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Abstract. The present paper does not introduce a new approximation but it modifies a
certain known method. This method for obtaining a periodic approximation of a periodic
solution of a linear nonhomogeneous differential equation with periodic coefficients and
periodic right-hand side is used in technical practice. However, the conditions ensuring the
existence of a periodic solution may be violated and therefore the purpose of this paper is
to modify the method in order that these conditions remain valid.
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1. INTRODUCTION

1.1. Preliminaries
Many oscillation problems lead to a periodic differential equation

(1.1) y™ +a )y "V + ... +an(t)y = g(2),

where n is a positive integer, y(¥) = d*y/dt*, k = 1,...,n, and a;,...,a,, g are
periodic continuous complex functions of the real variable t € R = (—00,00) with a
common positive period w, or to a system of periodic linear differential equations (in
matrix form)

(1.2) &= At)z + f(t),
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where & = dz/dt, A is an w-periodic continuous complex square matrix function of
nth order and f is an w-periodic continuous complex column matrix function of the
real variable ¢t € R with n elements.

1.2. Technical practice

In technical practice given problems are simplified and the right-hand side in (1.1)
or (1.2) is replaced by a few first terms of its Fourier expansion. Terms which
are small in some sense are neglected. However, these simplifications can destroy
conditions warranting the existence of a periodic solution of (1.1) or (1.2). The
aim of this paper is not to introduce a new approximation method but to define
conditions and an approach ensuring the well-posedness of the simplified problem.
The justification of this method has not been examined in literature. Here we will
show a constructive method based on an approximation of the right-hand side by a
periodic trigonometric polynomial such that the necessary and sufficient condition
for the existence of a periodic solution is preserved while the periodic solution of the
simplified problem approximates uniformly on R the corresponding periodic solution
of the original problem with arbitrary accuracy given in advance.

1.3. Some notions, notation and assertions

The set of all real numbers is denoted by R. The symbol 0 denotes the number zero
or the zero matrix the type of which is evident from the context. If C is a complex
matrix then C7T is its transposed and C* its transposed and complex conjugated
matrix. If C is a square matrix then det C is its deteminant. The unit matrix of nth
order is denoted by I, or I. If r, m are two positive integers then by C"*™ we denote
the space of all (constant) complex matrices of the type r X m, i.e. with 7 rows and
m columns. The space C"*™ becomes a Banach space (B-space) if it is equipped by

one from the following norms |- |1, | - |2, | - | given for any matrix A = (a;;) € C™*™:
m
|Al1 = max{ZIaiﬂ: i= 1,...,1‘},
i=1
|A|2 = ma.x{2|az]|' j: 17"'7m}’
i=1
|A] = max{|Al,,|Al2}.

In the sequel we will use the norm |- | for which |A*| = |A| and |I| = 1 is true. Here
and in what follows let w be a given positive number. A periodic function defined
on R with the period w is called w-periodic.

If a complex matrix function ¢ is defined and continuous on the closed interval
[0,w] then the nonnegative number |p| = sup |p(t)| = sup{|p(t): t € [0,w]} is the
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norm of the function ¢. If the function ¢ has a continuous derivative ¢ on the closed
interval [0,w] then we define another norm ||¢|| = max{|¢|, |¢|} of the function ¢.

If k is a nonnegative integer and r, m positive integers then we denote by C* P7x™
the space of all complex w-periodic matrix functions with r rows and m columns
which are defined and have w-periodic continuous derivatives on R up to the kth or-
der. For k = 0orm = 1orr = 1 we use the notation CP;*™ = COP;X™,
CkPr = CkpPr*!, CP; = C°Pr, CP, = CPL. CP;*™ and C'P5*™ are B-spaces
with norms | - | and || - ||, respectively. In the space CP] we define an inner prod-
uct by the formula (u,v) = L [*v*(¢)u(t) dt and obtain the corresponding norm
lul = /(u,u). It is evident that the inequalities |u| < |u| and (u,v) < lul - lv] <
|u] |v| hold. In the case of constant functions u, v from CP their inner product is
(u,v) = v*u.

For brevity of notation in some operations with two arbitrary matrix functions g
of a type | X k and h of a type ! x m continuous on the interval [0,w], where k,
l, m are positive integers, we introduce their “inner product” (g, h) by the formula
(9,h) = L [ h*(t)g(t) dt. It is evident that (g,h) € C™** and for constant f, g we
have (g, h) = h*g. If h = g holds then (g, g) € CF** and det (g, g) is a nonnegative
number, which is Gram’s determinant for the columns of g. If the columns of g
are linearly independent then det (g, g) is a positive number and the inverse matrix
(9,9)"" to (g, g) exists. Analogously the inequality |(g, h)| < |g| |h| is valid.

Let E be a B-space and k a positive integer. Given k mutually distinct real
numbers Aj,...,A\r and k non-zero elements b,...,b; from E, the function Q de-
fined by the formula Q(t) = by exp (iMt) + ... + brexp (i), t € R, is called an
E-trigonometric or simply a trigonometric polynomial (exp(s) denotes the usual ex-
ponential function e®).

2. APPROXIMATION THEOREMS

2.1. Weierstrass approximation theorem

Since we deal with uniform approximations of continuous w-periodic functions
by w-periodic trigonometric polynomials, we will recall the following approximation
theorems.

Theorem 2.1. For every function f € CP, and every positive number ¢ there
exists a trigonometric polynomial Q € CP, such that |f — Q| < € holds.

Corollary 2.2. For every matrix function f from CPJ*™ and any positive num-
ber € there exists a trigonometric polynomial Q@ € CP7*™ such that |f — Q| < €
holds.
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3. EXISTENCE OF A PERIODIC SOLUTION

3.1. Homogeneous and conjugated equations
In what follows we shall treat only (1.2) since (1.1) can be modified to the form
of (1.2) which induces the homogeneous equation

3.1) y=A(t)y, teR,
and the conjugated equation with (3.1)
(3.2) z=—A*t)z, teR.

The conditions given above in 1.1 ensure the existence and uniqueness of a solution
of the Cauchy problem for the equations (1.1), (1.2), (3.1), (3.2).

Let Y =Y(t), t € R, be a fundamental matrix (of solutions) of (3.1) and let Z =
Z(t), t € R, be a fundamental matrix of (3.2). The validity of the following relations
can be easily verified: Y (t) = (Z*(t))~1Z*(0)Y (0), Y ~1(¢) = Y~1(0)(Z*(0)) "' Z*(¢),
teR.

3.2. Periodic solutions
If z is an w-periodic solution of (1.2) then the equality

(3.3) z(w) —z(0) =0

holds. This equality is not only a necessary but also a sufficient condition for the
w-periodicity of the solution z of (1.2).

If H is a fundamental matrix of (3.1) then the general solution z of (2.1) can be
written in the form

(34) z=uzx(t) = H(t)H ' (0)zo + H(t)/0 H™Y(s)f(s)ds, te€R (z(0) = zo).

Remark 3.1. Note that owing to the validity of the relations H(t)H (s) =
H(t)H~!(s) for any real numbers s, ¢t and arbitrary fundamental matrices H, H
of (3.1) the integral part H(t) fot H=1(s)f(s)ds, t € R, of a solution of (1.2) stays
unchanged for every given f from CP” and for an arbitrary fundamental matrix H
of (3.1).

