t)H−1(0)x0 + H(t)
∫ t

0

H−1(s)f(s) ds, t ∈ � (x(0) = x0).

�����������
3.1. Note that owing to the validity of the relations H̃(t)H̃−1(s) =

H(t)H−1(s) for any real numbers s, t and arbitrary fundamental matrices H , H̃

of (3.1) the integral part H(t)
∫ t

0 H−1(s)f(s) ds, t ∈ � , of a solution of (1.2) stays
unchanged for every given f from CP n

ω and for an arbitrary fundamental matrix H

of (3.1).

The condition (3.3) has now the form

0 = x(ω) − x(0) = (H(ω)−H(0))H−1(0)x0 + H(ω)
∫ ω

0

H−1(s)f(s) ds,

i.e.

(H(ω)−H(0))H−1(0)x0 = −H(ω)
∫ ω

0

H−1(s)f(s) ds(3.5)

272



with the unchanged right-hand side for every given f and for an arbitrary fun-

damental matrix H of (3.1), owing to Remark 3.1. The system (3.5) has n linear
algebraic equations with n unknowns which are elements of the initial matrix-column
x0 ∈ � n×1 and it can be arranged into the system

(3.5∗) (H(ω)−H(0))u0 = −(Z∗(ω))−1 〈f, Z〉ω

with the unknown matrix-column u0 = H−1(0)x0 ∈ � n×1 (x0 = H(0)u0) and an ar-
bitrary fundamental matrix Z of (3.2) (with unchanged right-hand side independent

of Z).

Definition 3.2.
a) We denote by B1 the space of all functions f ∈ CP n

ω for which Equation (1.2)
has an ω-periodic solution and denote by B2 the space C1P n

ω .

b) For a given function f from B1 we denote by Vf the space of all ω-periodic
solutions of Equations (1.2). For f = 0 we have the space V0 of all ω-periodic

solutions of Equation (3.1).
c) We denote by V ∗

0 the space of all ω-periodic solutions of Equation (3.2).
�����������

3.3. The spaces B1, V0 and V ∗
0 are B-spaces.

If (3.5) or (3.5∗) has a solution x0 then (3.3) is for this x0 fulfilled and (1.2) has

an ω-periodic solution (3.4).
It is known the two following valid theorems.

Theorem 3.4. The necessary and sufficient condition for the existence of an
ω-periodic solution of Equation (1.2) is the validity of the equality

(3.6) 〈f, z〉 =
1
ω

∫ ω

0

z∗(t)f(t) dt = 0

for every ω-periodic solution z of Equation (3.2), i.e. for every z from V ∗
0 .

Theorem 3.5. The B-space V0 has the same finite dimension as the B-space V ∗
0 .

4. Transformations

4.1. B-spaces
Recall that the spaces CP n

ω and B1 with the norm | · | and the space B2 = C1P n
ω

with the norm ‖ · ‖ are B-spaces. The space B2 can be viewed as the space of

all ω-periodic solutions of (1.2) with any right-hand sides from B1. Namely, if x is
from B2 then x is an ω-periodic solution of (1.2) with the right-hand side f = ẋ−Ax.
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4.2. Fundamental matrix H = (H ′, H ′′)

Definition 4.1. The set of all fundamental matrices H of Equation (3.1) whose
first k columns create a basis of V0 with k = dim V0 is denoted by W0. For every H

from W0 we introduce its decomposition H = (H ′, H ′′) where H ′ is from C1P n×k
ω .

The set of all fundamental matrices Z of Equation (3.2) whose first k columns create

a basis of V ∗
0 is denoted by W ∗

0 .

