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Abstract. Given two initial points generating monotone convergent Brown iterations in 
the context of the monotone Newton theorem (MNT), it is proved that if one of them is 
an upper bound of the other, then the same holds for each pair of respective terms in the 
Brown sequences they generate. This comparison result is carried over to the corresponding 
Brown-Fourier iterations. An illustration is discussed. 

Keywords: nonlinear systems, convex functions, Brown's method, monotone convergence, 
Fourier iterates 
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1. INTRODUCTION 

For a continuously differentiate function F: D C Un —•> Rn, consider the asso­
ciated system 

(1.1) F(x) = 0. 

In order to find an approximate solution of (1.1) when n > 1, Brown proposed a com­
bination of the one dimensional Newton method with a Gauss-Seidel-like extension 
to the nonlinear case of the Gaussian elimination process. Quadratic convergence for 
Brown's analytic method was established (see [2]), but the original algorithm had a 
cost of 0(n4) algebraic operations per iteration, which made it unattractive when 
compared with Newton's method. Subsequently, this figure was reduced to 0(n3) 
with a better implementation (see [1] and [11]). With this new algorithm and in the 
context of the MNT (see [9]), Frommer proved a monotone Brown theorem (see [3]), 
as well as that Brown's analytic method converges componentwise at least as fast as 
Newton's analytic method (see [4]); these results include the corresponding ones for 
the respective Fourier iterations. Comparison theorems hold for Newton's method 
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(see [6]) in the MNT framework. Thus it is interesting and can be useful to obtain 
analogous results for Brown's method in the same context, and this is the aim of the 
present paper. A typical comparison result proved here in that framework is that, if 
z° ^ y° are such that 0 ^ F(y°), 0 ^ F(z% and if F(y*) = 0, then y* ^ zk ^ yk for 
all Brown iterates with starting values z° and y°, respectively, where the inequalities 
are understood componentwise. 

It is convenient to recall that the MNT context arises naturally when mildly non­
linear problems and certain nonlinear integral equations are discretized. For instance, 
when discretizing Au = eu by means of second central difference quotients (see [9]), 
and when discretizing Chandrasekhar's integral equation (see the last section). Also, 
if Au = eu is transformed, via Green's function, into an equivalent integral equation, 
then its discretization by means of a trapezoidal rule generates the same context 
again. 

Although the comparison statements for Brown's method are formally similar to 
those for Newton's method (see [6]), they require proofs that are much more involved. 
In order to simplify cumbersome calculations, the main idea here consists in proving 
that the Brown function assigning to each initial point its first Brown iterate, is a 
monotone function with respect to the coordinatewise standard order on a convenient 
domain. This idea has also been employed for a third order method in [7] and, though 
the general approach in both papers is similar, the proofs regarding the two methods 
are essentially unrelated. 

The comparison results for Brown's method are also extended to the correspond­
ing Fourier iterations which coupled with the Brown iterations provide bracketings, 
i.e. lower and upper bounds of the solution of (1.1). 

The outline of the paper is as follows. The next section describes the framework 
and some significant conclusions are drawn regarding the geometry of the zero man­
ifolds of / i , 1 ^ i ^ n; the section contains the only common features with [7], 
while correcting a minor flaw in a proof of that paper. The third section contains 
the main results for Brown's analytic method, while in the fourth their extensions 
to the Brown-Fourier iterations are proved as well. In the fifth section, a numerical 
example illustrates the results. 

2. DEFINITIONS AND BASIC RESULTS 

It is assumed in the sequel that x° < y°, i.e. x® < y?, 1 ^ i ^ n, and that 

(x°,y°):={x: x° ^x^y°}cD and F(x°) < 0 ^ F(y°). 

Also for y in D, F'(y) is a nonsingular M-matrix (see [12]), i.e. 

(F'(y))ij^0 for i^j and F'(y)-1 > 0. 
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It is also assumed that the Jacobian matrix F' is isotone, that is 

F'(x)^F'(y) if x^y. 

Recall that if F' is isotone, then F is order convex, namely 

F(\x + (l-\)y)^\F(x) + (l-\)F(y), if x^y, and AG (0,1). 

The MNT ensures that there exists a unique y* in (x°, y°), for which (1.1) holds (see 
Chapter 13 in [9]). Moreover, the Newton iterates with starting point y° converge 
decreasingly, while their Fourier counterparts with starting point x° do so increas­
ingly, and the bracketing they both determine converges quadraticaUy to 0. As a 
consequence, if y in (x°,y°) satisfies F(y) ^ 0 (F(y) -̂  0), then y ^ y* (y ^ y*). 

Since d\f\(y*) > 0 , the implicit function theorem yields open neighbourhoods Ui 
of y*, V\ of ?/* : - (j/2>-••>!£) and a function ^ i : V\ -+ R, such that f\(g\(y),y) = 0. 
Also, if y G U satisfies f\(y) — 0, then y\ = g\(y). 

Lemma 2 .1 . The function g\ can be extended to an open set that contains 

(.r0,?/0). Moreover, ify in (x°,y°) satisfies f\(y) = 0, then y\ = g\(y). 

P r o o f . Recall that 

d\f\(g\(z),z) 

Consider K such that 
djfi(z) 
difi(z) 

for all z in an open neighbourhood of (x°,y°) and let z in (x°,y°) be such that 
z G V\ and let sequences (zm), (wm) in (x°,y°) be such that (zm), (wm) are in V\ 
and are both convergent to z. Clearly, 

\gi(Zm) ~ gi(Zp)\ < KPm ~ Zp\\ 

as well as 

\gi(Zm) ~ gi(Wm)\ ^ K\\zm ~ Wm||, 

where euclidean norm is considered. Thus lim(^i(zm)) exists and its value does 
not depend on the sequence. We define it as gi(z). By considering a convergent 
subsequence of ((<7i(£m),^m)), its limit w satisfies w = z and one clearly has W\ = 
g\(z) as well as f\(w) = 0. Now, to each such w the implicit function theorem can 
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be applied. Let us call g2 such a function and suppose that u belongs to the domains 
of both g\ and g2. Then 

0 = f\{gi{u),u) - f\{g2{u),u) = d\f\{£,u){g\{u) - g2{u)), 

which yields g\{u) = g2{u). Clearly a compactness argument combined with a max-
imality argument yields the conclusion. D 

Thus with g\ extended to all of (x^,y°), its graph describes the zero set of f\ in 
(x°,y°). Note that g\ is isotone, so that if z -̂  w, then g\{z) -̂  g\{w). Thus for 
0 ^ A -̂  1 one has 

h{\gi{z) + (l - \)g\{w), \z + (l - \)w) 

< \f\{g\{z),z) + (1 - \)f\{g\{w),w) = 0 

= /i(gi(A^ + (1 - \)w), \z + (1 - \)w), 

which implies that 

\g\{z) + (1 - A)^i(H;) ^ g\{\z + (1 - \)w), 

that is, #i is order concave. Alternatively, from the hypotheses on F' it easily follows 
that g[ is antitone, which also yields that g\ is order concave (see [9]). 

Let us now denote 

oi+ ~ {(yuy)- y e (x*,f), gM < yi < </?} 

and 

C f : = { ( 2 / 1 ^ ) : ye(x°,f), x°1^y\^g\{y)}. 

The preceding remarks yield the following lemma. 

Lemma 2.2. With the above notation, it follows that 

C+ = {ye(x0,y°): h(y)>0}, 

and 

cr = {ye(x°,y°): /i(j/KO}. 

Note that Cf is an order convex set, namely if z,w G Cf with z ^ w and 
0 -̂  A ̂  1, then \z + (1 — \)w G C{~. Analogously, implicit functions can be defined 
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on each coordinate projection of (x°, y°) , and by considering the corresponding sets 
C+, Ct~, i = 2 . . . , n, we obtain that 

K+:={ye(x°,yo):F(y)>0}=f)C+, 
i=l 

and 

K~ := {y € < W > : F(y) < 0} = f ) of-
1 = 1 

NOW also if" is an order convex set, while in general K+ is not, as the following 

example shows. 

Consider n = 2 and F defined by 

(2.1) / i (2/1,2/2) := 2/i - 2/2 - 5, 

/2(2/1,2/2) := 2/12/2+ 6. 

If x° := 2/* = (3, -2 ) and 2/0 := (6, - 1 ) , then F(rr°) ^ 0 < F(y°). Note that both x° 

and 2/0 are in KT+ and that a;0 < y°. Also, F ' is isotone and F'(y) is an irreducibly 
diagonally dominant M-matrix whenever y G (x°,y°). Clearly 

/2(x° + t(y° - x0)) = (3 + 3t)(* - 2) + 6 = 3*2 - 3t, 

so that 
/2(x0 + * ( y 0 - z ° ) ) < 0 if 0 < * < 1 , 

that is, x° + £(i/0 - x°) does not belong to K+ for 0 < t < 1, i.e. -ftT+ is not order 
convex. 

The following theorem, though simple, plays a fundamental role in this paper and, 
together with the previous example, provides a correction to the above mentioned 
flaw in the proof of Theorem 3.4 in [7], which consisted in implicitly assuming that 
K+ is order convex. 

Theorem 2.3. Given z° in K+, there exists a continuous piecewise continuously 
differentiable path g: [0,1] —> K+ such that 

g(0) = z°, 0(1) = y°, and g(h) ^ g(t2) for *i < i2. 

As a consequence, g'(t) ^ 0, t G [0,1], with the possible exception of a finite number 
of points. Such g will be called an ascending path. 
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P r o o f . The proof proceeds by mathematical induction. Consider the implicit 
function gn and set y°>° := gn(y°); note that here y := (yx,..., yn-X). 