The condition (3.3) has now the form
0= o(u) - 2(0) = (H() - HO)H ™ Ozo + H(w) [ H@)f(s)ds,
i.e.
(35) (H) - HOYH O = ~H@) [ B ()f(s)ds
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with the unchanged right-hand side for every given f and for an arbitrary fun-
damental matrix H of (3.1), owing to Remark 3.1. The system (3.5) has n linear
algebraic equations with n unknowns which are elements of the initial matrix-column
zo € C™*! and it can be arranged into the system

(3.5%) (Hw) = HO)uo = —(Z2*w)) ™' ({f, Z2)w

with the unknown matrix-column uo = H~!(0)zo € C**! (zo = H(0)uo) and an ar-
bitrary fundamental matrix Z of (3.2) (with unchanged right-hand side independent
of Z).

Definition 3.2.

a) We denote by B, the space of all functions f € CP?} for which Equation (1.2)
has an w-periodic solution and denote by B, the space C'P.

b) For a given function f from B; we denote by V; the space of all w-periodic
solutions of Equations (1.2). For f = 0 we have the space V} of all w-periodic
solutions of Equation (3.1).

c) We denote by Vy* the space of all w-periodic solutions of Equation (3.2).

Remark 3.3. The spaces B;, Vp and Vg are B-spaces.

If (3.5) or (3.5*) has a solution zg then (3.3) is for this z, fulfilled and (1.2) has
an w-periodic solution (3.4).
It is known the two following valid theorems.

Theorem 3.4. The necessary and sufficient condition for the existence of an
w-periodic solution of Equation (1.2) is the validity of the equality

1 rv .,
(356) () == [ =Or@a=o
w Jo
for every w-periodic solution z of Equation (3.2), i.e. for every z from V.

Theorem 3.5. The B-space Vy has the same finite dimension as the B-space V.

4. TRANSFORMATIONS

4.1. B-spaces

Recall that the spaces CP? and B; with the norm | - | and the space B, = C!P"
with the norm || - || are B-spaces. The space B, can be viewed as the space of
all w-periodic solutions of (1.2) with any right-hand sides from B;. Namely, if z is
from B, then z is an w-periodic solution of (1.2) with the right-hand side f = £ — Az.
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4.2. Fundamental matrix H = (H', H")

Definition 4.1. The set of all fundamental matrices H of Equation (3.1) whose
first k columns create a basis of Vy with k£ = dim V; is denoted by Wy. For every H
from W, we introduce its decomposition H = (H', H") where H' is from C!P"*k,
The set of all fundamental matrices Z of Equation (3.2) whose first k columns create
a basis of V' is denoted by W.

4.3. Periodic solutions
For any f from B; and an arbitrary H = (H', H") from Wy every w-periodic
solution z from V; can be expressed in the form

¢
(4.1) z = z(t) = H' (t)uy + H" (t)ug + H(t)/ H™'(s)f(s)ds, teR,

0
where 2o = z(0) = z(w), uy € CF*1, ulff € C*=81x1 4y = (ufl,ufT)T = H~1(0)zo,
To = H(O)UO.

In this section and further we use a fixed given fundamental matrix H = (H', H")
from Wy, unless stated otherwise. Let a function f from B; be given. If we have a
particular w-periodic solution

(4.1 u=u(t) = H'(t)ug + H" (t)u +H(t)/ H Y(s)f(s)ds, te€R,

with fixed ug, ug then we decompose this solution into a “homogeneous part” uy =
H'ugj and a “particular part”

uy = us(t) = H"(t)ug + H(t / H7'(s)f(s)ds, teR.

So we have u = uyg + uy where uy € Vp and uy € Vy. The part uy is uniquely
determined by f € B;. Indeed, if we have another particular w-periodic solution

@1")  a=alt) = H' ()i + B ()il + H(t) / H'(s)f(s)ds, te R,

with fixed @) € C**1, af € C(»~¥)X1 then evidently the w-periodic solution u — @ —
uy +iy = H'(uf —4yg) is from Vj. Smce the columns of H' create a basis of V; the
equality i = u§ necessarily holds. This uniqueness of ug we record by ug = ug(f).

So we get:
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Lemma 4.2. For every function f from B, all solutions from Vy have the same
“particular part”.

Now we complete the solution of (3.5*) for ug. Since H'(w) — H'(0) = 0 we get
from (3.5*) the equivalent system

(3.5°%) (H"(w) = H"(0)ug = ~(Z" () {f, Z)w

in which uf, does not occur, i.e. the k elements of u(, play here the role of k arbitrary
complex parameters independent of f € B;. (If we have ug o0 (f) then it follows
from (3.5**) that zo = H(0)uo = H'uy+ H"uj remains uncha.nged for all uy € CF*1))
For shortness of the record we denote by & the matrix H"(w) — H"(0). The n — k
columns of « are linearly independent. This follows besides other from the uniqueness
of ug(f). So Gram’s determinant det (k, k) = det(x*k) is a positive number and the
inverse matrix (k, Ii)—l to (k,k) = K*k exists. If we multiply (3.5**) by the matrix
(k,k) "' k* from the left then we get

(4.2) up =ug(f) =~ (k,®) " &7 (Z° W) (S, Z)w
for Z € Vy and the estimates

(4.3) lug ()] < 2w|H|Z1127 (x, 5) " |1£],
(4.3) lug ()] < 20l HPIHY |k, 0) 7" | 1]

hold since || = |k*| < 2|H|. The estimate (4.3") follows from

(3.5) (H"(w) — H"(0))ug = H(w)/ H™(s)f(s)ds
0

in the analogous way as (4.3) from (3.5**).

4.4. Transformations
On the basis of the above results we obtain the following assertions.

Lemma 4.3. The map U: By — C("~¥)*! given by the formula U f = uj(f) for
any f from B is a linear and bounded operator.

Proof. The linearity of U is evident from (4.2). The boundedness of U follows
for a fixed given Z from (4.3) and from (4.3') by the choice of the positive constant

(4.4) Ko = 2w|H||(k, k)" |max{|Z||Z7"|, |H| |H"'|}
for the estimate

(4.5) U f] < Kol f|

for every f from B,;, where Ky does not depend on f. O
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Theorem 4.4. If a map A: B, — V; is defined so that for every f from B, its
image Af is equal to the common “particular part” of any solution u from Vy, i.e.

(4.6) (Af)(t) = H"(t)ug + H(t) /ot H7'(s)f(s)ds, teR,

then the operator A is linear and bounded.

Proof. The linearity of A is evident from Lemma 4.3 and from (4.6). Further,
an estimate

(4.7) |Af| < Kilf]

holds owing to (4.5) and (4.6) for K1 = (Ko + w|H!|)|H|, where K is from (4.4).
The constant K; does not depend on f. O

Remark 4.5. If H = (H',H") and H = (H', H") are two arbitrary fundamental
matrices from Wy then by virtue of the properties of the matrices H', H" and H', H"
there exist regular matrices C; € CF**, Cy € C(»=¥)x(n=k) and C = diag(C;,C>)
such that A’ = H'C,, H” = H"C; and H = HC.

Theorem 4.6. The operator A from Theorem 4.4 does not depend on the choice
of a fundamental matrix H from W,.