4.3. Periodic solutions
For any f from B1 and an arbitrary H = (H ′, H ′′) from W0 every ω-periodic

solution x from Vf can be expressed in the form

(4.1) x = x(t) = H ′(t)u′0 + H ′′(t)u′′0 + H(t)
∫ t

0

H−1(s)f(s) ds, t ∈ � ,

where x0 = x(0) = x(ω), u′0 ∈ � k×1 , u′′0 ∈ � (n−k)×1 , u0 = (u′T0 , u′′T0 )T = H−1(0)x0,

x0 = H(0)u0.
In this section and further we use a fixed given fundamental matrix H = (H ′, H ′′)

from W0, unless stated otherwise. Let a function f from B1 be given. If we have a
particular ω-periodic solution

(4.1′) u = u(t) = H ′(t)u′0 + H ′′(t)u′′0 + H(t)
∫ t

0

H−1(s)f(s) ds, t ∈ � ,

with fixed u′0, u
′′
0 then we decompose this solution into a “homogeneous part” uH =

H ′u′0 and a “particular part”

uf = uf (t) = H ′′(t)u′′0 + H(t)
∫ t

0

H−1(s)f(s) ds, t ∈ � .

So we have u = uH + uf where uH ∈ V0 and uf ∈ Vf . The part uf is uniquely
determined by f ∈ B1. Indeed, if we have another particular ω-periodic solution

(4.1′′) ũ = ũ(t) = H ′(t)ũ′0 + H ′′(t)ũ′′0 + H(t)
∫ t

0

H−1(s)f(s) ds, t ∈ � ,

with fixed ũ′0 ∈ � k×1 , ũ′′0 ∈ � (n−k)×1 , then evidently the ω-periodic solution u− ũ−
uH + ũH = H ′′(u′′0 − ũ′′0) is from V0. Since the columns of H ′ create a basis of V0 the
equality ũ′′0 = u′′0 necessarily holds. This uniqueness of u

′′
0 we record by u′′0 = u′′0(f).

So we get:
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Lemma 4.2. For every function f from B1 all solutions from Vf have the same

“particular part”.

Now we complete the solution of (3.5∗) for u0. Since H ′(ω) − H ′(0) = 0 we get
from (3.5∗) the equivalent system

(3.5∗∗) (H ′′(ω)−H ′′(0))u′′0 = −(Z∗(ω))−1 〈f, Z〉ω

in which u′0 does not occur, i.e. the k elements of u′0 play here the role of k arbitrary
complex parameters independent of f ∈ B1. (If we have u′′0 = u′′0(f) then it follows
from (3.5∗∗) that x0 = H(0)u0 = H ′u′0+H ′′u′′0 remains unchanged for all u

′
0 ∈ � k×1 .)

For shortness of the record we denote by κ the matrix H ′′(ω) − H ′′(0). The n − k

columns of κ are linearly independent. This follows besides other from the uniqueness

of u′′0(f). So Gram’s determinant det 〈κ, κ〉 = det(κ∗κ) is a positive number and the
inverse matrix 〈κ, κ〉−1 to 〈κ, κ〉 = κ∗κ exists. If we multiply (3.5∗∗) by the matrix
〈κ, κ〉−1

κ∗ from the left then we get

(4.2) u′′0 = u′′0(f) = −〈κ, κ〉−1
κ∗(Z∗(ω))−1 〈f, Z〉ω

for Z ∈ V ∗
0 and the estimates

|u′′0(f)| 6 2ω|H | |Z| |Z−1| 〈κ, κ〉−1 | |f |,(4.3)

|u′′0(f)| 6 2ω|H |2|H−1| | 〈κ, κ〉−1 | |f |(4.3′)

hold since |κ| = |κ∗| 6 2|H |. The estimate (4.3′) follows from

(3.5′) (H ′′(ω)−H ′′(0))u′′0 = H(ω)
∫ ω

0

H−1(s)f(s) ds

in the analogous way as (4.3) from (3.5∗∗).