Assume first that z° ^ y0,0. Notice that, since gn is isotone, gn(y) ^ yn°, whence 
fn(y) ^ 0 for y in (x°,y°) with yn = z°, that is y e C+. Now, for 1 -̂  i -$: n - 1, 
one has x° < gt ^y°, so that 

/.(2°,^)<0</.(^>-2). 

Thus the induction is applied to the reduced system 

fi(y)'-=fi(y,z°n) = o, i < i < n - i , ye(x°,f). 

Calling s(t), 0 < t -̂  1 an ascending path from z° to y° in (x°,y°) for the reduced 
system, an ascending path g joining z° to y° in If+ is obtained by sticking together 
the ascending path S(t) := (s(t),z°) with the ascending segment joining (yP,zn) 
toy0. 

If conversely z° < yn>°, consider the segment s(t) := z°+t*(y°—z®),0 ^t ^ 1, and 
let to be the infimum such that gn(s(to)) = z°. Then an ascending path joining z° 
to y° is obtained by ascending first along the linear segment joining z° to (s(£n), zn), 
then by proceeding along (s(t),gn(s(t))), to ^ t ^ 1, where it is employed that gn is 
isotone, and finally by ascending along the segment joining (y0,yn'°) to y°. • 

3. BROWN'S ANALYTIC METHOD 

The improved algorithm for Brown's method mentioned in the introduction was 
developed for computational purposes. In this paper, the original one is employed 
instead, because it allows a better description of the steps leading to the results 
presented here. It is not difficult to show that both algorithms generate the same 
Brown iterates, by taking into account that the original algorithm corresponds to 
the standard Gauss triangulation procedure for the linear case, while the improved 
algorithm corresponds to the Gauss-Jordan diagonalization procedure. 

With y° as starting point, the next algorithm produces B(y°), the first analytic 
Brown iterate, now denoted y1. 

Step 1. Set f := y°, i := 1 and F^y) := (fltj(y)) := (L(y)). 
Step 2. Consider a first order Taylor development of fcj at y°, equate it to 0 and 

solve for yi, the resulting identity being yi = U(yi+\,..., yn). 
Step 3. Define the (i + l)st reduced system of order n — i by 

Fi+i(yi+1,...,yn) := (fi+1J(yi+1,... ,yn)) = 0, 

where for i + 1 ^ j ^n, 

fi+i,j(yi+i,• • •,yn) := fij(h(yi+i,• • •,yn),yi+i , . • • ,yn)-
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Step 4. If i + 1 < n, set i := i + 1 , y° := (y? + 1 , . . . , y£), and start again with step 2. 
Step 5. Consider a first order Taylor development of Fn = / n > n centered at y£, 

equate it to 0 and call its solution yn. 

Step 6. For i = n - 1 to 1, set y\ := J*(y*+1,..., j / i ) . 
Recall that y* ^ y1 -$ y° and that PXy1) ^ 0 (see [3]). This algorithm can be 

carried out by assuming that the Jacobian matrix F' is always nonsingular, in which 
case some kind of pivoting may be necessary. No pivoting has been introduced here, 
because in the MNT context F'(y) is assumed to be a nonsingular M-matrix and 
this property is inherited by each F^, 2 ^ i ^ n, as follows by induction from the 
next two lemmas. As for the former, it is an adaptation of Lemma 3.3 in [5], whose 
proof omitted a not entirely simple argument included here. 

Lemma 3.1 . For each y G (x°,y°) , F^(y) is a nonsingular M-matrix. 

P r o o f . Notice that 

h(ў) = yï-
dih(y°) 

/i(ir°) + £ðf/i(v°)(w-v?) 
j = 2 

so that if i ^ 1 ^ j one gets 

djhÁV) = djMh(y),V) + diMh(y),y) * dMl) 

= djfi(h(y),y) -diMh(y),y) * 
djfi(y0) 
difi(y°Y 

Since F' is always an M-matrix, hence F^y) is a Z-matrix, i.e. its off-diagonal terms 
are nonpositive, because 

djf2AV)<djfi(h(V),v)^0 for j ? i . 

With y G ( ^ . y 0 ) , consider the matrix 

A:= 

( 9!fi(y°) 

dih(h(y),y) 

dnh(y°) \ 
dnh(h(y),y) 

\дifn(ҺШ) ... дnfn(h(ӯ),ӯ) J 

It is apparent that A is a Z-matrix and that F'(li(y),y) < A. Since F'(£i(y),y) is a 
nonsingular M-matrix, its associated Jacobi matrix is convergent (see [12]), i.e. 

riDiFMl),!))-1 * [D(F'(h(y),y)) - F'(h(y),y)]) < 1, 

171 



where r denotes the spectral radius and D(-) denotes the corresponding diagonal 

matrix. By virtue of 

0 < D(A)'1 * [D(A) - A]< D(F'(h(y),y))-1 * [D(F'(h(y),y)) - F'(h(y),y)], 

the Perron-Probenius theory (see [12]) yields 

r(D(A)~l * [D(A) - A]) < r(D(F'(h(y),y))-1 * [D(F'(h(y),y)) - F'(h(y),y)]), 

whence 

r(D(A)~x *[D(A) - A]) < 1. 

Thus A itself is nonsingular and _4 - 1 ^ 0 (see [12]), i.e. it is a nonsingular M-matrix. 

Consider now 

M, := 

/ 1 0 0 0\ 

- m 2 , i 1 0 0 

- m 3 , i 0 1 

V - m n , i 0 

whence it follows that 

MX*A = 

1 0 

0 1/ 

with mi i := difi(h(y),y) 
dih(y°) ' 

fдгh 
0 

V o 
ғ2(ӯ)' 

dnfl\ 

) 

Thus F^(y) i s nonsingular, and by taking into account the above block structure, one 

gets 
/ ( d i / i ) " 1 \ 

0 

/ 

x * " • = • •• « « ) -

V o 
Since the product on the left-hand side leaves the last n — 1 columns in A - 1 un­

changed, one gets that (F^y))"1 ^ 0y which together with F^(y) being a Z-matrix 

yields that F^(y) is a nonsingular M-matrix. D 
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Lemma 3.2. The following propositions hold: 

(i) F2 is isotone on (ofi,y°). 

(ii) 0^F2(f). 

P r o o f , (i) It easily follows by adapting Lemma 3.5 in [5]. 

(ii) See Theorem 3.4(h) in [8]. • 

Let us now define, for each 1 ^ i < n — 1, and inductively for j ^ i 

Liti(y) := h(y), and 

Li,j(ii) := lj(Lid+i(y), Litj+2(y), • • •, £*,*(!?)> V) ^r j £ i. 

With this notation it is possible to give a handy representation of fa in terms of 

/i,» = / . , namely 

fiAv) = Mv) w i t h V:= (Li-ltl(y),Li-it2(y),...,Li-l9i-i(jj),y). 

Notice now that one step of Brown's method can be written in matrix form as 

(3-1) T(y0)*(B(y0)-y°) = -*(y0), 

where $(y°) := (fi,i(y°))> The symbol T(y°) stands for the upper triangular matrix 
whose ith row is the gradient dfi,i(y°), that is Uyk := dkfiti(y°) for i -̂  k and 
U,k •= 0 for i > k. Notice also that T(y°) is the upper triangular part in the LU 
decomposition of F'(y°). 

In order to analyse the variation of B in K+, it is necessary to point out that the 
function $ itself varies with the initial point y°; this parametric dependence, which 
also affects T, will be considered implicit in (3.1), which is all needed here. But when 
considering the total differential of (3.1), one has to take into account the parametric 
role of y0, as well as when considering partial derivatives of the functions involved. 
This is denoted here by putting the affected functions in round brackets whenever 
necessary. Thus, from the total differential of (3.1), one gets 

(3.2) T(y°) * dB(y°) = T(y°) - d(*(y0)) - d(T(y0)) * (B(y°) - y°). 

Note that d(T(y0)) is a three-linear functional. 
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Theorem 3.3. The following inequalities hold componentwise: 

d(*(y°))<T(y°) and d(T(y°))>0. 

P r o o f . The results are a consequence of the following two coupled inductive 
propositions for 1 -̂  i ̂  n - 1: 

(a) For l ^ f c - ^ n , 1 ̂  j ^i, i + l ^ m the functions Lij satisfy 

(a.l) dk(Lij(f)) > dkLijitf) = dhLij > 0, 

and 

(a.2) dk(dmLij(yo))^0. 

(b) For 1 ̂  k < n and j ^ i + 1, /i+i^+i is such that 

(b.l) afc(/i+1,i+1(y0)) < ti+hk(f) 

and 

(b.2) %(aj/«+if«+i(y°)) ̂  dkd_fi+1^_(y°) ^ 0. 

Consider first the case z -= 1. As for (a.l), notice that, since 

h{yo) = yo J^L 
dih(y°r 

it follows that 

дңЩ) _ t t 0 . ^2,I/I(У°) 
(3.3) Aft^j.^-^+Aon.^j,. 

where £ stands for the Kronecker symbol. Thus if k — 1, 

fttfitt0)) = /i(y°) * ( ^ / f ^ > ° = a^> 

while if k > 1, we have 

anMw ^ / i ( y ° ) , f ( „ . ) t gg.i/i(y°) , . ^ / i ( y ° ) _ o , afc(Zl(y » = "aiTwo + /l(y }* ( W ) F * ~*LF)"W l" 
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In order to prove (a.2), recall that 

am Kifin- ________)+„ - r « » u - ^ - - - - 1 
dk(dmh(y ))- a i / i ( 2 / 0 ) + dMy ) * ( a i / l ( j / 0 ) ) 2 

dl,mfi(y°) 0 al,ih(y°) 
~ dih(y°) + C W l U / > (d1f1(yW' 

Since d2 ^ 0 and dm/_ -̂  0 because m > 1, (a.2) is finally obtained for i = 1. 