Proof. Let f be a given function from B;. Let two arbitrary fundamen-
tal matrices H = (H',H") and H = (H',H") from W, be given. Assume
that besides a particular w-periodic solution u from (4.1") belonging to V; there
exists another particular w-periodic solution @ = (t) = H'(t)ah + H"(t)al +
I:I(t)fot H-(s)f(s)ds, t € R, from V;. Owing to Remark 3.1 and Remark 4.5 the
relations H(t) f; H-1(s)f(s)ds = H(t) fot H~'(s)f(s)ds are true for any t € R, so
that the solution u—ta—up+iy = H"ug—H"i5 = H" (ug—C2iyg) belongs to Vp. But
this is possible only for uj = Co@l”, i.e. 4§ = Cy 'uf, H"ul = H"C2C; ' ull = H"uf)
so that 4y = uy. a

Corollary 4.7. For every function f from B, the space V5 has the representation

Vi = Af +V, i.e. V5 is a k-dimensional manifold in By = C'P*and B, = | Vs.
feB

Consider now a map B = B(-,-) defined on B; x B; the values of which are one-

to-one operators B(f,g): Vy — V, for any two functions f, g from B; and which

satisfies B~1(f,g) = B(g, f): V, = V;. If two functions f, g from B, are given then

with regard to our intention to approximate elements u = uy + Af from V; by their
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images B(f,g)u = @ = iy + Ag from V; we choose the simplest way and define the
approximation by the formula

(4.8) B(f,glu=t=uyg+Ag€V, for ue Vs

(i.e. @y = upy). For another definition of B(f,g) we could solve optimalization
problems. However, for our purposes we can always approximate u by B(f, g)u more
precisely so that the approximation of f by g will be also more precise as we shall
see in the sequel.

Owing to (4.7) and (1.2) we get the estimates

(4.9) lu — B(f,9)ul = |A(f — 9)| < Kalf — 4l
(4.10) %(u - B(f,9)u)| = |A(u — B(f,9)u) + f — g < (|A|K1 + 1)|f — gl,
(4.11) l(w - B(f, 9)ull < K|f — gl

for any u from V; with the positive constant K = max{K3,1+ |A|K;} independent
of f and g from B;. (%Af = AAf + f and u — B(f,g)u = A(f — g9).)

Remark 4.8. From the estimates (4.9) and (4.11) it follows that for g sufficiently
close to f in B; also 4 = B(f, g)u is sufficiently close to u in B;. The accuracy of such
approximation can be chosen arbitrarily small positive. (For any positive number 7
there exists a positive number & such that |f — g| < € implies |ju — B(f, g)u|l <
K|f - 9] < Ke <7 for e < n/K).

5. APPROXIMATION OF PERIODIC SOLUTION

5.1. Auxiliary assertions

In the sequel we build up the results obtained and the notation and suppose that
we have a fixed given fundamental matrix H = (H', H") from W,.

Let k be a positive integer. The space C*** equipped with the norm | - | and the
usual arithmetic operations, addition and multiplication, for its elements (in addition
to the multiplication of these elements by scalars) is a Banach algebra with the unit
I=1I¢ (JI| =1 and |AB| < |A| |B| for any A, B from CF*¥).

The following two assertions are well-known from the theory of Banach algebras.
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Lemma 5.1. If for a matrix B from C*** the inequality |I — B| < 1 holds then
in C*** the inverse matrix B~ to B exists (B~' = I+ 3. (I — B)™). Moreover,

m=1
the estimates
I - B| 1
5.1 I-B! gL—- Bl —0>0Hr——
(5.1) | <ioroEr BTISTTTE
are valid.

Corollary 5.2. Let matrices A, B be from C*** and let the inverse matrix A~}
to A exist in C***. If the inequality |A — B| < |A~'|~" holds then in C*** the
inverse matrix B~! to B exists. Moreover, the estimates

A - B]
1-JAYJA-B|

A~

5.2 A1 - B g |AT)?
(52 | <147 A4 E

B~ <

arevalid (B~ = A~1 4+ S (I — A"'B)™ A1),
m=1

Remark 5.3. If a nonnegative number g is such that for matrices A, B from
Corollary 5.2 the equality |A — B| = g|]A~!|7! < |A7!|~! holds then the estimates

olA71]
1-p’

|47

.l —I—B-IS
(5:2) |4t =B —

IB7H <
are true. If we require that o € [0;1] hold, i.e. [A — B| < |A~!|71, then we get
estimates

(5.2") AT =BT <|A7Y, BV <2)47)).

Lemma 5.4. Let a positive integer k be given. For a positive number € and func-
tions f,z1,...,2r from CP} there exists a trigonometric polynomial Q. from CP[
such that the relations

(5.3) If — Qel <,
(54) (fvzj)=<Q€vzj>7 j=1,...,k,
are valid.
Proof. We can assume that the functions z1, ..., zx are linearly independent

and we denote by Z; the matrix (21,...,2k) € CP™**. The equalities (5.4) have
now the form

(5.4") (f,21) =(Qe, Z1) -
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Further, we define the matrix function M = M(AZ) = (Z1 + AZ,Z;) for AZ €
CP™* and denote My = M(0) = (Z1,Z;). Since |Mp — M| = |{(AZ,Z,)| <
|AZ||Z,|, the estimates |[My* — M~!| < |My | and |M~Y| < 2|Mj!| are true by
virtue of (5.2”) for |AZ| < 1|Z|71 | M| 7Y, (det Mo = det(Zy, Z,) is a positive
number). Let g9 be a positive number the magnitude of which will be determined
later and let £, be a positive number satisfying the inequality &1 < 1|Z;|~1 |[Mg |1
Let Qo € CP? and Q; € CP™** be trigonometric polynomials such that |f — Qo| <
€o and |Z; — Q1| < &1. The existence of Qo and Q; follows from Corollary 2.2. We
will find ¢ € C**! such that the trigonometric polynomial Q. = Qo + Q1q from CP™
satisfies the relations (5.3) and (5.4'). That means that {f,Z;) = (Q¢, Z1) =
(Qo,2Z1) + (Q1,Z1) q. Consequently, (Q1,Z1)q = (f — Qo,Z1). Note that Q; =
1 +H(@Q1—21) = Zi+AZ,AZ = Q1—Z1,|AZ| < €1- So{Q1,Z1) = M = M(Q:1—Z,)
and |Mo — M| = |Mo — M(Q1 — Z1)| < |Q1 — Z1]|Z1] < 3IMg |7 < |MgH|71. Ac-
cording to Lemma 5.2 the inverse matrix M~! = M~1(Q; — Z;) to M exists for
which owing to Remark 5.3 the estimate |M ~1| < 2|My}| is valid.

So we get ¢ = M~ (f — Qo, Z;) which ensures the validity of (5.4'). The inequal-
ities Q1] < |Z1] + 1 < |Z1] +1/(212:| Mg Y]) = 21Z11P Mg | + 1)/(21 2] |MG ™),
lal < 2[Mg(1Z1]|f ~ Qol < 2|Z1||Mg ' [eo hold. Finally, we have |f — Q| <
I = Qol + Qul ] < 2c0(L + |Z4[? [Mz™]) < e if €0 < /(2(1 + |24 M;™]), which
ensures the validity of (5.3). This completes the proof. O

5.2. Approximations

We can already start to construct an approximation of an w-periodic solution
of (1.2).