4.4. Transformations
On the basis of the above results we obtain the following assertions.

Lemma 4.3. The map U : B1 → � (n−k)×1 given by the formula Uf = u′′0(f) for
any f from B1 is a linear and bounded operator.
� ��!"!$#

. The linearity of U is evident from (4.2). The boundedness of U follows
for a fixed given Z from (4.3) and from (4.3′) by the choice of the positive constant

(4.4) K0 = 2ω|H | | 〈κ, κ〉−1 |max{|Z| |Z−1|, |H | |H−1|}

for the estimate

(4.5) |Uf | 6 K0|f |

for every f from B1, where K0 does not depend on f . �
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Theorem 4.4. If a map A : B1 → Vf is defined so that for every f from B1 its

image Af is equal to the common “particular part” of any solution u from Vf , i.e.

(4.6) (Af)(t) = H ′′(t)u′′0 + H(t)
∫ t

0

H−1(s)f(s) ds, t ∈ � ,

then the operator A is linear and bounded.
� ��!"!$#

. The linearity of A is evident from Lemma 4.3 and from (4.6). Further,
an estimate

(4.7) |Af | 6 K1|f |

holds owing to (4.5) and (4.6) for K1 = (K0 + ω|H−1|)|H |, where K0 is from (4.4).
The constant K1 does not depend on f . �
�����������

4.5. If H = (H ′, H ′′) and H̃ = (H̃ ′, H̃ ′′) are two arbitrary fundamental
matrices fromW0 then by virtue of the properties of the matricesH ′, H ′′ and H̃ ′, H̃ ′′

there exist regular matrices C1 ∈ � k×k , C2 ∈ � (n−k)×(n−k) and C = diag(C1, C2)
such that H̃ ′ = H ′C1, H̃ ′′ = H ′′C2 and H̃ = HC.

Theorem 4.6. The operator A from Theorem 4.4 does not depend on the choice
of a fundamental matrix H from W0.

� ��!"!$#
. Let f be a given function from B1. Let two arbitrary fundamen-

tal matrices H = (H ′, H ′′) and H̃ = (H̃ ′, H̃ ′′) from W0 be given. Assume
that besides a particular ω-periodic solution u from (4.1′) belonging to Vf there

exists another particular ω-periodic solution ũ = ũ(t) = H̃ ′(t)ũ′0 + H̃ ′′(t)ũ′′0 +
H̃(t)

∫ t

0
H̃−1(s)f(s) ds, t ∈ � , from Vf . Owing to Remark 3.1 and Remark 4.5 the

relations H̃(t)
∫ t

0 H̃−1(s)f(s) ds = H(t)
∫ t

0 H−1(s)f(s) ds are true for any t ∈ � , so
that the solution u−ũ−uH+ũH = H ′′u′′0−H̃ ′′ũ′′0 = H ′′(u′′0−C2ũ

′′
0) belongs to V0. But

this is possible only for u′′0 = C2ũ
′′, i.e. ũ′′0 = C−1

2 u′′0 , H̃
′′ũ′′0 = H ′′C2C

−1
2 u′′0 = H ′′u′′0

so that ũf = uf . �

Corollary 4.7. For every function f from B1 the space Vf has the representation

Vf = Af + V0, i.e. Vf is a k-dimensional manifold in B2 = C1P n
ω and B2 =

⋃
f∈B1

Vf .

Consider now a map B = B(·, ·) defined on B1 × B1 the values of which are one-
to-one operators B(f, g) : Vf → Vg for any two functions f , g from B1 and which

satisfies B−1(f, g) = B(g, f) : Vg → Vf . If two functions f , g from B1 are given then
with regard to our intention to approximate elements u = uH +Af from Vf by their
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images B(f, g)u = ũ = ũH +Ag from Vg we choose the simplest way and define the

approximation by the formula

(4.8) B(f, g)u = ũ = uH +Ag ∈ Vg for u ∈ Vf

(i.e. ũH = uH). For another definition of B(f, g) we could solve optimalization
problems. However, for our purposes we can always approximate u by B(f, g)u more
precisely so that the approximation of f by g will be also more precise as we shall

see in the sequel.