To prove (b.l), using 

afc(/2,2(y°)) = afc(/2(.1(y°),y0)) 

= di/2(y°) * dk(h(y0)) + (1 - *,,*) * dkMtf), 

and taking into account (3.3), we conclude that 

di(f2,2(y0)) = dif2(y°)* fi(y°) * / ;
i ' x / ; . „ , „ < 0. 

On the other hand, if h > 1, then 

ff,i/i(y°) 
(5i/i(y°))2 

dkifaif)) = */-(tf°) * (~fc'i + /i(tf°) * ( f / f f f ) + ^ / - (w 0 ) 

< dif2(y°) * dkh + dkf2(y°) = dkf2,2(y°). 

In order to prove now (b.2) with i = 1, note first that 

dkidjfwif)) = dk(dif2(y°) * dih + djf2(f)) 

= dk(dif2(y
0)) * dsh + dk(dif2(y°)) + dif2(f) * dk(djh). 

Since from (a.l) one has 

dk(dif2(f)) = dlif2(y°) * dk(h(f)) + (1 - 61,k) * dljMf) 

> %jMvP) * dkh + (1 - *i.*) * dlif2(y°), 

this inequality and the corresponding one for j = 1 yield 

(3.4) dk(d5f2,2(f)) > [a?,i/a(0°) * &Ji + (1 - *i.fc) * dlJ2(y
0)] * ^h 

+ [#_/ 3 (y°) * duh + (1 - *i.*) * #_ / - (0 0 ) ] 

+ a1/2(t/°)*afc(ajz1). 
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On the other hand, 

dkdjh^f) - dkftMtf) * djh + (i - Su) * djMf)) 

= [#,1/2(0°) * dkh + (1 - <*!,*) * dlJ2(y0)] * djh 

+ (1 - Sld)[%jf2(f) * dkh + (1 - <*!,*) * dljf2(v0)). 

Since j > 1, going back to (3.4) one obtains 

dk(djf2,2(f)) > dkdjf2Af) + dif2(v°) * dkidih). 

Taking into account (a.2) and the inequality d\f2 .$ 0, one finally gets (b.2) for i = 1. 

Now let us assume that (a) and (b) are valid for all m < i' ̂  n — 1 with i > 1. 

Hence, for (a.l), it follows that 

«-„<Л>-*ft<Л)-*(.í-^5І)) 
_ A W,,.(ff°)) , , r-0, W/.,.G/°)) 
~ i , fc «./i,«(g°) + / i ' i U M * (ft/i,i(gO))-

> A w.,i(g°)) 
* di'fc 0./.,.(s°) 

* i , f c ft/M(j°) 

--- 9*Ji = dkLi,i(y°) = dkL^i ^ 0, 

where the first inequality above follows from (b.2), while the other from (b.l). This 

completes the first step in the inner induction from j = i to j = 1, in order to 

prove (a.l). Now, since Lij(y°) = Ijffi) where y° = (LiJ+1(y°),... ,Lt,i(y°),y°), 

one obtains 

i i 

dk(Lij(f))- Y, 9mlj*dk(Li<m(y°))+ [ I (1-*•»,*) *&.-,• 
m=j+l m=j+l 

i i 

^ _t_] dmh*dkLi,m+ JJ (1 - <W) * dklj 
m=j+l m=j+l 

= dkLij(y°) = dkLij ^ 0 

with dkLij = 0 if k ^ j . Notice that also the last inequality follows inductively from 

the inequality for j = i. 
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As for (a.2), another descending induction from j = i to j = 1 is performed. Thus 
for m ^ i + 1, (b.2) yields 

a (* T fifiw dk(dmfi,i(y°)) , a / /«0\ * M ^ _ A í 

W m J M y )) = - a / w ( c 0 ) + čWM(í,) * - p - ^ 
(g°)) 

(Ӯ0))2 

. dkdmfi,i(f) < n 

while if j < i, the (inner) induction and (a.l) as proved for i imply 

dk(dmLij(y0)) =dk(i2 dalj *dmL i j S(f) + dml,\ 
S=j+1 ' 
i 

= 2 J dk(dslj)*dmLi,s 

s=i+i 

+ £ aai3 * afc(aTOLt>(y°)) + dfc(amii) ^ o. 
«=i+i 

In order to prove (b.l), notice that from (a.l) it follows as above that 

i i 

dk(fi+i,i+i(f)) = £>/ i+i (y 0 ) * dk(Lij(y°)) + JJ(1 " ftu) * ft/«+i«°) 
3=1 j=i 

i i 

^ £a,-/.+i(»°) * dkLij + Y[(i- 6kj) * dkfi+1(f) 
i= i i= i 

= ti+1,k(f)-

Regarding (b.2), notice first that 

(3.5) dk(djfi+1,i+1(y
0)) = dk ( £ dmfi+i(f) * diLi,m(f) + difw(f)) 

Vn=l / 
z 

= X) 9*(AnL+i(i30)) * d , / ^ + dk(d5fi+1(f)) 
m = l 

i* 

+ £ dmfi+1(f) * dk(djLi,m(f)). 
тn=l 
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For each term in (3.5) it is obtained from (a.l) that 

^(am/i+i(r/0)) = ]T ap
2,m/i+1(2/°) * a,(Di,p(y

0)) + f [ ( i - **,,) * %,mfM(tf) 
P = i P = i 

i i 

> £dlmfi+i(y°) * dkLitP + J[(l - fc,p) * dlmfi+1(y°). 
p=l p=l 

The inequalities in (a) now imply (b.2) as in the case i = 1. • 

Theorem 3.4. If z° G K+, then the Brown iterates satisfy zk ^yk, k = 1,2, 

P r o o f . Theorem 3.3 and (3.2) imply that dB ^ 0 in jK+, because T is always 
a nonsingular M-matrix. By considering an ascending path g in K+ joining z° to y° 
as in Theorem 2.3, it follows that 

y1 - z1 = B(y°) - B(z°) = f dt(B(g(t))dt = f dB(g(t)) * dg(t) At > 0. 
Jo Jo 

A simple induction completes the proof. • 

4. T H E ANALYTIC FOURIER ITERATIONS 

The Fourier iterations for Brown's method have been introduced in [3] in analogy 
with the Newton-Fourier iterations. These Brown-Fourier iterates give us a monotone 
bracketing of y*, which is moreover contained in the corresponding Newton-Fourier 
bracketing (see [3]). Their description in the framework of the original Brown algo­
rithm now follows. 

Step 1'. Set x° := x° (i = 1) and F f (x) = (/-."-(x)) := (fj(x)) = F(x). 
Step 21. Consider the affine approximation of / f centered at x° with the gradient 

values of f^i at y° and solve for X{, i.e. xi = Zr(rr t + i , . . . ,xn). 

Step 3'. Define the (i + l)th reduced lower system 

i^+ i (s t+i , • • • ,a?n) := (/i+ijfct+i, • • • ,xn)) = 0 where 

/ i + U ^ i - f i , . . . , ^ ) ^ ^ . ( / f ( a r i + i , . . . , a r n ) , a : i + i , . . . , j : n ) for i + l^j^n. 

Step 4'. If i + 1 < n, set i := i + 1, x° := (x®+1,.. .,xn) and start again with 
step 2\ 

Step 5'. Consider a first order approximation of / ~ at xn with the slope given 
by dnfn,n(y°), equate it to 0 and call its solution xn. 
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Step 6'. For i = n - 1 to 1 define x\ := IJ(xj+1,..., xn). 
The x1 thus obtained is the first Fourier iterate corresponding to the Brown iter­

ate y1. Recall that x° ^ x1 < y* and F(xx) ^ 0 (see [3]). 
Analogously to the previous section, let us now define inductively, for 1 -̂  i -̂  n — 1 

and for j ^i, 

/<:.(
г°)+ E ъмfкxi-xЧ) 

j=i+l 
LX*)~lT(*)=xt-jj^ 

and for •; ̂  f, 

Lt\jv*) : = ^ ( ^ i + i ^ ) ' ^ ^ ^ ) ' - • • >Lt\i(^)>^)-

Here one easily gets 

/£(*) = /*(*) w i t h J : = (^- lA^) '^ 7 - !^^)^--^^ 7 - ! ,*--!^)^)-

Lemma 4.1. f[~i{x°) ^ 0 for 2 ^ i ^ n. 

Proof. Consider first i = 2. Then 

/a:a(-5°) = /-(2°) = /2(^r,i(«0)^0) = /2(lr(x°),s°) - /2or°)+/2(*°) 

< dif2{ii(x*),x«) * (/r(2°) - X?) +/2(X°) 

= a1/2(/1-(A^0)*(-^y)+/2(x0) 
< /2(x°) < 0, 

where the first inequality is a consequence of the order convexity. The proof is now 
completed by induction. Assume that for some i, 2 <. i <. n, 

/ r . ( £ ° ) < 0 if 2 < j < . i - l < n . 