Theorem 5.5. Let a given function f be from B; and let n be a given positive
number. There exists a trigonometric polynomial g = g, from B; such that for every
solution u from V; its image i under the map B(f,g): Vy — V, from (4.8) satisfies
the estimate ||u — @|| = ||lu — B(f, 9)ull <7

Proof. Let a fixed fundamental matrix Z = (Z;,Z;) from W3 be given,

€ C'P™k k = dimVp = dimV{. According to Lemma 5.4, for any positive
number ¢ there exists a trigonometric polynomial Q. from CP? satisfying (5.3) and
(5.4') which ensures Q. € B;. By means of the choice ¢ = /K we get ||lu —a|| < n
if we put g = g, = Q. in (4.11), where K is from Remark 4.8. a

Thus we have reached the aim of the present paper to justify the approximation
method for periodic solutions used in technical practice.
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6. APPLICATION AND ILLUSTRATION

6.1. Application

As an application of a linear differential equation with periodic coefficients and
with a periodic right-hand side we can consider the simple technical device which is
described in [8]. This device is shown in the figure where we have a mass m attached
to a thin cantilever linear spring, the effective length of which can vary with time ¢
in any prescribed manner (y = y(t)) by moving the support S. Thus in discussing
lateral vibrations of the mass m, we have a spring characteristic ¢ that varies with
time ¢ (controlled by y(t)):

We have the equation
(6.1) m§ = —c(t)s — as + Q(t)

with variable coefficients where s is the displacement of the mass m from its central
position. For a periodic motion of the support S and for a periodic external force Q
with the same positive period w, if we neglect the resistance of air, i.e. a = 0, then
we have the w-periodic equation of motion in the form

(6.2) §+k(t)s = g(t)
where k(t) = c(t)/m, g(t) = Q(t)/m, t € R.

6.2. Illustration
If there exists an w-periodic nonconstant function F = F(t) with continuous
derivatives up to and including the second order on R which satisfies the nonlin-
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ear equation F2 + F' = —k(t) then the homogeneous linear equation
(6.3) S+ k(t)s=0

has the general solution in the form

(6.4) s=Ciexp(F)+ Coexp(F) -G

where G = G(t) = fotexp (—2F(0))do, t € R.

Note that the function G is increasing because its first derivative exp(—2F) is
positive with G(0) = 0. Thus G is not periodic and G(w) > 0. The motion equation
of the technical device from the figure can be transformed into the system of linear
equations

(6.5) z = A(t)z + f(t)
(in matrix notation) where

Al = (—l?(t) (1)) - (2) - (:) fe= (y?t))'

With System (6.5) we associate the homogeneous system
(6.6) y=A(t)y

and the adjoint homogeneous system

(6.7) i=—A*(t)z.

Here y, z are matrix-columns with two elements and A*(t) = AT (t) because the
matrix A(t) is real for every t € R.
We choose the matrix

H=H) = ( exp (F), exp (F)G )

Fexp(F), Fexp(F)G +exp(—F)

as the fundamental matrix H of the system (6.6) from Section 4.3. We denote by h;,
ho the columns of H, i.e. H = (hy, h2). Because det H = 1, the inverse matrix has
the form

H'=H(t) = (F‘*XP (F)G +exp (= F), —exp(F)G) .

—Fexp (F), exp (F)
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We denote by z;, z2 the rows of the inverse matrix H~1, i.e. H™! = ('zl ) The
22

matrix H is real and therefore (H*)™! = (H~*)T which is a fundamental matrix of
solutions of System (6.7).

The columns hy, z] are w-periodic solutions of Systems (6.6), (6.7), respectively.
Since the function G is not periodic the columns hz, z] are non-periodic solutions
of Systems (6.6), (6.7), respectively. (h;, zJ form bases of the sets of all w-periodic
solutions of Systems (6.6), (6.7), respectively.) Hence, if [’ exp (F(t))g(t)dt = 0,
i.e. (f,2]) = 0, then the condition (3.6) is fulfilled and therefore the existence of an
w-periodic solution of System (6.5) is ensured. According to the previous reasoning
the function

Af(8) = H"(tyul + H(2) /0 H(s)f(s) ds
= ha(t)uoz + H(t) /t H™'(s)f(s)ds, teR,
0

where uj = ugg, satisfies the condition Af(w)—.Af(0) = 0. Hence the linear algebraic
system

(6.8) (ha@) ~ ha(O)luon = ~H() [ B~ (e)(5)ds
is fulfilled because the equalities
ha@) = 1a(0) = ( ., ) ¥ (FENGE),
~#@) [ H @16 = 1) (o) [ 6l e F@gtaas
= (40 ) =@ F) [ G0 exp (FlaNa(s) s
(due to (f,2]) = 0) are valid and the linear algebraic system (6.8) has the solution
o2 + G(w) ™' [y G(s) exp (F(s))g(s)ds.

By virtue of |[H| = |H~1| and | f| = |g| we get the inequalities

fuoal < ol /0 exp (F(s)) ds,

47| < Klgl = K],
IAF|| < Klg| = KIfl,

where K = |hs| [ exp (F(s))ds and K = max{K,|A|K +1}.
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6.3. Example

Now we consider the case F'(t) = 2cost, g(t) = ag + cost + € cos (qt), where aq is
a real number, q is a positive integer greater than one, € is a real non-zero number
with a very small absolute value and w = 2r. First we construct the Fourier series
of the function exp (F'). Notice that F(t) = 2cost = exp (it) + exp (—it), hence

(o ]

exp (F(t)) = exp (exp (it) + exp (—it)) = ; -;—!(exp (it) + exp (=it))”
R P
PP R )RR a e
= ; (pv)z + 2;) Z (2?33? wt Z; (;:s +(21p++k1)3tk!]
= ,,Z—o ot 2’; {go (—2;—:1%} cos 2pt

- 1
+ {;_0 G TiT R } cos (2p + 1)t

oo
= - +220pcospt
r=1

(by virtue of the absolute convergence of this series for every t € R), where

1 1
P —_— = — = 12....
Qzp E 2+ k) k! Q2p+1 Z 2p+k+1)!k!’ rp=0,1,2,
k=0 k=0

Let there exist an w-periodic solution of System (6.5). Then the equality ap =
—(a1+20ay)/ag follows from the validity of the condition (3.6). In a technical practice
the “very small” term € cos gt of the right-hand side g could be neglected and g could
be replaced by the trigonometric polynomial ag + cost. This procedure, however,
destroys the former valid necessary and sufficient condition for the existence of a
2n-periodic solution of System (1.2). However, if g is replaced by the trigonometric
polynomial g,(t) = do + cost with dg = —(a1/ap)ae, which is equally simple as
ag + cost, then the existence of a 2n-periodic solution is preserved, while |g — g,| <
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1 < [el(1+ aq/a0), | Ag — Agnll < Klg — 9ol < Klel(1 + og/0) < 2|¢|K, because
2<a,2<4,0<ay <e/q! <2. (Here e is the Euler’s number.)

6.4. Conclusion

Recently, approximation methods for periodic solutions have concerned nonlinear
differential equations. In the papers [9], [10] numerical methods supported by com-
puters are presented. [5], [7] deal with Fourier approximations of periodic solutions of
nonlinear differential equations. Finally, the paper [1] generalizes this approximation
problem to Banach spaces.
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Abstract. The present paper does not introduce a new approximation but it modifies a
certain known method. This method for obtaining a periodic approximation of a periodic
solution of a linear nonhomogeneous differential equation with periodic coefficients and
periodic right-hand side is used in technical practice. However, the conditions ensuring the
existence of a periodic solution may be violated and therefore the purpose of this paper is
to modify the method in order that these conditions remain valid.