Owing to (4.7) and (1.2) we get the estimates

|u− B(f, g)u| = |A(f − g)| 6 K1|f − g|,(4.9)
∣∣∣ d
dt

(u− B(f, g)u)
∣∣∣ = |A(u− B(f, g)u) + f − g| 6 (|A|K1 + 1)|f − g|,(4.10)

‖(u− B(f, g)u‖ 6 K|f − g|(4.11)

for any u from Vf with the positive constant K = max{K1, 1 + |A|K1} independent
of f and g from B1. ( d

dtAf = AAf + f and u− B(f, g)u = A(f − g).)

�����������
4.8. From the estimates (4.9) and (4.11) it follows that for g sufficiently

close to f in B1 also ũ = B(f, g)u is sufficiently close to u in B2. The accuracy of such
approximation can be chosen arbitrarily small positive. (For any positive number η

there exists a positive number ε such that |f − g| 6 ε implies ‖u − B(f, g)u‖ 6
K|f − g| 6 Kε 6 η for ε 6 η/K).

5. Approximation of periodic solution

5.1. Auxiliary assertions

In the sequel we build up the results obtained and the notation and suppose that
we have a fixed given fundamental matrix H = (H ′, H ′′) from W0.

Let k be a positive integer. The space � k×k equipped with the norm | · | and the
usual arithmetic operations, addition and multiplication, for its elements (in addition
to the multiplication of these elements by scalars) is a Banach algebra with the unit

I = Ik (|I | = 1 and |AB| 6 |A| |B| for any A, B from � k×k ).

The following two assertions are well-known from the theory of Banach algebras.
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Lemma 5.1. If for a matrix B from � k×k the inequality |I − B| < 1 holds then

in � k×k the inverse matrix B−1 to B exists (B−1 = I +
∞∑

m=1
(I − B)m). Moreover,

the estimates

(5.1) |I −B−1| 6 |I −B|
1− |I −B| , |B−1| 6 1

1− |I −B|

are valid.

Corollary 5.2. Let matrices A, B be from � k×k and let the inverse matrix A−1

to A exist in � k×k . If the inequality |A − B| < |A−1|−1 holds then in � k×k the

inverse matrix B−1 to B exists. Moreover, the estimates

(5.2) |A−1 −B−1| 6 |A−1|2 |A−B|
1− |A−1| |A−B| , |B−1| 6 |A−1|

1− |A−1| |A−B|

are valid (B−1 = A−1 +
∞∑

m=1
(I −A−1B)mA−1).

�����������
5.3. If a nonnegative number % is such that for matrices A, B from

Corollary 5.2 the equality |A−B| = %|A−1|−1 < |A−1|−1 holds then the estimates

(5.2′) |A−1 −B−1| 6 %|A−1|
1− %

, |B−1| 6 |A−1|
1− %

are true. If we require that % ∈
[
0; 1

2

]
hold, i.e. |A − B| 6 1

2 |A−1|−1, then we get
estimates

(5.2′′) |A−1 −B−1| 6 |A−1|, |B−1| 6 2|A−1|.

Lemma 5.4. Let a positive integer k be given. For a positive number ε and func-

tions f, z1, . . . , zk from CP n
ω there exists a trigonometric polynomial Qε from CP n

ω

such that the relations

|f −Qε| 6 ε,(5.3)

〈f, zj〉 = 〈Qε, zj〉 , j = 1, . . . , k,(5.4)

are valid.
� ��!"!$#

. We can assume that the functions z1, . . . , zk are linearly independent

and we denote by Z1 the matrix (z1, . . . , zk) ∈ CP n×k
ω . The equalities (5.4) have

now the form

(5.4′) 〈f, Z1〉 = 〈Qε, Z1〉 .
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Further, we define the matrix function M = M(∆Z) = 〈Z1 + ∆Z, Z1〉 for ∆Z ∈
CP n×k

ω and denote M0 = M(0) = 〈Z1, Z1〉. Since |M0 − M | = | 〈∆Z, Z1〉 | 6
|∆Z| |Z1|, the estimates |M−1

0 − M−1| 6 |M−1
0 | and |M−1| 6 2|M−1

0 | are true by
virtue of (5.2′′) for |∆Z| 6 1

2 |Z1|−1 |M−1
0 |−1, (det M0 = det 〈Z1, Z1〉 is a positive

number). Let ε0 be a positive number the magnitude of which will be determined
later and let ε1 be a positive number satisfying the inequality ε1 6 1

2 |Z1|−1 |M−1
0 |−1.