Notice first that, because of the order convexity, 

(4.1) fr.(s?>) = /.(x0) = /«(£>) - /f(x°) + fi(x°) 

< £ o^Cr0) * (Lr_x .(x°) - x0) + L(x°). 
i=i 

Now it is necessary to prove that 

(4-2) ^ - i . i ( « ° ) - * ° > 0 for l < _ j < . i - l . 
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This proof is done by means of an (inner) induction from i - 1 to 1. Notice first that 

L~ (T°) -T° - j"i-i,.-i (^ ) > n 

For the general term, one has 

L r - i j * * 0 ) - * ? - ^ 5 0 ) - * ? 

djfjAV0) 
fГAsP)+ £ ^fiAf)(L^lгk(зP)-4) 

ь=i+i 

which makes it clear that the inner and outer inductions imply (4.2). By applying 

these inequalities in (4.1), one finally gets 

/.T.(-5°) < /.(-5°) < 0, 

and the proof is complete. • 

Denoting $~(x°) := (f^~i(x°)) and B(x°,y°) := x1, for the Fourier iterate one has 

the system 

(4-3) T V ) * (B(x°,y°) - x°) = -*~(x0). 

Let us assume first that x° is kept fixed while y° is allowed to vary. The corresponding 

total differential of (4.3) then yields 

(4.4) T(y°) * dB(x°,y°) = -d($-(x0)) - d(T(y0)) * (B(x°,y°) - x°). 

L e m m a 4.2. With the notation as in (4.4), it follows that d($~(x0)) ^ 0. 

P r o o f . Note first that d^f'^x0)) = dk(fx(x0)) = 0, for 1 ^ k ^ n. 

Since /^(x 0 ) ^ 0, 1 < i < n, and by virtue of (b.2) in Theorem 3.3, it is also clear 

that 

dk(LUx0)) = dk(lj(x*)) = dk ($ - ^ P y ) 

( - 0 ) . dk(diki(t)), 0 

-W)* (diki(yO))2 <°-

It now inductively follows, from j = i to j = 1, that 

a f e(Lr.(jO) ) = £ am„7*dfc(Lt-m(x0)) 

m=i+l 

= - £ ffii&'WU*))** 
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This inequality yields 

w*i f i+i(*°)) = ft(/*+i(2°)) = j^djU+i^) *afc(LrJ(«
0)) ^ o, 

J = I 

because djfi+i ^ 0 for j ^ i, which completes the proof. D 

Theorem 4.3. If z° G # + , then B(x°,y°) ^ B(x°,z°). 

P r o o f . Lemma 4.2 and Theorem 3.3 applied in (4.4) imply that dB(x°,y) ^ 0 
for y in K+. The conclusion then follows as in Theorem 3.4. D 

Suppose now that y° is held fixed while x° varies. In this case, from the corre­
sponding differential in (4.3), it is easy to see that 

(4.5) T(y°) * dB(x°,y°) = T(y°) - d(*~(x0)). 

Lemma 4.4. With the notation as in (4.5) it follows that d($~(x0)) ^ T(y°). 

P r o o f . Clearly one has that 

dk(fi(x0)) = dkh(x°) < dkh(y°) = h,k(y°). 

Assuming now for some i < n — 1 and all k, 1 ^ k ^ n, that 

dk(ffA^)) < U,k(y°) = dkfi4y°) = ti,k(y°), 

we obtain that 

ek(iT(^) = ek(Lr^)) = dk(x
0-J^) 

, w.:.(g°)) 
*'* difiAf) 

> dkij = hu > o, 

so that 

dk(Lj.(5?)) = dk(lJ(o?)) 
i i 

= Y. dmlJ*dk(LJm(x*))+ [ J (l-6m,k)*dk(lj) 
m = j + l m = j + l 

i i 

> 5Z dmlJ*dkLJm+ [J (l-6m>k)*dklj 
m = j + l m = j + l 

i i 

= 5Z drnl3 * dkLi,m + J\ t1 " Srn^ * dklJ 
m = j + l m = j + l 

= dkLTjtf) = dkLij > 0. 
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Since one has 

for 1 -̂  m ^ i, one obtains 

dk(fr+1,i+1(Z°))=dk(fi+i(&)) 
i i 

= ~] dmfi+1(i?) * dk(Lrm(x0)) + n (1 - Km) * dkfi+1 (x°) 
m = l m = l 

i i 

^ J2 dmfi+1(f) * dkLi<m + [ [ ( ! - **.») * dkfi+i(f) 
m = l m = l 

which completes the proof. D 

Theorem 4.5. Ifw° <E K~, then B(x°,y°) ^ B(w°,y°). 

P r o o f . Lemma 4.4, when applied in (4.5), implies that d(B(x,y0)) ^ 0 for x 

in K~. Since K~ is an order convex set, the ascending segment joining a:0 to w° is 
contained in K~, so that the argument in the proofs of Theorems 3.3 and 4.3 applies 
again and yields the conclusion. D 

Corollary 4.6. Ifw° £ K~ and z° G K+, then B(x°,y°) ^ B(w°,z°). 

5. A N EXAMPLE 

An illustration is briefly discussed in this section. It deals with Chandrasekhar's 
equation and suggests that, given the quadratic convergence of Brown's analytic 
method, one should only expect a modest improvement in the number of iterations 
by conveniently choosing the starting (upper) point. 

Consider thus Chandrasekhar's equation, namely 

v(t) = 1 - \ f ( -J - * ^ r ) ds, O^t^l. 
4 J0 \s + t v(s)J 

The approach to dealing with this equation follows [4] and [8]. For h := -^, the 
trapezoidal integration rule is applied at the points ih, 0 ^ i -̂  64. Taking into 
account that v(0) = 1, the resulting nonlinear system is 

F(x) := (fi(x)) = 0, l ^ i ^ 64, 
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where 

fi(x) := XІ + -
64 

wo + Y^ i 1 
Wj * - г * 

j=l 
i + 3 xj\ 

- 1 , 

Wo : = W64 : = ^ w5 :~ hi 1 < .7 ^ 6 3 . 

Consider two different starting upper points y° whose coordinates are all equal to 1 

in one case and to 5 in the other. It is easily verified that F(y°) ^ 0 in both cases. 

Consider also the corresponding Fourier iterations with x® := .5, 1 ^ i ^ 64, for 

which it is also easy to see that F(x°) ^ 0. The stopping criteria for Brown and 

Fourier iterations are given by the first k for which the function residues satisfy, 

respectively, 

\\ғ(yk <є := .5*10 -13 and \\F(xk)\\00 < є. 

The computations have been carried out with the double precision of Fortran 77. 

The table shows the values of the iterates approximating v(l), namely yg4, as well 

as the values of XQ4. The exact digits are underlined. The final k in each column 

of values is the one for which the function values satisfy the corresponding stopping 

criterion given above. 

k L 4̂ тk 
X6A í 2/64 тk x

64 

0 5. .5 1. .5 

1 .808462758084 .789714505200 .799636685607 .793434227609 

2 .799218390107 .799126316604 .799194762887 .799184364766 

3 .799194702734 .799194700358 .799194702574 .799194702544 

* 
.799194702574 .799194702574 .799194702574 

It is worth pointing out not only the consistency of the table with the results in the 

paper, but also that Brown iterates appear to converge faster than the corresponding 

Fourier iterates. This is a well established fact by Ostrowski when n = 1, namely for 

one dimensional analytic Newton-Fourier iterations (see [10]). 

Final comment. The extension of the results in the paper to discretized Brown 

iterations will be analyzed elsewhere, along with their possible apphcation to the 

comparison of discretized Brown and Newton iterations. 

Acknowledgement. The referee's constructive criticism has been very helpful 

for the improvement of the manuscript. 
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Abstract. Given two initial points generating monotone convergent Brown iterations in
the context of the monotone Newton theorem (MNT), it is proved that if one of them is
an upper bound of the other, then the same holds for each pair of respective terms in the
Brown sequences they generate. This comparison result is carried over to the corresponding
Brown-Fourier iterations. An illustration is discussed.

Keywords: nonlinear systems, convex functions, Brown’s method, monotone convergence,
Fourier iterates
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1. Introduction

For a continuously differentiable function F : D ⊂ � n −→ � n , consider the asso-
ciated system

(1.1) F (x) = 0.

In order to find an approximate solution of (1.1) when n > 1, Brown proposed a com-
bination of the one dimensional Newton method with a Gauss-Seidel-like extension
to the nonlinear case of the Gaussian elimination process. Quadratic convergence for
Brown’s analytic method was established (see [2]), but the original algorithm had a
cost of O(n4) algebraic operations per iteration, which made it unattractive when
compared with Newton’s method. Subsequently, this figure was reduced to O(n3)
with a better implementation (see [1] and [11]). With this new algorithm and in the
context of the MNT (see [9]), Frommer proved a monotone Brown theorem (see [3]),
as well as that Brown’s analytic method converges componentwise at least as fast as
Newton’s analytic method (see [4]); these results include the corresponding ones for
the respective Fourier iterations. Comparison theorems hold for Newton’s method
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(see [6]) in the MNT framework. Thus it is interesting and can be useful to obtain
analogous results for Brown’s method in the same context, and this is the aim of the
present paper. A typical comparison result proved here in that framework is that, if
z0 6 y0 are such that 0 6 F (y0), 0 6 F (z0), and if F (y∗) = 0, then y∗ 6 zk 6 yk for
all Brown iterates with starting values z0 and y0, respectively, where the inequalities
are understood componentwise.
It is convenient to recall that the MNT context arises naturally when mildly non-

linear problems and certain nonlinear integral equations are discretized. For instance,
when discretizing ∆u = eu by means of second central difference quotients (see [9]),
and when discretizing Chandrasekhar’s integral equation (see the last section). Also,
if ∆u = eu is transformed, via Green’s function, into an equivalent integral equation,
then its discretization by means of a trapezoidal rule generates the same context
again.
Although the comparison statements for Brown’s method are formally similar to

those for Newton’s method (see [6]), they require proofs that are much more involved.
In order to simplify cumbersome calculations, the main idea here consists in proving
that the Brown function assigning to each initial point its first Brown iterate, is a
monotone function with respect to the coordinatewise standard order on a convenient
domain. This idea has also been employed for a third order method in [7] and, though
the general approach in both papers is similar, the proofs regarding the two methods
are essentially unrelated.
The comparison results for Brown’s method are also extended to the correspond-

ing Fourier iterations which coupled with the Brown iterations provide bracketings,
i.e. lower and upper bounds of the solution of (1.1).
The outline of the paper is as follows. The next section describes the framework

and some significant conclusions are drawn regarding the geometry of the zero man-
ifolds of fi, 1 6 i 6 n; the section contains the only common features with [7],
while correcting a minor flaw in a proof of that paper. The third section contains
the main results for Brown’s analytic method, while in the fourth their extensions
to the Brown-Fourier iterations are proved as well. In the fifth section, a numerical
example illustrates the results.