Keywords: oscillation problem, periodic differential equation, periodic solution, w-
periodic solution, trigonometric polynomial, trigonometric approximation, Gram’s deter-
minant
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1. INTRODUCTION

1.1. Preliminaries
Many oscillation problems lead to a periodic differential equation

(1.1) Y™ +ar )y 4+ anlt)y = g(b),

where n is a positive integer, y*) = dfy/dtk, k = 1,...,n, and ay,...,an,, g are
periodic continuous complex functions of the real variable t € R = (—o0, 00) with a
common positive period w, or to a system of periodic linear differential equations (in

matrix form)

(1.2) i =A(t)z + f(t),
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where & = da/dt, A is an w-periodic continuous complex square matrix function of
nth order and f is an w-periodic continuous complex column matrix function of the
real variable t € R with n elements.

1.2. Technical practice

In technical practice given problems are simplified and the right-hand side in (1.1)
or (1.2) is replaced by a few first terms of its Fourier expansion. Terms which
are small in some sense are neglected. However, these simplifications can destroy
conditions warranting the existence of a periodic solution of (1.1) or (1.2). The
aim of this paper is not to introduce a new approximation method but to define
conditions and an approach ensuring the well-posedness of the simplified problem.
The justification of this method has not been examined in literature. Here we will
show a constructive method based on an approximation of the right-hand side by a
periodic trigonometric polynomial such that the necessary and sufficient condition
for the existence of a periodic solution is preserved while the periodic solution of the
simplified problem approximates uniformly on R the corresponding periodic solution
of the original problem with arbitrary accuracy given in advance.

1.3. Some notions, notation and assertions

The set of all real numbers is denoted by R. The symbol 0 denotes the number zero
or the zero matrix the type of which is evident from the context. If C is a complex
matrix then C7 is its transposed and C* its transposed and complex conjugated
matrix. If C'is a square matrix then det C' is its deteminant. The unit matrix of nth
order is denoted by I,, or I. If r, m are two positive integers then by C"*"™ we denote
the space of all (constant) complex matrices of the type r x m, i.e. with r rows and
m columns. The space C"*™ becomes a Banach space (B-space) if it is equipped by

one from the following norms |- |1, | - |2, | - | given for any matrix A = (ay;) € C*™:
|Al1 = max{i lag;l: i=1,... ,T},
j=1
|Al2 = max{i || 7=1,... ,m},
i=1
|A] = max{|A]1, | A2}
In the sequel we will use the norm |- | for which |A*| = |A| and || = 1 is true. Here

and in what follows let w be a given positive number. A periodic function defined
on R with the period w is called w-periodic.

If a complex matrix function ¢ is defined and continuous on the closed interval
[0,w] then the nonnegative number |p| = sup |p(t)] = sup{|p(t): ¢ € [0,w]} is the
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norm of the function ¢. If the function ¢ has a continuous derivative ¢ on the closed
interval [0, w] then we define another norm ||¢|| = max{|¢|, |¢|} of the function ¢.

If k is a nonnegative integer and 7, m positive integers then we denote by C*P7*™
the space of all complex w-periodic matrix functions with r rows and m columns
which are defined and have w-periodic continuous derivatives on R up to the kth or-
der. For k = 0orm =1 or r = 1 we use the notation CP7*™ = C'pPr>xm
Ckpr = Cckpr<l CPr = CPr, CP, = CPL. CP;*™ and C'P’*™ are B-spaces
with norms | - | and || - ||7 respectively In the space C'P! we define an inner prod-
uct by the formula (u,v) = 1 fo t)dt and obtain the corresponding norm
lul = /(u,u). It is evident that the 1nequaht1es lul < |u] and (u,v) < lul - vl <
|u| [v| hold. In the case of constant functions u, v from CP] their inner product is
(u,v) = v*u.

For brevity of notation in some operations with two arbitrary matrix functions g
of a type I x k and h of a type | x m continuous on the interval [0,w], where k,
I, m are positive integers, we introduce their “inner product” (g, h) by the formula
(g.hy =L [V h*(t)g(t) dt. Tt is evident that (g, h) € C™** and for constant f, g we
have (g,h) = h*g. If h = g holds then (g, g) € C***¥ and det (g, g) is a nonnegative
number, which is Gram’s determinant for the columns of g. If the columns of g
are linearly independent then det (g, g) is a positive number and the inverse matrix
(g,9)"" to (g,g) exists. Analogously the inequality |(g, h)| < |g| k| is valid.

Let E be a B-space and k a positive integer. Given k& mutually distinct real
numbers A1, ..., A and k non-zero elements bq,...,b; from E, the function @ de-
fined by the formula Q(t) = by exp (iAit) + ... + bgexp (IMgt), t € R, is called an
E-trigonometric or simply a trigonometric polynomial (exp(s) denotes the usual ex-
ponential function e®).

2. APPROXIMATION THEOREMS

2.1. Weierstrass approximation theorem

Since we deal with uniform approximations of continuous w-periodic functions
by w-periodic trigonometric polynomials, we will recall the following approximation
theorems.

Theorem 2.1. For every function f € CP, and every positive number ¢ there
exists a trigonometric polynomial Q) € CP,, such that |f — Q| < & holds.

Corollary 2.2. For every matrix function f from C'P[*™ and any positive num-
ber ¢ there exists a trigonometric polynomial Q € CPL*™ such that |f — Q] < ¢
holds.
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3. EXISTENCE OF A PERIODIC SOLUTION

3.1. Homogeneous and conjugated equations
In what follows we shall treat only (1.2) since (1.1) can be modified to the form
of (1.2) which induces the homogeneous equation

(3.1) y=At)y, teR,
and the conjugated equation with (3.1)
(3.2) i=—A*(t)z, teR

The conditions given above in 1.1 ensure the existence and uniqueness of a solution
of the Cauchy problem for the equations (1.1), (1.2), (3.1), (3.2).

Let Y =Y(¢), t € R, be a fundamental matrix (of solutions) of (3.1) and let Z =
Z(t), t € R, be a fundamental matrix of (3.2). The validity of the following relations
can be easily verified: Y (t) = (Z*(t))"1Z*(0)Y (0), Y 1(¢t) = Y=1(0)(Z*(0)) "t Z*(¢t),
teR.

3.2. Periodic solutions
If x is an w-periodic solution of (1.2) then the equality

(3.3) z(w) —2(0) =0

holds. This equality is not only a necessary but also a sufficient condition for the
w-periodicity of the solution z of (1.2).
If H is a fundamental matrix of (3.1) then the general solution z of (2.1) can be

written in the form
(3.4) x=ua(t)=HEt)H *(0)x + H(t)/o H'(s)f(s)ds, teR (x(0)=xo).

Remark 3.1. Note that owing to the validity of the relations H(t)H '(s) =
H(t)H '(s) for any real numbers s, ¢ and arbitrary fundamental matrices H, H
of (3.1) the integral part H(t) fg H=1(s)f(s)ds, t € R, of a solution of (1.2) stays
unchanged for every given f from C'P! and for an arbitrary fundamental matrix H
of (3.1).