Let Q0 ∈ CP n
ω and Q1 ∈ CP n×k

ω be trigonometric polynomials such that |f −Q0| 6
ε0 and |Z1 −Q1| 6 ε1. The existence of Q0 and Q1 follows from Corollary 2.2. We

will find q ∈ � k×1 such that the trigonometric polynomial Qε = Q0 +Q1q from CP n
ω

satisfies the relations (5.3) and (5.4′). That means that 〈f, Z1〉 = 〈Qε, Z1〉 =
〈Q0, Z1〉 + 〈Q1, Z1〉 q. Consequently, 〈Q1, Z1〉 q = 〈f −Q0, Z1〉. Note that Q1 =
Z1+(Q1−Z1) = Z1+∆Z,∆Z = Q1−Z1, |∆Z| 6 ε1. So 〈Q1, Z1〉 = M = M(Q1−Z1)
and |M0 −M | = |M0 −M(Q1 −Z1)| 6 |Q1 −Z1| |Z1| 6 1

2 |M−1
0 |−1 < |M−1

0 |−1. Ac-
cording to Lemma 5.2 the inverse matrix M−1 = M−1(Q1 − Z1) to M exists for

which owing to Remark 5.3 the estimate |M−1| 6 2|M−1
0 | is valid.

So we get q = M−1 〈f −Q0, Z1〉 which ensures the validity of (5.4′). The inequal-
ities |Q1| 6 |Z1| + ε1 6 |Z1| + 1/(2|Z1| |M−1

0 |) = (2|Z1|2|M−1
0 | + 1)/(2|Z1| |M−1

0 ),
|q| 6 2|M−1

0 | |Z1| |f − Q0| 6 2|Z1| |M−1
0 |ε0 hold. Finally, we have |f − Qε| 6

|f −Q0| + |Q1| |q| 6 2ε0(1 + |Z1|2 |M−1
0 |) 6 ε if ε0 6 ε/(2(1 + |Z1|2|M−1

0 |)), which
ensures the validity of (5.3). This completes the proof. �

5.2. Approximations
We can already start to construct an approximation of an ω-periodic solution

of (1.2).

Theorem 5.5. Let a given function f be from B1 and let η be a given positive

number. There exists a trigonometric polynomial g = gη from B1 such that for every

solution u from Vf its image ũ under the map B(f, g) : Vf → Vg from (4.8) satisfies
the estimate ‖u− ũ‖ = ‖u− B(f, g)u‖ 6 η.
� ��!"!$#

. Let a fixed fundamental matrix Z = (Z1, Z2) from W ∗
0 be given,

Z1 ∈ C1P n×k
ω , k = dim V0 = dim V ∗

0 . According to Lemma 5.4, for any positive
number ε there exists a trigonometric polynomial Qε from CP n

ω satisfying (5.3) and

(5.4′) which ensures Qε ∈ B1. By means of the choice ε = η/K we get ‖u− ũ‖ 6 η

if we put g = gη = Qε in (4.11), where K is from Remark 4.8. �

Thus we have reached the aim of the present paper to justify the approximation
method for periodic solutions used in technical practice.
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6. Application and illustration

6.1. Application
As an application of a linear differential equation with periodic coefficients and

with a periodic right-hand side we can consider the simple technical device which is

described in [8]. This device is shown in the figure where we have a mass m attached
to a thin cantilever linear spring, the effective length of which can vary with time t

in any prescribed manner (y = y(t)) by moving the support S. Thus in discussing
lateral vibrations of the mass m, we have a spring characteristic c that varies with

time t (controlled by y(t)):

0
s

s

y = y(t)
S

m

We have the equation

(6.1) ms̈ = −c(t)s− aṡ + Q(t)

with variable coefficients where s is the displacement of the mass m from its central

position. For a periodic motion of the support S and for a periodic external force Q

with the same positive period ω, if we neglect the resistance of air, i.e. a = 0, then
we have the ω-periodic equation of motion in the form

(6.2) s̈ + k(t)s = g(t)

where k(t) = c(t)/m, g(t) = Q(t)/m, t ∈ � .