2. Definitions and basic results

It is assumed in the sequel that x0 < y0, i.e. x0
i < y0

i , 1 6 i 6 n, and that
〈
x0, y0

〉
:= {x : x0 6 x 6 y0} ⊂ D and F (x0) 6 0 6 F (y0).

Also for y in D, F ′(y) is a nonsingular M-matrix (see [12]), i.e.

(F ′(y))i,j 6 0 for i 6= j and F ′(y)−1 > 0.
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It is also assumed that the Jacobian matrix F ′ is isotone, that is

F ′(x) 6 F ′(y) if x 6 y.

Recall that if F ′ is isotone, then F is order convex, namely

F (λx + (1 − λ)y) 6 λF (x) + (1− λ)F (y), if x 6 y, and λ ∈ (0, 1).

The MNT ensures that there exists a unique y∗ in
〈
x0, y0

〉
, for which (1.1) holds (see

Chapter 13 in [9]). Moreover, the Newton iterates with starting point y0 converge
decreasingly, while their Fourier counterparts with starting point x0 do so increas-
ingly, and the bracketing they both determine converges quadratically to 0. As a
consequence, if y in

〈
x0, y0

〉
satisfies F (y) > 0 (F (y) 6 0), then y > y∗ (y 6 y∗).

Since ∂1f1(y∗) > 0 , the implicit function theorem yields open neighbourhoods U1

of y∗, V1 of y∗ := (y∗2 , . . . , y∗n) and a function g1 : V1 → � , such that f1(g1(y), y) = 0.
Also, if y ∈ U satisfies f1(y) = 0, then y1 = g1(y).

Lemma 2.1. The function g1 can be extended to an open set that contains〈
x0, y0

〉
. Moreover, if y in

〈
x0, y0

〉
satisfies f1(y) = 0, then y1 = g1(y).

�������! 
. Recall that

∂jg1(z) = −∂jf1(g1(z), z)
∂1f1(g1(z), z)

> 0 2 6 j 6 n.

Consider K such that

−∂jf1(z)
∂1f1(z)

6 K 2 6 j 6 n,

for all z in an open neighbourhood of
〈
x0, y0

〉
and let z in

〈
x0, y0

〉
be such that

z ∈ V1 and let sequences (zm), (wm) in
〈
x0, y0

〉
be such that (zm), (wm) are in V1

and are both convergent to z. Clearly,

|g1(zm) − g1(zp)| 6 K‖zm − zp‖

as well as

|g1(zm) − g1(wm)| 6 K‖zm − wm‖,

where euclidean norm is considered. Thus lim(g1(zm)) exists and its value does
not depend on the sequence. We define it as g1(z). By considering a convergent
subsequence of ((g1(zm), zm)), its limit w satisfies w = z and one clearly has w1 =
g1(z) as well as f1(w) = 0. Now, to each such w the implicit function theorem can
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be applied. Let us call g2 such a function and suppose that u belongs to the domains
of both g1 and g2. Then

0 = f1(g1(u), u) − f1(g2(u), u) = ∂1f1(ξ, u)(g1(u)− g2(u)),

which yields g1(u) = g2(u). Clearly a compactness argument combined with a max-
imality argument yields the conclusion. �

Thus with g1 extended to all of
〈
x0, y0

〉
, its graph describes the zero set of f1 in〈

x0, y0
〉
. Note that g1 is isotone, so that if z 6 w, then g1(z) 6 g1(w). Thus for

0 6 λ 6 1 one has

f1(λg1(z) + (1− λ)g1(w), λz + (1− λ)w)

6 λf1(g1(z), z) + (1− λ)f1(g1(w), w) = 0

= f1(g1(λz + (1− λ)w), λz + (1− λ)w),

which implies that

λg1(z) + (1− λ)g1(w) 6 g1(λz + (1− λ)w),

that is, g1 is order concave. Alternatively, from the hypotheses on F ′ it easily follows
that g′1 is antitone, which also yields that g1 is order concave (see [9]).
Let us now denote

C+
1 := {(y1, y) : y ∈

〈
x0, y0

〉
, g1(y) 6 y1 6 y0

1}

and

C−
1 := {(y1, y) : y ∈

〈
x0, y0

〉
, x0

1 6 y1 6 g1(y)}.

The preceding remarks yield the following lemma.

Lemma 2.2. With the above notation, it follows that

C+
1 = {y ∈

〈
x0, y0

〉
: f1(y) > 0},

and

C−
1 = {y ∈

〈
x0, y0

〉
: f1(y) 6 0}.

Note that C−
1 is an order convex set, namely if z, w ∈ C−

1 with z 6 w and
0 6 λ 6 1, then λz + (1− λ)w ∈ C−

1 . Analogously, implicit functions can be defined
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on each coordinate projection of
〈
x0, y0

〉
, and by considering the corresponding sets

C+
i , C

−
i , i = 2 . . . , n, we obtain that

K+ := {y ∈
〈
x0, y0

〉
: F (y) > 0} =

n⋂

i=1

C+
i ,

and

K− := {y ∈
〈
x0, y0

〉
: F (y) 6 0} =

n⋂

i=1

C−
i .

Now also K− is an order convex set, while in general K+ is not, as the following
example shows.
Consider n = 2 and F defined by

f1(y1, y2) := y1 − y2 − 5,(2.1)

f2(y1, y2) := y1y2 + 6.

If x0 := y∗ = (3,−2) and y0 := (6,−1), then F (x0) 6 0 6 F (y0). Note that both x0

and y0 are in K+ and that x0 6 y0. Also, F ′ is isotone and F ′(y) is an irreducibly
diagonally dominant M-matrix whenever y ∈

〈
x0, y0

〉
. Clearly

f2(x0 + t(y0 − x0)) = (3 + 3t)(t − 2) + 6 = 3t2 − 3t,

so that

f2(x0 + t(y0 − x0)) < 0 if 0 < t < 1,

that is, x0 + t(y0 − x0) does not belong to K+ for 0 < t < 1, i.e. K+ is not order
convex.
The following theorem, though simple, plays a fundamental role in this paper and,

together with the previous example, provides a correction to the above mentioned
flaw in the proof of Theorem 3.4 in [7], which consisted in implicitly assuming that
K+ is order convex.

Theorem 2.3. Given z0 in K+, there exists a continuous piecewise continuously
differentiable path g : [0, 1] −→ K+ such that

g(0) = z0, g(1) = y0, and g(t1) 6 g(t2) for t1 6 t2.

As a consequence, g′(t) > 0, t ∈ [0, 1], with the possible exception of a finite number
of points. Such g will be called an ascending path.
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�������! 
. The proof proceeds by mathematical induction. Consider the implicit

function gn and set y0,0
n := gn(y0); note that here y := (y1, . . . , yn−1).

Assume first that z0
n > y0,0

n . Notice that, since gn is isotone, gn(y) 6 y0,0
n , whence

fn(y) > 0 for y in
〈
x0, y0

〉
with yn = z0

n, that is y ∈ C+
n . Now, for 1 6 i 6 n − 1,

one has x0
i 6 gi 6 y0

i , so that

fi(x0, z0
n) 6 0 6 fi(y0, z0

n).

Thus the induction is applied to the reduced system

f i(y) := fi(y, z0
n) = 0, 1 6 i 6 n − 1, y ∈

〈
x0, y0

〉
.