The condition (3.3) has now the form

0 = 2(w) — 2(0) = (H(w) — H(0))H~(0)z0 + H(w) /Ow H~1(s)f(s) ds,

(3.5) (H(w) ~ HO)E (0)0 = ~() [ T H (5)f(s) ds



with the unchanged right-hand side for every given f and for an arbitrary fun-
damental matrix H of (3.1), owing to Remark 3.1. The system (3.5) has n linear
algebraic equations with n unknowns which are elements of the initial matrix-column

29 € C"*! and it can be arranged into the system
(3.5%) (H(w) = H(0)uo = —(Z"(w) ™ (f, Z)w

with the unknown matrix-column ug = H~*(0)zg € C"*! (zo = H(0)up) and an ar-
bitrary fundamental matrix Z of (3.2) (with unchanged right-hand side independent
of 7).

Definition 3.2.

a) We denote by B; the space of all functions f € C' P} for which Equation (1.2)
has an w-periodic solution and denote by Bo the space C'!P".

b) For a given function f from B; we denote by V; the space of all w-periodic
solutions of Equations (1.2). For f = 0 we have the space Vj of all w-periodic
solutions of Equation (3.1).

c) We denote by V;* the space of all w-periodic solutions of Equation (3.2).

Remark 3.3. The spaces By, Vp and V{ are B-spaces.

If (3.5) or (3.5%) has a solution x then (3.3) is for this x fulfilled and (1.2) has
an w-periodic solution (3.4).
It is known the two following valid theorems.

Theorem 3.4. The necessary and sufficient condition for the existence of an
w-periodic solution of Equation (1.2) is the validity of the equality

(3.6) (o)=L / T dt =0

w

for every w-periodic solution z of Equation (3.2), i.e. for every z from V.

Theorem 3.5. The B-space V|, has the same finite dimension as the B-space V{;".

4. TRANSFORMATIONS

4.1. B-spaces

Recall that the spaces CP" and By with the norm |- | and the space By = C1P7
with the norm || - || are B-spaces. The space By can be viewed as the space of
all w-periodic solutions of (1.2) with any right-hand sides from B;. Namely, if z is
from By then z is an w-periodic solution of (1.2) with the right-hand side f = & — Ax.
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4.2. Fundamental matrix H = (H', H")

Definition 4.1. The set of all fundamental matrices H of Equation (3.1) whose
first k columns create a basis of Vi with k = dim V}y is denoted by Wy. For every H
from Wy we introduce its decomposition H = (H’, H") where H' is from C!'P"*F,
The set of all fundamental matrices Z of Equation (3.2) whose first k columns create
a basis of V" is denoted by W{.

4.3. Periodic solutions
For any f from B; and an arbitrary H = (H', H") from W, every w-periodic
solution = from V; can be expressed in the form

¢
@1)  w=a(t) = H' () + H (Ol + H() / H\(s)f(s)ds, teR,
0
where 2o = 2(0) = z(w), uy € C> uf € C=F>¥1 g = (Wl ul™)”T = H=1(0)xo,
o = H(O)UO
In this section and further we use a fixed given fundamental matrix H = (H', H")

from Wy, unless stated otherwise. Let a function f from B; be given. If we have a

particular w-periodic solution
t
@1 u=u(t) = H (b + H' ()ll + H(t) / H'(s)f(s)ds, teR,
0

with fixed u(), ug then we decompose this solution into a “homogeneous part” ugy =
H'ujy, and a “particular part”

Uf:ujc(t):H”(t)ungH(t)/o H™'(s)f(s)ds, teR

So we have u = uy + uy where ug € Vp and uy € Vy. The part uy is uniquely
determined by f € B;. Indeed, if we have another particular w-periodic solution

¢
@17y a— () = Bt + H' ()il + H(t) / H'(s)f(s)ds, teR,

0
with fixed @) € CF*', @ € C"~*)*1 then evidently the w-periodic solution u — @ —
ug + o = H"(ug — 1) is from Vp. Since the columns of H' create a basis of V{ the

equality 4 = ug necessarily holds. This uniqueness of u{ we record by uj = ug(f).
So we get:
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Lemma 4.2. For every function f from B, all solutions from V¢ have the same
“particular part”.

Now we complete the solution of (3.5*) for ug. Since H'(w) — H'(0) = 0 we get
from (3.5*) the equivalent system

(3.5™%) (H"(w) — H"(0))uy = —(Z*(w)) " {f, Z)w

in which u(, does not occur, i.e. the k elements of u{, play here the role of k arbitrary
complex parameters independent of f € B;. (If we have uj = ug(f) then it follows
from (3.5**) that xo = H(0)up = H'u)+H""u{ remains unchanged for all uj, € CF*1.)
For shortness of the record we denote by x the matrix H”(w) — H”(0). The n — k
columns of k are linearly independent. This follows besides other from the uniqueness
of uj(f). So Gram’s determinant det (x, k) = det(x*k) is a positive number and the
inverse matrix (k%) ' to (k,k) = k*k exists. If we multiply (3.5**) by the matrix
(k, k)" k* from the left then we get

(4.2) ug = ug(f) = = (k,w) " K27 (W) T Z)w
for Z € V' and the estimates

(4.3) ug (f)
(4.3 |ug (f)

hold since || = |k*| < 2|H|. The estimate (4.3") follows from

(35/) (H//( ) H//( // / H d

— —1
2w|H||Z1Z7 | (5, 5) " | I,

|
— —1
| < 2w[HPHTY (5, 5) " | /]

NN

in the analogous way as (4.3) from (3.5*).

4.4. Transformations
On the basis of the above results we obtain the following assertions.

Lemma 4.3. The map U: By — C*~*)*1 given by the formula Uf = ufj(f) for
any f from B is a linear and bounded operator.

Proof. The linearity of U is evident from (4.2). The boundedness of U follows
for a fixed given Z from (4.3) and from (4.3’) by the choice of the positive constant

(4.4) Ko =2w|H|| (k)" |max{|Z|| 27|, [H|[H |}
for the estimate

(4.5) Uf| < Kolf

for every f from Bi, where K does not depend on f. O
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Theorem 4.4. If a map A: By — V} is defined so that for every f from B its
image Af is equal to the common “particular part” of any solution u from V7, i.e.

(4.6) (AF) () = H" (byul] + H(?) /0 H'(s)f(s)ds, t€R,

then the operator A is linear and bounded.

Proof. The linearity of A is evident from Lemma 4.3 and from (4.6). Further,

an estimate

(4.7) Af] < Kl

holds owing to (4.5) and (4.6) for K1 = (Ko + w|H |)|H|, where Kj is from (4.4).
The constant K7 does not depend on f. (I

Remark 4.5. If H= (H',H") and H = (H', H") are two arbitrary fundamental
matrices from W then by virtue of the properties of the matrices H', H” and H', H"
there exist regular matrices C; € C*** Cy € C"=F)*(=k) and C = diag(Cy, Cy)
such that H' = H'Cy, H" = H"C5 and H = HC.

Theorem 4.6. The operator A from Theorem 4.4 does not depend on the choice
of a fundamental matrix H from W.