6.2. Illustration
If there exists an ω-periodic nonconstant function F = F (t) with continuous

derivatives up to and including the second order on � which satisfies the nonlin-
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ear equation Ḟ 2 + F̈ = −k(t) then the homogeneous linear equation

(6.3) s̈ + k(t)s = 0

has the general solution in the form

(6.4) s = C1 exp(F ) + C2 exp(F ) ·G

where G = G(t) =
∫ t

0
exp (−2F (σ)) dσ, t ∈ � .

Note that the function G is increasing because its first derivative exp(−2F ) is
positive with G(0) = 0. Thus G is not periodic and G(ω) > 0. The motion equation
of the technical device from the figure can be transformed into the system of linear
equations

(6.5) ẋ = A(t)x + f(t)

(in matrix notation) where

A(t) =
(

0 1
−k(t) 0

)
, x =

(
x1

x2

)
=

(
s

ṡ

)
, f(t) =

(
0

g(t)

)
.

With System (6.5) we associate the homogeneous system

(6.6) ẏ = A(t)y

and the adjoint homogeneous system

(6.7) ż = −A∗(t)z.

Here y, z are matrix-columns with two elements and A∗(t) = AT (t) because the
matrix A(t) is real for every t ∈ � .
We choose the matrix

H = H(t) =
(

exp (F ), exp (F )G
Ḟ exp (F ), Ḟ exp (F )G + exp (−F )

)

as the fundamental matrix H of the system (6.6) from Section 4.3. We denote by h1,
h2 the columns of H , i.e. H = (h1, h2). Because det H = 1, the inverse matrix has
the form

H−1 = H−1(t) =
(

Ḟ exp (F )G + exp (−F ), − exp (F )G
−Ḟ exp (F ), exp (F )

)
.
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We denote by z1, z2 the rows of the inverse matrix H−1, i.e. H−1 =
(

z1

z2

)
. The

matrix H is real and therefore (H∗)−1 = (H−1)T which is a fundamental matrix of

solutions of System (6.7).
The columns h1, zT

2 are ω-periodic solutions of Systems (6.6), (6.7), respectively.

Since the function G is not periodic the columns h2, zT
1 are non-periodic solutions

of Systems (6.6), (6.7), respectively. (h1, zT
2 form bases of the sets of all ω-periodic

solutions of Systems (6.6), (6.7), respectively.) Hence, if
∫ ω

0 exp (F (t))g(t) dt = 0,
i.e.

〈
f, zT

2

〉
= 0, then the condition (3.6) is fulfilled and therefore the existence of an

ω-periodic solution of System (6.5) is ensured. According to the previous reasoning
the function

Af(t) = H ′′(t)u′′0 + H(t)
∫ t

0

H−1(s)f(s) ds

= h2(t)u02 + H(t)
∫ t

0

H−1(s)f(s) ds, t ∈ � ,

where u′′0 = u02, satisfies the conditionAf(ω)−Af(0) = 0. Hence the linear algebraic
system

(6.8) [h2(ω)− h2(0)]u02 = −H(ω)
∫ ω

0

H−1(s)f(s) ds

is fulfilled because the equalities

h2(ω)− h2(0) =
(

1
Ḟ (ω)

)
exp (F (ω))G(ω),

−H(ω)
∫ ω

0

H−1(s)f(s) ds = H(ω)
(

1
0

) ∫ ω

0

G(s) exp (F (s))g(s) ds

=
(

1
Ḟ (ω)

)
exp (F (ω))