Calling s(t), 0 6 t 6 1 an ascending path from z0 to y0 in
〈
x0, y0

〉
for the reduced

system, an ascending path g joining z0 to y0 in K+ is obtained by sticking together
the ascending path S(t) := (s(t), z0

n) with the ascending segment joining (y0, z0
n)

to y0.
If conversely z0

n < y0,0
n , consider the segment s(t) := z0+t∗(y0−z0), 0 6 t 6 1, and

let t0 be the infimum such that gn(s(t0)) = z0
n. Then an ascending path joining z0

to y0 is obtained by ascending first along the linear segment joining z0 to (s(t0), z0
n),

then by proceeding along (s(t), gn(s(t))), t0 6 t 6 1, where it is employed that gn is
isotone, and finally by ascending along the segment joining (y0, y0,0

n ) to y0. �

3. Brown’s analytic method

The improved algorithm for Brown’s method mentioned in the introduction was
developed for computational purposes. In this paper, the original one is employed
instead, because it allows a better description of the steps leading to the results
presented here. It is not difficult to show that both algorithms generate the same
Brown iterates, by taking into account that the original algorithm corresponds to
the standard Gauss triangulation procedure for the linear case, while the improved
algorithm corresponds to the Gauss-Jordan diagonalization procedure.
With y0 as starting point, the next algorithm produces B(y0), the first analytic

Brown iterate, now denoted y1.
Step 1. Set y0 := y0, i := 1 and F1(y) := (f1,j(y)) := (fj(y)).
Step 2. Consider a first order Taylor development of fi,i at y0, equate it to 0 and

solve for yi, the resulting identity being yi = li(yi+1, . . . , yn).
Step 3. Define the (i + 1)st reduced system of order n− i by

Fi+1(yi+1, . . . , yn) := (fi+1,j(yi+1, . . . , yn)) = 0,

where for i + 1 6 j 6 n,

fi+1,j(yi+1, . . . , yn) := fi,j(li(yi+1, . . . , yn), yi+1, . . . , yn).
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Step 4. If i+1 < n, set i := i+1, y0 := (y0
i+1, . . . , y

0
n), and start again with step 2.

Step 5. Consider a first order Taylor development of Fn = fn,n centered at y0
n,

equate it to 0 and call its solution y1
n.

Step 6. For i = n− 1 to 1, set y1
i := li(y1

i+1, . . . , y
1
n).

Recall that y∗ 6 y1 6 y0 and that F (y1) > 0 (see [3]). This algorithm can be
carried out by assuming that the Jacobian matrix F ′ is always nonsingular, in which
case some kind of pivoting may be necessary. No pivoting has been introduced here,
because in the MNT context F ′(y) is assumed to be a nonsingular M-matrix and
this property is inherited by each Fi, 2 6 i 6 n, as follows by induction from the
next two lemmas. As for the former, it is an adaptation of Lemma 3.3 in [5], whose
proof omitted a not entirely simple argument included here.

Lemma 3.1. For each y ∈
〈
x0, y0

〉
, F ′

2(y) is a nonsingular M-matrix.
�������! 

. Notice that

l1(y) = y0
1 −

1
∂1f1(y0)

[
f1(y0) +

n∑

j=2

∂jf1(y0)(yj − y0
j )

]
,

so that if i 6= 1 6= j one gets

∂jf2,i(y) = ∂jfi(l1(y), y) + ∂1fi(l1(y), y) ∗ ∂j l1(y)

= ∂jfi(l1(y), y) − ∂1fi(l1(y), y) ∗ ∂jf1(y0)
∂1f1(y0)

.

Since F ′ is always an M-matrix, hence F ′
2(y) is a Z-matrix, i.e. its off-diagonal terms

are nonpositive, because

∂jf2,i(y) 6 ∂jfi(l1(y), y) 6 0 for j 6= i.

With y ∈
〈
x0, y0

〉
, consider the matrix

A :=




∂1f1(y0) . . . ∂nf1(y0)
∂1f2(l1(y), y) . . . ∂nf2(l1(y), y)

...
. . .

...
∂1fn(l1(y), y) . . . ∂nfn(l1(y), y)


 .

It is apparent that A is a Z-matrix and that F ′(l1(y), y) 6 A. Since F ′(l1(y), y) is a
nonsingular M-matrix, its associated Jacobi matrix is convergent (see [12]), i.e.

r(D(F ′(l1(y), y))−1 ∗ [D(F ′(l1(y), y)) − F ′(l1(y), y)]) < 1,
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where r denotes the spectral radius and D(·) denotes the corresponding diagonal
matrix. By virtue of

0 6 D(A)−1 ∗ [D(A) −A] 6 D(F ′(l1(y), y))−1 ∗ [D(F ′(l1(y), y)) − F ′(l1(y), y)],

the Perron-Frobenius theory (see [12]) yields

r(D(A)−1 ∗ [D(A) − A]) 6 r(D(F ′(l1(y), y))−1 ∗ [D(F ′(l1(y), y)) − F ′(l1(y), y)]),

whence

r(D(A)−1 ∗ [D(A) −A]) < 1.

Thus A itself is nonsingular and A−1 > 0 (see [12]), i.e. it is a nonsingular M-matrix.
Consider now

M1 :=




1 0 0 . . . . . . 0
−m2,1 1 0 . . . . . . 0

−m3,1 0 1
. . .

...
...

...
. . .

. . .
. . .

...
...

...
. . . 1 0

−mn,1 0 . . . . . . 0 1




with mi,1 :=
∂1fi(l1(y), y)

∂1f1(y0)
,

whence it follows that

M1 ∗A =




∂1f1 . . . . . . ∂nf1

0
... F2(y)′

0


 .

Thus F ′
2(y) is nonsingular, and by taking into account the above block structure, one

gets

A−1 ∗M−1
1 =




(∂1f1)−1 . . . . . . . . .

0
... (F ′

2(y))−1

0


 .

Since the product on the left-hand side leaves the last n − 1 columns in A−1 un-
changed, one gets that (F ′

2(y))−1 > 0, which together with F ′
2(y) being a Z-matrix

yields that F ′
2(y) is a nonsingular M-matrix. �
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Lemma 3.2. The following propositions hold:

(i) F ′
2 is isotone on

〈
x0, y0

〉
.

(ii) 0 6 F2(y0).

�������! 
. (i) It easily follows by adapting Lemma 3.5 in [5].

(ii) See Theorem 3.4 (ii) in [8]. �

Let us now define, for each 1 6 i 6 n − 1, and inductively for j 6 i

Li,i(y) := li(y), and

Li,j(y) := lj(Li,j+1(y), Li,j+2(y), . . . , Li,i(y), y) for j 6= i.

With this notation it is possible to give a handy representation of fi,i in terms of
f1,i = fi, namely

fi,i(y) = fi(ŷ) with ŷ := (Li−1,1(y), Li−1,2(y), . . . , Li−1,i−1(y), y).

Notice now that one step of Brown’s method can be written in matrix form as

(3.1) T (y0) ∗ (B(y0) − y0) = −Φ(y0),

where Φ(y0) := (fi,i(y0)). The symbol T (y0) stands for the upper triangular matrix
whose ith row is the gradient ∂fi,i(y0), that is ti,k := ∂kfi,i(y0) for i 6 k and
ti,k := 0 for i > k. Notice also that T (y0) is the upper triangular part in the LU
decomposition of F ′(y0).
In order to analyse the variation of B in K+, it is necessary to point out that the

function Φ itself varies with the initial point y0; this parametric dependence, which
also affects T , will be considered implicit in (3.1), which is all needed here. But when
considering the total differential of (3.1), one has to take into account the parametric
role of y0, as well as when considering partial derivatives of the functions involved.
This is denoted here by putting the affected functions in round brackets whenever
necessary. Thus, from the total differential of (3.1), one gets

(3.2) T (y0) ∗ ∂B(y0) = T (y0) − ∂(Φ(y0)) − ∂(T (y0)) ∗ (B(y0)− y0).

Note that ∂(T (y0)) is a three-linear functional.
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Theorem 3.3. The following inequalities hold componentwise:

∂(Φ(y0)) 6 T (y0) and ∂(T (y0)) > 0.

�������! 
. The results are a consequence of the following two coupled inductive

propositions for 1 6 i 6 n− 1:
(a) For 1 6 k 6 n, 1 6 j 6 i, i + 1 6 m the functions Li,j satisfy

∂k(Li,j(y0)) > ∂kLi,j(y0) = ∂kLi,j > 0,(a.1)

and

∂k(∂mLi,j(y0)) 6 0.(a.2)

(b) For 1 6 k 6 n and j > i + 1, fi+1,i+1 is such that

∂k(fi+1,i+1(y0)) 6 ti+1,k(y0)(b.1)

and

∂k(∂jfi+1,i+1(y0)) > ∂k∂jfi+1,i+1(y0) > 0.(b.2)

Consider first the case i = 1. As for (a.1), notice that, since

l1(y0) = y0
1 −

f1(y0)
∂1f1(y0)

,

it follows that

(3.3) ∂k(l1(y0)) = δ1,k −
∂kf1(y0)
∂1f1(y0)

+ f1(y0) ∗
∂2

k,1f1(y0)
(∂1f1(y0))2

,

where δ stands for the Kronecker symbol. Thus if k = 1,

∂1(l1(y0)) = f1(y0) ∗ ∂2
1,1f1(y0)

(∂1f1(y0))2
> 0 = ∂1l1,

while if k > 1, we have

∂k(l1(y0)) = −∂kf1(y0)
∂1f1(y0)

+ f1(y0) ∗
∂2

k,1f1(y0)
(∂1f1(y0))2

> −∂kf1(y0)
∂1f1(y0)

= ∂kl1.
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In order to prove (a.2), recall that

∂k(∂ml1(y0)) = − ∂k(∂mf1(y0))
∂1f1(y0)

+ ∂mf1(y0) ∗ ∂k(∂1f1(y0))
(∂1f1(y0))2

= −
∂2

k,mf1(y0)
∂1f1(y0)

+ ∂mf1(y0) ∗
∂2

k,1f1(y0)
(∂1f1(y0))2

.

Since ∂2 > 0 and ∂mf1 6 0 because m > 1, (a.2) is finally obtained for i = 1.
To prove (b.1), using

∂k(f2,2(y0)) = ∂k(f2(l1(y0), y0))

= ∂1f2(ŷ0) ∗ ∂k(l1(y0)) + (1− δ1,k) ∗ ∂kf2(ŷ0),

and taking into account (3.3), we conclude that

∂1(f2,2(y0)) = ∂1f2(ŷ0) ∗ f1(y0) ∗ ∂2
1,1f1(y0)

(∂1f1(y0))2
6 0.