Proof. Let f be a given function from B;. Let two arbitrary fundamen-
tal matrices H = (H',H") and H = (H' H") from Wy be given. Assume
that besides a particular w-periodic solution u from (4.1’) belonging to V; there

exists another particular w-periodic solution @ = a(t) = H'(t)ah + H"(t)uy +
fo ds t E R, from Vf Owing to Remark 3.1 and Remark 4.5 the
relatlons H(t f H s)ds = fo s)ds are true for any ¢t € R, so

that the solution u—u— uH+uH = H” A —H"% “ H”( 4 —C21() belongs to V. But
this is possible only for uj = Cat”, ie. 4g = 6'2 YWy, H'al = H"CoCytul) = H'"ul)

so that @y = uy. O

Corollary 4.7. For every function f from B the space V; has the representation

Vi = Af + Vg, i.e. V; is a k-dimensional manifold in By = C*'P? and B, = |J V.
feBy

Consider now a map B = B(-,-) defined on B; x B the values of which are one-

to-one operators B(f,g): Vi — V, for any two functions f, ¢g from B; and which

satisfies B~1(f,g) = B(g, f): Vy — Vy. If two functions f, g from Bj are given then

with regard to our intention to approximate elements u = uy + Af from Vy by their
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images B(f,g)u =@ = g + Ag from V, we choose the simplest way and define the
approximation by the formula

(4.8) B(f,9)u=t=ug+AgeV, for ueVy

(i.e. ag = up). For another definition of B(f,g) we could solve optimalization
problems. However, for our purposes we can always approximate u by B(f, g)u more
precisely so that the approximation of f by g will be also more precise as we shall
see in the sequel.

Owing to (4.7) and (1.2) we get the estimates

(4.9) lu—B(f,g)ul = |A(f = 9)l < Kalf — g,
(410) | S0~ B g)u)| = |ACu— B(F,ghu) + £ — o] < (AlEL + 1)If — o],
(a.11) I(w B g)ul < K1 g

for any u from V} with the positive constant K = max{K, 1+ |A|K;} independent
of f and g from By. (L Af = AAf + f and u — B(f,g)u = A(f — g).)

Remark 4.8. From the estimates (4.9) and (4.11) it follows that for g sufficiently
close to f in By also @ = B(f, g)u is sufficiently close to u in Bs. The accuracy of such
approximation can be chosen arbitrarily small positive. (For any positive number 7
there exists a positive number ¢ such that |f — g| < e implies |[u — B(f, g)u|| <
K|f —g| < Ke <nfore < n/K).

5. APPROXIMATION OF PERIODIC SOLUTION

5.1. Auxiliary assertions

In the sequel we build up the results obtained and the notation and suppose that
we have a fixed given fundamental matrix H = (H', H") from Wj.

Let k be a positive integer. The space C¥** equipped with the norm | - | and the
usual arithmetic operations, addition and multiplication, for its elements (in addition
to the multiplication of these elements by scalars) is a Banach algebra with the unit
I =1 (|I| =1 and |AB| < |A||B| for any A, B from C**¥).

The following two assertions are well-known from the theory of Banach algebras.
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Lemma 5.1. If for a matrix B from Ck** the inequality |I — B| < 1 holds then
in Ck** the inverse matrix B~1 to B exists (B~ =1+ Y. (I — B)™). Moreover,
m=1
the estimates

[ — B|
1-1-B|

1

5.1 I-BY« -
(5.1) | | == B

B~ <
are valid.

Corollary 5.2. Let matrices A, B be from C*** and let the inverse matrix A~"
to A exist in C**¥. If the inequality |A — B| < |A™!|~! holds then in C*** the
inverse matrix B~! to B exists. Moreover, the estimates

|A— B|
1- A1 [A—B|

A

5.2 A - B AT
(5.2) | <147 A4

B! <

are valid (B~ =A='+ S>> (I - A"1B)mA~1).

m=1
Remark 5.3. If a nonnegative number g is such that for matrices A, B from
Corollary 5.2 the equality |[A — B| = o|A7!|7! < |A7!|~! holds then the estimates

A—l
(5.2") |A7' - B7!| < Qll—g|, |B7Y < ——

are true. If we require that o € [0;3] hold, i.e. [A — B| < £[A7!["!, then we get

estimates
(5.2") |A_1 — B_1| < |A_1|, |B_1| < 2|A_1|.

Lemma 5.4. Let a positive integer k be given. For a positive number ¢ and func-
tions f,z1,...,2, from C'P] there exists a trigonometric polynomial ). from CP}}
such that the relations

(5:3) f-Qd<e,
(fi25) =(Qe,25), J=1,...,k,
are valid.
Proof. We can assume that the functions 21, ...,z are linearly independent

and we denote by Z; the matrix (21,...,2) € CP"*. The equalities (5.4) have
now the form

(5.4) (f, Z1) = (Qe, Z1) -
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Further, we define the matrix function M = M(AZ) = (Z1+ AZ, Z,) for AZ €
CP™»k and denote My = M(0) = (Z1,Z1). Since |[My — M| = |(AZ, Z1)| <
|AZ||Z1], the estimates [My ' — M~ < |M;!| and |[M~'| < 2|My!| are true by
virtue of (5.2”) for |AZ| < 1|Zy|71 Mgt~ (det My = det(Zy, Zy) is a positive
number). Let g9 be a positive number the magnitude of which will be determined
later and let &1 be a positive number satisfying the inequality e1 < (21|~ |My |71
Let Qo € CP" and Q1 € CP™** be trigonometric polynomials such that |f — Q| <
go and |Z; — Q1| < e1. The existence of Qp and @, follows from Corollary 2.2. We
will find ¢ € C**! such that the trigonometric polynomial Q. = Qo+ Q1q from CP"
satisfies the relations (5.3) and (5.4’). That means that (f,Z1) = (Qe, Z1) =
(Qo, Z1) + (Q1,Z1) q. Consequently, (Q1,21)q = (f —Qo, Z1). Note that Q; =
1+ (Q1—721) = ZW+AZ, ANZ = Q1— 741, |AZ| < e1. So{Q1,Z1) = M = M(Q1—Z1)
and |Mo — M| = [My — M(Q1 — Z1)| < Q1 — Z1|1Z1| < 3IMy [7H < [My '[! Ac-
cording to Lemma 5.2 the inverse matrix M ! = M~1(Q; — Z;) to M exists for
which owing to Remark 5.3 the estimate |[M 1| < 2|M; '] is valid.

So we get ¢ = M~ (f — Qq, Z1) which ensures the validity of (5.4’). The inequal-
ities Qu] < |Z1] + &1 < |Za] + L/QIZ1] (M) = @IZ1 P05+ 1)/(21Za] |5,
lg| < 2IM;Y|Z1]|f — Qol < 2|Z1||M; o hold. Finally, we have |f — Q.| <
1 = Qol + 1Qul gl < 2e0(1 + |72 Mz ) < € if 0 < &/(2(1 + | Z1[2|M ])), which
ensures the validity of (5.3). This completes the proof. O

5.2. Approximations

We can already start to construct an approximation of an w-periodic solution
of (1.2).

Theorem 5.5. Let a given function f be from By and let n be a given positive
number. There exists a trigonometric polynomial g = g, from By such that for every
solution u from Vy its image @ under the map B(f,g): V; — V, from (4.8) satisfies
the estimate ||u — G| = ||u — B(f, g)ul] < 7.