∫ ω

0

G(s) exp (F (s))g(s) ds

(due to
〈
f, zT

2

〉
= 0) are valid and the linear algebraic system (6.8) has the solution

u02 + G(ω)−1 ∫ ω

0
G(s) exp (F (s))g(s) ds.

By virtue of |H | = |H−1| and |f | = |g| we get the inequalities

|u02| 6 |g|
∫ ω

0

exp (F (s)) ds,

|Af | 6 K̃|g| = K̃|f |,
‖AF‖ 6 K̃|g| = K̃|f |,

where K̃ = |h2|
∫ ω

0
exp (F (s)) ds and K = max{K̃, |A|K̃ + 1}.
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6.3. Example
Now we consider the case F (t) = 2 cos t, g(t) = a0 + cos t + ε cos (qt), where a0 is

a real number, q is a positive integer greater than one, ε is a real non-zero number
with a very small absolute value and ω = 2π. First we construct the Fourier series
of the function exp (F ). Notice that F (t) = 2 cos t = exp (it) + exp (−it), hence

exp (F (t)) = exp (exp (it) + exp (−it)) =
∞∑

p=0

1
p!

(exp (it) + exp (−it))p

=
∞∑

p=0

p∑

k=0

exp (i(p− 2k)t)
(p− k)! k!

= Re(exp (F )) =
∞∑

p=0

p∑

k=0

cos (p− 2k)t
(p− k)! k!

= −
∞∑

p=0

1
(p!)2

+ 2
∞∑

p=0

[ p∑

k=0

cos (2p− 2k)t
(2p− k)! k!

+
p∑

k=0

cos (2p + 1− 2k)t
(2p + 1− k)! k!

]

= −
∞∑

p=0

1
(p!)2

+ 2
∞∑

k=0

[ ∞∑

p=k

cos (2p− 2k)t
(2p− k)! k!

+
∞∑

p=k

cos (2p + 1− 2k)t
(2p + 1− k)! k!

]

= −
∞∑

p=0

1
(p!)2

+ 2
∞∑

k=0

[ ∞∑

p=0

cos 2pt

(2p + k)! k!
+

∞∑

p=0

cos (2p + 1)t
(2p + 1 + k)! k!

]

= −
∞∑

p=0

1
(p!)2

+ 2
∞∑

p=0

[{ ∞∑

k=0

1
(2p + k)! k!

}
cos 2pt

+
{ ∞∑

k=0

1
(2p + 1 + k)! k!

}
cos (2p + 1)t

= − α0 + 2
∞∑

p=1

αp cos pt

(by virtue of the absolute convergence of this series for every t ∈ � ), where

α2p =
∞∑

k=0

1
(2p + k)! k!

, α2p+1 =
∞∑

k=0

1
(2p + k + 1)! k!

, p = 0, 1, 2, . . . .

Let there exist an ω-periodic solution of System (6.5). Then the equality a0 =
−(α1+2αq)/α0 follows from the validity of the condition (3.6). In a technical practice

the “very small” term ε cos qt of the right-hand side g could be neglected and g could
be replaced by the trigonometric polynomial a0 + cos t. This procedure, however,

destroys the former valid necessary and sufficient condition for the existence of a
2π-periodic solution of System (1.2). However, if g is replaced by the trigonometric
polynomial gη(t) = ã0 + cos t with ã0 = −(α1/α0)a0, which is equally simple as
a0 + cos t, then the existence of a 2π-periodic solution is preserved, while |g − gη| 6
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η 6 |ε|(1 + αq/α0), ‖Ag − Agη‖ 6 K|g − gη| 6 K|ε|(1 + αq/α0) < 2|ε|K, because
2 < α0, 2 6 q, 0 < αq < e/q! < 2. (Here e is the Euler’s number.)

6.4. Conclusion
Recently, approximation methods for periodic solutions have concerned nonlinear

differential equations. In the papers [9], [10] numerical methods supported by com-
puters are presented. [5], [7] deal with Fourier approximations of periodic solutions of

nonlinear differential equations. Finally, the paper [1] generalizes this approximation
problem to Banach spaces.
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