On the other hand, if k > 1, then

∂k(f2,2(y0)) = ∂1f2(ŷ0) ∗
(

∂kl1 + f1(y0) ∗
∂2

k,1f1(y0)
(∂1f1(y0))2

)
+ ∂kf2(ŷ0)

6 ∂1f2(ŷ0) ∗ ∂kl1 + ∂kf2(ŷ0) = ∂kf2,2(y0).

In order to prove now (b.2) with i = 1, note first that

∂k(∂jf2,2(y0)) = ∂k(∂1f2(ŷ0) ∗ ∂j l1 + ∂jf2(ŷ0))

= ∂k(∂1f2(ŷ0)) ∗ ∂j l1 + ∂k(∂jf2(ŷ0)) + ∂1f2(ŷ0) ∗ ∂k(∂j l1).

Since from (a.1) one has

∂k(∂jf2(ŷ0)) = ∂2
1,jf2(ŷ0) ∗ ∂k(l1(y0)) + (1− δ1,k) ∗ ∂2

k,jf2(ŷ0)

> ∂2
1,jf2(ŷ0) ∗ ∂kl1 + (1− δ1,k) ∗ ∂2

k,jf2(ŷ0),

this inequality and the corresponding one for j = 1 yield

∂k(∂jf2,2(y0)) > [∂2
1,1f2(ŷ0) ∗ ∂kl1 + (1 − δ1,k) ∗ ∂2

k,1f2(ŷ0)] ∗ ∂j l1(3.4)

+ [∂2
1,jf2(ŷ0) ∗ ∂kl1 + (1− δ1,k) ∗ ∂2

k,jf2(ŷ0)]

+ ∂1f2(ŷ0) ∗ ∂k(∂j l1).

175



On the other hand,

∂k∂jf2,2(y0) = ∂k(∂1f2(ŷ0) ∗ ∂j l1 + (1 − δ1,j) ∗ ∂jf2(ŷ0))

= [∂2
1,1f2(ŷ0) ∗ ∂kl1 + (1− δ1,k) ∗ ∂2

k,1f2(ŷ0)] ∗ ∂j l1

+ (1− δ1,j)[∂2
1,jf2(ŷ0) ∗ ∂kl1 + (1 − δ1,k) ∗ ∂2

k,jf2(v̂0)].

Since j > 1, going back to (3.4) one obtains

∂k(∂jf2,2(y0)) > ∂k∂jf2,2(y0) + ∂1f2(v̂0) ∗ ∂k(∂j l1).

Taking into account (a.2) and the inequality ∂1f2 6 0, one finally gets (b.2) for i = 1.
Now let us assume that (a) and (b) are valid for all m < i 6 n − 1 with i > 1.

Hence, for (a.1), it follows that

∂k(Li,i(y0)) = ∂k(li(y0)) = ∂k

(
y0

i −
fi,i(y0)

∂ifi,i(y0)

)

= δi,k −
∂k(fi,i(y0))
∂ifi,i(y0)

+ fi,i(y0) ∗ ∂k(∂ifi,i(y0))
(∂ifi,i(y0))2

> δi,k −
∂k(fi,i(y0))
∂ifi,i(y0)

> δi,k −
∂kfi,i(y0)
∂ifi,i(y0)

= ∂kli = ∂kLi,i(y0) = ∂kLi,i > 0,

where the first inequality above follows from (b.2), while the other from (b.1). This
completes the first step in the inner induction from j = i to j = 1, in order to
prove (a.1). Now, since Li,j(y0) = lj(ŷ0) where ŷ0 = (Li,j+1(y0), . . . , Li,i(y0), y0),
one obtains

∂k(Li,j(y0)) =
i∑

m=j+1

∂mlj ∗ ∂k(Li,m(y0)) +
i∏

m=j+1

(1− δm,k) ∗ ∂klj

>
i∑

m=j+1

∂mlj ∗ ∂kLi,m +
i∏

m=j+1

(1− δm,k) ∗ ∂klj

= ∂kLi,j(y0) = ∂kLi,j > 0

with ∂kLi,j = 0 if k 6 j. Notice that also the last inequality follows inductively from
the inequality for j = i.

176



As for (a.2), another descending induction from j = i to j = 1 is performed. Thus
for m > i + 1, (b.2) yields

∂k(∂mLi,i(y0)) = − ∂k(∂mfi,i(y0))
∂ifi,i(y0)

+ ∂mfi,i(y0) ∗ ∂k(∂ifi,i(y0))
(∂ifi,i(y0))2

6 − ∂k∂mfi,i(y0)
∂ifi,i(y0)

6 0,

while if j < i, the (inner) induction and (a.1) as proved for i imply

∂k(∂mLi,j(y0)) = ∂k

( i∑

s=j+1

∂slj ∗ ∂mLi,s(y0) + ∂mlj

)

=
i∑

s=j+1

∂k(∂slj) ∗ ∂mLi,s

+
i∑

s=j+1

∂slj ∗ ∂k(∂mLi,s(y0)) + ∂k(∂mlj) 6 0.

In order to prove (b.1), notice that from (a.1) it follows as above that

∂k(fi+1,i+1(y0)) =
i∑

j=1

∂jfi+1(ŷ0) ∗ ∂k(Li,j(y0)) +
i∏

j=1

(1− δk,j) ∗ ∂kfi+1(ŷ0)

6
i∑

j=1

∂jfi+1(ŷ0) ∗ ∂kLi,j +
i∏

j=1

(1− δk,j) ∗ ∂kfi+1(ŷ0)

= ti+1,k(y0).

Regarding (b.2), notice first that

∂k(∂jfi+1,i+1(y0)) = ∂k

( i∑

m=1

∂mfi+1(ŷ0) ∗ ∂jLi,m(y0) + ∂jfi+1(ŷ0)
)

(3.5)

=
i∑

m=1

∂k(∂mfi+1(ŷ0)) ∗ ∂jLi,m + ∂k(∂jfi+1(ŷ0))

+
i∑

m=1

∂mfi+1(ŷ0) ∗ ∂k(∂jLi,m(y0)).
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For each term in (3.5) it is obtained from (a.1) that

∂k(∂mfi+1(ŷ0)) =
i∑

p=1

∂2
p,mfi+1(ŷ0) ∗ ∂k(Li,p(y0)) +

i∏

p=1

(1− δk,p) ∗ ∂2
k,mfi+1(ŷ0)

>
i∑

p=1

∂2
p,mfi+1(ŷ0) ∗ ∂kLi,p +

i∏

p=1

(1− δk,p) ∗ ∂2
k,mfi+1(ŷ0).

The inequalities in (a) now imply (b.2) as in the case i = 1. �

Theorem 3.4. If z0 ∈ K+, then the Brown iterates satisfy zk 6 yk, k = 1, 2, . . ..
�������! 

. Theorem 3.3 and (3.2) imply that ∂B > 0 in K+, because T is always
a nonsingular M-matrix. By considering an ascending path g in K+ joining z0 to y0

as in Theorem 2.3, it follows that

y1 − z1 = B(y0)−B(z0) =
∫ 1

0

∂t(B(g(t)) dt =
∫ 1

0

∂B(g(t)) ∗ ∂g(t) dt > 0.

A simple induction completes the proof. �

4. The analytic Fourier iterations

The Fourier iterations for Brown’s method have been introduced in [3] in analogy
with the Newton-Fourier iterations. These Brown-Fourier iterates give us a monotone
bracketing of y∗, which is moreover contained in the corresponding Newton-Fourier
bracketing (see [3]). Their description in the framework of the original Brown algo-
rithm now follows.
Step 1′. Set x0 := x0 (i = 1) and F−

1 (x) = (f−1,j(x)) := (fj(x)) = F (x).
Step 2′. Consider the affine approximation of f−i,i centered at x0 with the gradient

values of fi,i at y0 and solve for xi, i.e. xi = l−i (xi+1, . . . , xn).
Step 3′. Define the (i + 1)th reduced lower system

F−
i+1(xi+1, . . . , xn) := (f−i+1,j(xi+1, . . . , xn)) = 0 where

f−i+1,j(xi+1, . . . , xn) := f−i,j(l
−
i (xi+1, . . . , xn), xi+1, . . . , xn) for i + 1 6 j 6 n.

Step 4′. If i + 1 < n, set i := i + 1, x0 := (x0
i+1, . . . , x

0
n) and start again with

step 2’.
Step 5′. Consider a first order approximation of f−n,n at x0

n with the slope given
by ∂nfn,n(y0), equate it to 0 and call its solution x1

n.
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Step 6′. For i = n− 1 to 1 define x1
i := l−i (x1

i+1, . . . , x
1
n).

The x1 thus obtained is the first Fourier iterate corresponding to the Brown iter-
ate y1. Recall that x0 6 x1 6 y∗ and F (x1) 6 0 (see [3]).
Analogously to the previous section, let us now define inductively, for 1 6 i 6 n−1

and for j 6 i,

L−i,i(x) := l−i (x) = x0
i −

1
∂1fi,i(y0)

[
f−i,i(x

0) +
n∑

j=i+1

∂jfi,i(y0)(xj − x0
j )

]
,

and for j 6= i,

L−i,j(x) := l−j (L−i,j+1(x), L−i,j+2(x), . . . , L−i,i(x), x).

Here one easily gets

f−i,i(x) = fi(x̂) with x̂ := (L−i−1,1(x), L−i−1,2(x), . . . , L−i−1,i−1(x), x).