Proof. Let a fixed fundamental matrix Z = (Z1,Z2) from W{ be given,
Zy € C1Pvk | = dimVy = dim Vj. According to Lemma 5.4, for any positive
number ¢ there exists a trigonometric polynomial Q. from C P satisfying (5.3) and
(5.4") which ensures Q. € By. By means of the choice € = n/K we get ||u— 4| <7
if we put g = ¢, = Q. in (4.11), where K is from Remark 4.8. O

Thus we have reached the aim of the present paper to justify the approximation
method for periodic solutions used in technical practice.
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6. APPLICATION AND ILLUSTRATION

6.1. Application

As an application of a linear differential equation with periodic coefficients and
with a periodic right-hand side we can consider the simple technical device which is
described in [8]. This device is shown in the figure where we have a mass m attached
to a thin cantilever linear spring, the effective length of which can vary with time ¢
in any prescribed manner (y = y(t)) by moving the support S. Thus in discussing
lateral vibrations of the mass m, we have a spring characteristic ¢ that varies with
time ¢ (controlled by y(t)):

y : y(t)

s -

m

S
le \]/
S

We have the equation
(6.1) m§ = —c(t)s — as + Q)

with variable coefficients where s is the displacement of the mass m from its central
position. For a periodic motion of the support S and for a periodic external force )
with the same positive period w, if we neglect the resistance of air, i.e. a = 0, then
we have the w-periodic equation of motion in the form

(6.2) §+k(t)s =g(t)
where k(t) = c(t)/m, g(t) = Q(t)/m, t € R.

6.2. Illustration
If there exists an w-periodic nonconstant function F = F(t) with continuous
derivatives up to and including the second order on R which satisfies the nonlin-
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ear equation 2 + F' = —k(t) then the homogeneous linear equation
(6.3) §+k(t)s=0

has the general solution in the form

(6.4) s=Ciexp(F)+ Cyexp(F) -G

where G = G(t) = fot exp (—2F(0))do, t € R.

Note that the function G is increasing because its first derivative exp(—2F) is
positive with G(0) = 0. Thus G is not periodic and G(w) > 0. The motion equation
of the technical device from the figure can be transformed into the system of linear

equations
(6.5) &= A(t)z + f(t)

(in matrix notation) where

0= (L o) = (2)=() 0= ()

With System (6.5) we associate the homogeneous system
(6.6) §= Altyy

and the adjoint homogeneous system

(6.7) z2=—A%(t)z.

Here y, z are matrix-columns with two elements and A*(t) = AT (t) because the
matrix A(t) is real for every t € R.
We choose the matrix

H=H(t)= ( exp (F), exp (F)G )

Fexp (F), Fexp(F)G +exp(—F)

as the fundamental matrix H of the system (6.6) from Section 4.3. We denote by h1,
ho the columns of H, i.e. H = (h,hs). Because det H = 1, the inverse matrix has
the form

H' = H() = (Fexp (F)G+exp(—F), —exp (F)G) .

—Fexp (F), exp (F)
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z
We denote by z;, 22 the rows of the inverse matrix H !, i.e. H~! = ( 1). The
22

matrix H is real and therefore (H*)~! = (H~1)T which is a fundamental matrix of
solutions of System (6.7).

The columns hy, 2J are w-periodic solutions of Systems (6.6), (6.7), respectively.
Since the function G is not periodic the columns hs, z{ are non-periodic solutions
of Systems (6.6), (6.7), respectively. (h1, 22 form bases of the sets of all w-periodic
solutions of Systems (6.6), (6.7), respectively.) Hence, if [ exp (F(t))g(t)dt = 0,
ie. < f, 2T > = 0, then the condition (3.6) is fulfilled and therefore the existence of an
w-periodic solution of System (6.5) is ensured. According to the previous reasoning
the function

AF(t) = H' (b0l + H(t) /O H=Y(s)f(s) ds
= h2(t)u02 + H(t) /Ot H_l(S)f(S) ds, teR,

where u(, = ug2, satisfies the condition Af(w)—.Af(0) = 0. Hence the linear algebraic
system

(68) [hz(w) — hQ(O)]UOQ = 7H(w) /Ow H_l

is fulfilled because the equalities
ha(w) ~ () = (1 ) exp (F)G()
2 ) ) P w),

o [[atese =) () [ o e e a

_ (F(w))exp (F(w)) / G(s) exp (F(5))g(s) ds

0

(due to ( f, > = O ) are valid and the linear algebraic system (6.8) has the solution
ug2 + G(w) " [ G(s) exp (F(s))g(s) ds.
By Vlrtue of |H| |H~1] and |f| = |g| we get the inequalities

luoz| < |9|/ exp (F

|Af| < Klgl = KIf],
IAF| < Klg| = Kf],
where K = |ho| Jy exp (F(s))ds and K = max{K,|A|K + 1}.

282



6.3. Example

Now we consider the case F(t) = 2cost, g(t) = ag + cost + € cos (qt), where ag is
a real number, ¢ is a positive integer greater than one, ¢ is a real non-zero number
with a very small absolute value and w = 2n. First we construct the Fourier series
of the function exp (F). Notice that F'(t) = 2cost = exp (it) + exp (—it), hence

oo

exp (F(0) = exp exp i) +exp (-10) = 3 (exp (i) + xp (30
- exp (i(p — 2k)t) s = - cos (p — 2k)t
71;,; (p— k)! k! = Rel p(F))*;O,; (p— k) k!
w1 2 [ cos (2p — 2k)t = cos (2p+ 1 — 2k)t
o B e
1 [ cos (2p — 2k)t o= cos (2p + 1 — 2k)t

;)(p!)‘z”kzzo_; TECIEIS (2p+1k)!k!]
o = 1 [ cos2pt . cos(2p+ 1)t
= pz_;)(p!)Q+2kz_0_pz_;)(2p+k)!k!+pz_;)(2p+1+k)!k!}

o0 1 oo o0 1
= ;W+2PZO_{];)7(2P+I€)!]€!}COS2P1€

. 1
+ {kz_o—(Qer 1 +k)!k!}cos (2p+ 1)t

= —a0+2iapcospt

(by virtue of the absolute convergence of this series for every t € R), where

= 1 = 1
_ _ -y p=0,1,2,....
“2p I;J@p-i-k)!k:!’ Yeptl ];)(2194—/{:4-1)!]{:!’ p=55%

Let there exist an w-periodic solution of System (6.5). Then the equality ag =
—(a1+2a4)/aq follows from the validity of the condition (3.6). In a technical practice
the “very small” term ¢ cos ¢t of the right-hand side g could be neglected and g could
be replaced by the trigonometric polynomial ag + cost. This procedure, however,
destroys the former valid necessary and sufficient condition for the existence of a
2n-periodic solution of System (1.2). However, if g is replaced by the trigonometric
polynomial g,(t) = do + cost with dp = —(a1/ag)ag, which is equally simple as
ag + cost, then the existence of a 2n-periodic solution is preserved, while |g — g,| <
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n < le|(1 + ag/a), [|Ag — Agy|l < Klg — gn| < Kle|(1+ aq/a0) < 2|e|K, because

2<

ap, 2< ¢, 0 < ay <e/q! <2. (Here e is the Euler’s number.)

6.4. Conclusion

Recently, approximation methods for periodic solutions have concerned nonlinear

differential equations. In the papers [9], [10] numerical methods supported by com-

put

ers are presented. [5], [7] deal with Fourier approximations of periodic solutions of

nonlinear differential equations. Finally, the paper [1] generalizes this approximation

problem to Banach spaces.

(1]
2]
3]

[4]

[10]
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