Lemma 4.1. f−i,i(x
0) 6 0 for 2 6 i 6 n.

�������! 
. Consider first i = 2. Then

f−2,2(x
0) = f2(x̂0) = f2(L−1,1(x

0), x0) = f2(l−1 (x0), x0)− f2(x0) + f2(x0)

6 ∂1f2(l−1 (x0), x0) ∗ (l−1 (x0) − x0
1) + f2(x0)

= ∂1f2(l−1 (x0), x0) ∗
(
− f1(x0)

∂1f1(y0)

)
+ f2(x0)

6 f2(x0) 6 0,

where the first inequality is a consequence of the order convexity. The proof is now
completed by induction. Assume that for some i, 2 6 i 6 n,

f−j,j(x
0) 6 0 if 2 6 j 6 i− 1 < n.

Notice first that, because of the order convexity,

f−i,i(x
0) = fi(x̂0) = fi(x̂0) − fi(x0) + fi(x0)(4.1)

6
i−1∑

j=1

∂jfi(x̂0) ∗ (L−i−1,j(x
0) − x0

j ) + fi(x0).

Now it is necessary to prove that

(4.2) L−i−1,j(x
0) − x0

j > 0 for 1 6 j 6 i− 1.
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This proof is done by means of an (inner) induction from i−1 to 1. Notice first that

L−i−1,i−1(x
0) − x0

i−1 = −
f−i−1,i−1(x

0)
∂i−1fi−1,i−1(y0)

> 0.

For the general term, one has

L−i−1,j(x
0) − x0

j = lj(x̂0) − x0
j

= − 1
∂jfj,j(y0)

∗
[
f−j,j(x

0) +
i−1∑

k=j+1

∂kfj,j(y0)(L−i−1,k(x0)− x0
k)

]
,

which makes it clear that the inner and outer inductions imply (4.2). By applying
these inequalities in (4.1), one finally gets

f−i,i(x
0) 6 fi(x0) 6 0,

and the proof is complete. �

Denoting Φ−(x0) := (f−i,i(x
0)) and B(x0, y0) := x1, for the Fourier iterate one has

the system

(4.3) T (y0) ∗ (B(x0, y0) − x0) = −Φ−(x0).

Let us assume first that x0 is kept fixed while y0 is allowed to vary. The corresponding
total differential of (4.3) then yields

(4.4) T (y0) ∗ ∂B(x0, y0) = −∂(Φ−(x0)) − ∂(T (y0)) ∗ (B(x0, y0) − x0).

Lemma 4.2. With the notation as in (4.4), it follows that ∂(Φ−(x0)) > 0.
�������! 

. Note first that ∂k(f−1,1(x
0)) = ∂k(f1(x0)) = 0, for 1 6 k 6 n.

Since f−i,i(x
0) 6 0, 1 6 i 6 n, and by virtue of (b.2) in Theorem 3.3, it is also clear

that

∂k(L−i,i(x
0)) = ∂k(l−i (x0)) = ∂k

(
x0

i −
f−i,i(x

0)
∂ifi,i(y0)

)

= f−i,i(x
0) ∗ ∂k(∂ifi,i(y0))

(∂ifi,i(y0))2
6 0.

It now inductively follows, from j = i to j = 1, that

∂k(L−i,j(x
0)) =

i∑

m=j+1

∂ml−j ∗ ∂k(L−i,m(x0))

= −
i∑

m=j+1

∂mfj,j(y0)
∂jfj,j(y0)

∗ ∂k(L−i,m(x0)) 6 0.
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This inequality yields

∂k(f−i+1,i+1(x
0)) = ∂k(fi+1(x̂0)) =

i∑

j=1

∂jfi+1(x̂0) ∗ ∂k(L−i,j(x
0)) > 0,

because ∂jfi+1 6 0 for j 6 i, which completes the proof. �

Theorem 4.3. If z0 ∈ K+, then B(x0, y0) 6 B(x0, z0).
�������! 

. Lemma 4.2 and Theorem 3.3 applied in (4.4) imply that ∂B(x0, y) 6 0
for y in K+. The conclusion then follows as in Theorem 3.4. �
Suppose now that y0 is held fixed while x0 varies. In this case, from the corre-

sponding differential in (4.3), it is easy to see that

(4.5) T (y0) ∗ ∂B(x0, y0) = T (y0) − ∂(Φ−(x0)).

Lemma 4.4. With the notation as in (4.5) it follows that ∂(Φ−(x0)) 6 T (y0).
�������! 

. Clearly one has that

∂k(f1(x0)) = ∂kf1(x0) 6 ∂kf1(y0) = t1,k(y0).

Assuming now for some i < n− 1 and all k, 1 6 k 6 n, that

∂k(f−i,i(x
0)) 6 ti,k(y0) = ∂kfi,i(y0) = ti,k(y0),

we obtain that

∂k(l−i (x0)) = ∂k(L−i,i(x
0)) = ∂k

(
x0

i −
f−i,i(x

0)
∂ifi,i(y0)

)

= δi,k −
∂k(f−i,i(x

0))
∂ifi,i(y0)

> ∂kl−i = ∂kli > 0,

so that

∂k(L−i,j(x
0)) = ∂k(l−j (x̂0))

=
i∑

m=j+1

∂ml−j ∗ ∂k(L−i,m(x0)) +
i∏

m=j+1

(1− δm,k) ∗ ∂k(l−j )

>
i∑

m=j+1

∂ml−j ∗ ∂kL−i,m +
i∏

m=j+1

(1 − δm,k) ∗ ∂kl−j

=
i∑

m=j+1

∂mlj ∗ ∂kLi,m +
i∏

m=j+1

(1− δm,k) ∗ ∂klj

= ∂kL−i,j(y
0) = ∂kLi,j > 0.
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Since one has

∂mfi+1(x̂0) 6 ∂mfi+1(ŷ0) 6 0,

for 1 6 m 6 i, one obtains

∂k(f−i+1,i+1(x
0)) = ∂k(fi+1(x̂0))

=
i∑

m=1

∂mfi+1(x̂0) ∗ ∂k(L−i,m(x0)) +
i∏

m=1

(1− δk,m) ∗ ∂kfi+1(x̂0)

6
i∑

m=1

∂mfi+1(ŷ0) ∗ ∂kLi,m +
i∏

m=1

(1 − δk,m) ∗ ∂kfi+1(ŷ0)

= ti+1,k(y0),

which completes the proof. �

Theorem 4.5. If w0 ∈ K−, then B(x0, y0) 6 B(w0, y0).
�������! 

. Lemma 4.4, when applied in (4.5), implies that ∂(B(x, y0)) > 0 for x

in K−. Since K− is an order convex set, the ascending segment joining x0 to w0 is
contained in K−, so that the argument in the proofs of Theorems 3.3 and 4.3 applies
again and yields the conclusion. �

Corollary 4.6. If w0 ∈ K− and z0 ∈ K+, then B(x0, y0) 6 B(w0, z0).

5. An example

An illustration is briefly discussed in this section. It deals with Chandrasekhar’s
equation and suggests that, given the quadratic convergence of Brown’s analytic
method, one should only expect a modest improvement in the number of iterations
by conveniently choosing the starting (upper) point.
Consider thus Chandrasekhar’s equation, namely

v(t) = 1− 1
4

∫ 1

0

( t

s + t
∗ 1

v(s)

)
ds, 0 6 t 6 1.

The approach to dealing with this equation follows [4] and [8]. For h := 1
64 , the

trapezoidal integration rule is applied at the points ih, 0 6 i 6 64. Taking into
account that v(0) = 1, the resulting nonlinear system is

F (x) := (fi(x)) = 0, 1 6 i 6 64,
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where

fi(x) := xi +
1
4

[
w0 +

64∑

j=1

wj ∗
i

i + j
∗ 1

xj

]
− 1,

w0 := w64 :=
h

2
wj := h, 1 6 j 6 63.

Consider two different starting upper points y0 whose coordinates are all equal to 1
in one case and to 5 in the other. It is easily verified that F (y0) > 0 in both cases.
Consider also the corresponding Fourier iterations with x0

i := .5, 1 6 i 6 64, for
which it is also easy to see that F (x0) 6 0. The stopping criteria for Brown and
Fourier iterations are given by the first k for which the function residues satisfy,
respectively,

‖F (yk)‖∞ < ε := .5 ∗ 10−13, and ‖F (xk)‖∞ < ε.

The computations have been carried out with the double precision of Fortran 77.
The table shows the values of the iterates approximating v(1), namely yk

64, as well
as the values of xk

64. The exact digits are underlined. The final k in each column
of values is the one for which the function values satisfy the corresponding stopping
criterion given above.

k yk
64 xk

64 yk
64 xk

64

0 5. .5 1. .5

1 .808462758084 .789714505200 .799636685607 .793434227609

2 .799218390107 .799126316604 .799194762887 .799184364766

3 .799194702734 .799194700358 .799194702574 .799194702544

4 .799194702574 .799194702574 .799194702574

It is worth pointing out not only the consistency of the table with the results in the
paper, but also that Brown iterates appear to converge faster than the corresponding
Fourier iterates. This is a well established fact by Ostrowski when n = 1, namely for
one dimensional analytic Newton-Fourier iterations (see [10]).

Final comment. The extension of the results in the paper to discretized Brown
iterations will be analyzed elsewhere, along with their possible application to the
comparison of discretized Brown and Newton iterations.

Acknowledgement. The referee’s constructive criticism has been very helpful
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